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Abstract: In this study, we present new variants of the Hermite-Hadamard inequality via non-
conformable fractional integrals. These inequalities are proven for convex functions and differentiable
functions whose derivatives in absolute value are generally convex. Our main results are established
using the classical Jensen—Mercer inequality and its variants for (1, m)-convex modified functions
proven in this paper. In addition to showing that our results support previously known results from
the literature, we provide examples of their application.

Keywords: convex functions; (h, m)-convex functions; Jensen-Mercer inequality; Hermite—Hadamard
inequality; Holder inequality, power mean inequality; non-conformable fractional operators
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1. Introduction

Jensen’s inequality is one of the most studied results in the literature. In the last few
decades, quite a few researchers have been interested in refining and generalizing this
inequality (see, e.g., [1-6]).

Let0 < x; <xp <... < xyand let wy (1 < k < n) be positive weights associated with
these x; and let their sum demonstrate unity. Then, Jensen’s inequality

< ) we®(x) @

n
] 2 WXy
k=1 k=1

holds (see [7]).
Mercer investigated a generalized form of Jensen’s inequality, which is famously
known as the Jensen—-Mercer inequality (see [8]): if ® is a convex function on [p, 0], then

Qp+o—) wx | <P(p) +D(0) — ) wpP(xg) 2
k=1 k=1

is fulfilled for x; € [p,0], wr € [0,1] with Y}, wy = 1. In case of n = 1, inequality (2)
reads as
D(c—x+p) <P(p) + D(0) — D(x) 3)

for x € [p, 0]. Extensions of this result can be found in e.g., [9-11].
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The well-known refinement of Jensen’s inequality, the Hermite-Hadamard inequality

o(257) = 1 [ ot < 22 .

for convex functions, was proved by Hermite in 1883 and independently by Hadamard in
1893; see, e.g., [12]. This inequality has been generalized by many researchers, taking into
account various aspects such as general convexity and fractional operators. For Hermite—
Hadamard-Mercer type results, see [13-18].

In general, the concept of convex and general convex functions plays a major role in
the theory of integral inequalities. So far, many general convex classes have been described
in the literature. A summary of many of these classes was given in [19].

Definition 1. Let h: [0,1] — [0,00), h # 0and @ : [ = [0,00) — R. If inequality
P(Ax+m(1=A)y) < h(A)P(x) +mh(1 —A)P(y) (5)
is fulfilled VA € [0,1] and x,y € I, where m € [0, 1], then function ® is called (h, m)-convex on I.
In [20,21], the following definitions were presented.
Definition 2. Let h: [0,1] — (0,1] and @ : I = [0,00) — R. If inequality
D(Ax+m(1=A)y) < B (A)P(x) +m(1 -1 (1)) D(y) ©6)

is fulfilled VA € [0,1] and x,y € I, where m € [0,1], s € [—1,1], then function ® is called (h, m)
-convex modified of the first type on I and this set of functions will be denoted as K}llfn (I).

Definition 3. Let h: [0,1] — (0,1] and @ : I = [0,00) — R. If inequality
B(Ax -+ (1 — A)y) < (V@) + m(1 — K1) D (y) %

is fulfilled VA € [0,1] and x,y € I, where m € [0,1], s € [—1,1], then function ® is called (h, m)
-convex modified of the second type on I and this set of functions will be denoted as Kﬁfn (I).

Throughout the paper, for (h, m)-convex modified functions of the first or, of the
second type, we assume that m € [0,1] and s € [—1,1].
The following results are extended versions of Jensen-Mercer inequality (3).

Theorem 1. Let @ : [ = [p, 0] C R — R be an integrable and (h, m)-convex function. Then, the
following Mercer’s type inequality holds:

@ (x1 +mxp — xx) < (h(A) +h(1—A))[P(x1) + mD(xn)] — P(xx) ®)
for x1 < mxy, x; € [x1,mx,] C Land A € [0,1], such that x; = Axy + m(1 — A)xy,.

Proof. Putting x; = Axy +m(1 — A)x, and yr = (1 — A)xq + mAx,, we have
Yk + X = x1 + mx,,. Now, using the (h, m)-convexity of ®, we have

®(y) < h(1— A)D(x1) + mh(A)D(xn),
®(xp) < h(A)D(x1) + mh(1 — A)D(xy).

By adding the corresponding sides of the inequalities, we obtain
D(yi) +P(xr) < (R(A) + (1 = A))[@(x1) + mP(xn)].

From the above, the desired inequality (8) is easily obtained. [
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Corollary 1. Let @ : [ = [p,c] C R — R be an integrable (h, m)-convex function. Then,
from (8), we have

D(x1 + mxy — x) < Ag[P(x1) + mD(x,)] — P(xy) 9)

for x1 < mxy, x; € [x1,mx,] C Land Ag = sup (h(A)+h(1—A)).
A€l0,1]

Remark 1. For m =1, Corollary 1 leads to a correct version of Lemma 3.1 of [11].

Theorem 2. Let & : [ = [p,0] C R — R be an integrable and & € K}an([p, =1). Then, the
following Mercer’s-type inequality holds:

D(xp+mxy —x) < (BP(A)+h(1—=A))P(x1) + (2—F(A) —h* (1= A))mP(x,) —D(xx) (10)

for x1 < mxy, x; € [x1,mx,] C Land A € [0,1] such that x, = Axq + m(1 — A)xy.

Proof. The proof is analogous to that of Theorem 1. Taking x; = Axy + m(1 — A)xy,,
Yk = (1 — A)xq + mAx, and combining inequalities

D(yx) < (1 =2A)@(x1) +m(1 =k (1= A))P(xn),
(xp) < B (A)P(x1) +m(1 =k (A))D(xn)

results in inequality (10). O

Corollary 2. Let @ : I = [p,0] C R — R be an integrable and ® € K;fn([p,%}) Then,
from (10), we have

D(x1 + mxy — x;) < A1[D(xq) + mP(x,)] — D(xy)

for x1 < mxy, x; € [x1,mx,] C I and

A= max{ sup (W*(A)+h(1—A)), sup (2—h*(A) —h*(1— A))}
A€[01] A€(0,1]

Theorem 3. Let ® : [ = [p,0] C R — R be an integrable and O € Kiiﬂ([p,%]) Then, the
following Mercer’s type inequality holds:

D(x1 +mxy —x;) < (BP(A)+ 1 (1= A))D(x7)

11
(= B+ (=B = A () ~ ()
for x1 < mxy, x; € [x1,mx,] C ILand A € [0,1], such that x; = Axy + m(1 — A)xy,.

Proof. The proof is analogous to that of Theorem 1. Taking x; = Axy + m(1 — A)xy,
Y = (1 — A)xq + mAx, and combining inequalities

Pyp) < B (1 =A)P(x1) +m(1—h(1=A))P(xn),
P (xp) < B (A)P(x1) +m(1 —h(A)) D (xn)

yields inequality (11). O

Corollary 3. Let ® : I = [p,0] C R — R be an integrable and ® € Kiiﬂ([p, Z1). Then, from
Theorem 3, we have

D(x1 + mxy, — xx) < Ap[P(x7) + mP(xy)] — P(xy) (12)
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for x1 < mxy, x; € [x1,mx,] C I and

A, = max{ sup (W*(A)+h(1—A)), sup ((1—h(A))°+ (1—h(1— /\))S)}
A€[0,1] A€(0,1]

Remark 2. Form = s = 1and h(t) = t, we have A1 = Ay = 1, moreover, Theorems 2 and 3 (or,
Corollaries 2 and 3) become the Jensen—Mercer inequality for convex functions (3).

Remark 3. Other variants of the Jensen—Mercer inequality (2), for different notions of convexity,
can be found in [16,22-25].

In the remainder of this paper, we aim to give generalizations of Hermite-Hadamard
inequality (4) via non-conformable fractional integrals defined by Ndpoles et al. in [26].

Definition 4. Let « € Rand 0 < p < ¢. For each function ® € L|p, o], we define

X
i) = [ o
for every x,u € [p,0].

Definition 5. Let « € Rand p < 0. For each function ® € Ly[p, 0], that is the linear space
Lalp,o] = {@: [o,0] 5 R: (t—p) @ (1), (c — )@ (1) € Llp, 0]},

let us define the fractional integrals

X (o4

(x— )" ®(t)dt and ,J* P(x) = / (t—x)“®d(t)dt  (13)

X

N3]‘g+q)(x) = /

p
for every x € [p,o]. Here, for &« = 0, we have NS]’;“+CI>(x) =N, J5-P(x) = fp‘rd)(t)dt.

Definition 6. More details on the fractional integral and the corresponding fractional derivative
N3 can be read in [26].

Fractional differential and integral computations have been widely used in many fields
of applied sciences. The interested reader can read about the role of fractional calculus in
the study of biological models and chemical processes in [27-29].

2. Inequalities for Convex Functions

In this section, we obtain analogues of Hermite-Hadamard inequality (4) for non-
conformable fractional operators (13) using Jensen—Mercer inequalities.

Remark 4. Ifin (2), we take n = 2 and wy; = wy = %, then we have

¢Gni§+p—%)ngu+¢wyfggﬁgggﬁ. (14)

Theorem 4. Let @ : [p, 0] — R. If ® € Ly[p, o] and @ is convex on [p, 7], then

11—«
2y —x)' "

< B(p) + (o) q>(";y),

(c-J+p-3) < Pp)+ () - (o @) + 2 D(y)

(15)

where x,y € [p, o] and a < 1.
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Proof. If in (14), we choose x1 = tx + (1 —t)y and y; = (1 — t)x + ty, and multiply by %,
then we can write the inequality
2<I><c7 - % +po- g)t_“ <267%[@(p) + D(0)] =t P(tx + (1 —t)y) —t *D((1 — t)x + ty).
Now, by integrating the resulting inequality with respect to t on [0,1] and changing
the variable, we obtain

I Y . AR
—e(r=3+r-3)
1 1
<2[®(p) + ()] / - [/ FD (b + (1 — By)dt + / (1 — Hx + ty)dt]
0 0
Y y
_2A%p) +el@)] 1 [ -2 0@+ [z - x) ()
1-a (y—x)"" L .
2[®(p) + P(0)] 1
B i ——— NS () + 2 ()]
After dividing both sides of the last inequality by %, we get the left inequality
in (15).
For the proof of the second inequality of (15), keeping in mind that ¢ is convex, one
can write

<D<x—;y> :(D<tx+(1—t)y42—ty+(1—t)x>

< P(tx+(1—-t)y) + Pty + (1 —t)x)
- 2

By multiplying both sides of last inequality by t~* and by integrating with respect to ¢
on [0,1] and changing the variables, we obtain

11aq>(x;y) <3 —1x)1_"‘ My(y—z)“¢(z)dz+[cy(z—x)“¢(z)dz .

By multiplying the last inequality by (a — 1) and adding ®(p) + ® (o) to both sides,
we get the right-hand side of (15):

<I>(p)+<I>((f)—<I>(x—;y)

>®(p) +P(0) — Z(yl—_xt;_‘" {/Xy(y —z) " ®(z)dz + /xy(z —x) "®(z)dz
=d(p) + P(0) — 2(]/1_;;‘1“ [NJ;QCP(X) + Ng iﬁrd)(y)}.

Thus, inequality (15) is proved. [

Corollary 4. For o = 0, under the assumptions of Theorem 4, we get

1
y—x

(e +p-3) <0+ 00) - 1 [T 0w < o)+ a0 - o 1Y)

forall x,y € |p,c]. This inequality was obtained by Kian and Moslehian in ([30], Theorem 2.1),
and by Ogiilmiis and Sarikaya in ([17], Remark 2.2).
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Theorem 5. Let @ : [p,0] — R. If® € Ly[p, 0] and ® is convex on [p, 7], then we have

ofr-3+0-3)

1—
_Z(y‘;la[wg yipy RO =X H0)+ NS x+p)-<1>(ff—y+p)} (16)
< Q(U—X+P)+q’(‘7—y+P) < CI)(p) +CI)(0’) _ q)(x) +¢(y)

— 2 f— 2 7
where x,y € [p, 0] and « < 1.

Proof. To prove inequality (16), we use the left-hand side of (14) and choose
x1 =tx+ (1 —t)y,y1 = (1 — t)x + ty to obtain the auxiliary inequality

@(a——+ -3)

_x1—|-p+(7 y1+p>< O(c —x1+p)+<1>(a—y1+p)
- 2 2

_Ppto— tx—(l—t)y) +<1>(p+a—ty—(1—t)x).
2

'9

More precisely, we use the equivalent inequality

Y X <CI>(p+a—tx—(1—t)y) Pp+0o—(1—t)x—ty)
CIJ((T b+p 2)_ . + 5 . ay)

Multiplying both sides of (17) by %, integrating with respect to t on [0, 1] and chang-
ing the variables yields

e GO R

e | R O A R O
<— z—(c—y+ z)dz +
2(y — x)' 7 o—y+p yre T—y+p

— 1 o o
= [N RO 0 NS R —y+p)]-

2y —x)""
It is easy to see that left-hand side of (16) is proved. To prove the remaining part
of (16), we need the following inequalities:

o—x+p
(0 —x+p) —2)""®(2)dz

Pop+o—(tx+(1-1t)y)=P(p+c+ (p+o)t—(o+0)t— (tx+ (1 —t)y))
=®(tc—x+p)+(1-t)(c—y+p))
<tPo—x+p)+(1-t)P(c—y+p)

and
Pp+o—(ty+(1—1t)x)) <td(c—y+p)+(1—t)P(c—x+p).

By summing the above inequalities, we have
Plo+o—(tx+(1-1y))+P(p+o—(ty+(1-1)x) <Ple—x+p)+P(C—y+p)

By multiplying both sides (17) by t~%, integrating with respect to ¢ on [0,1] and
changing the variables, we obtain

1 (41
(y—x)l_“[NJ("erp)*cD( —xtp)+ NS Hp)fq’(a—erp)}
1

1—a

< [P(c—x+p)+P(c—y+p)]
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This inequality implies the remaining part of (16) by keeping (3) in mind. The proof is
complete. O

Corollary 5. For & = 0, under the assumptions of Theorem 5, we have

y x 1 T=X+p @ (x) + P(y)
o(c-L1p-3)< y_x/g_w (1)t < D(p) +P(0) — ———

(18)

forall x,y € [p,o|. This inequality was obtained by Kian and Moslehian in ([30], Theorem 2.1),
and by Ogiilmiis and Sarikaya in ([17], Remark 2.2).

Remark 5. Ifin (18), we choose x = p and y = o, then we get the Hermite—Hadamard inequality (4).

3. Inequalities for General Convex Functions

By considering (h, m)-convexity modified in the first and the second sense, we give
analogues of Hermite-Hadamard inequality (4) for fractional operators (13) using Jensen—
Mercer inequalities proven for these classes. Before that, we recall the following identity
obtained by Néapoles et al. in [26] (see Lemma 1).

Lemma 1. Let @ : [p,0] — R be a differentiable function. If ®' € L,_1[p, 0], then we have

D(p) + @ 1— ) . _
(0) ! (o) o p")‘m {NSIG—CD(p) + N31p+q>(¢7)} - %(101 ~ ),

where & < 1 and
1 1
It = / H0R! (1~ t)p + to)dt, Inp = / (1= 074 (1 = )p + to)dt.
0 0

If in Lemma 1, we substitute o — i + p in place of p and o — x + p in place of o, we get
the next equation.

Corollary 6. Under the assumptions of Lemma 1, we have

Pc—y+p)+P(c—x+p)
2

1—« " .
Ty " [ NS (o)~ PO =Y +0) + NSy )+ PlO— X+ p)] (19)

_Yy=-x..
=" (L — I,

where x,y € [p,0], « < 1and
1
L= / 12/ (¢ — x + pt — (1 — H)y)dt,
0

1
L= /0 (1 D1/ (0 — x + pt — (1 — t)y)d.
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Theorem 6. Let @ : [p, 2] — R be a differentiable function. If ® € Ly_1[p,0] and
|®'| € Kl ° ([0, &]), then the following inequality holds for all x,y € [p,0], & < 1:

‘d)(a—y—i—p)—i—cb(a—x—i—p)

2
11—«
_W{st(a x+0)~ d(c—y+p)+ N3](U y+p)+<1>( x—i—p)}
/ /(0 1 x , 2
o5 (ML 2 () (9'5) 1/ 3)) )
<5 n)L-

— [[@/ ()] + [ )] —m(

o ()] ()] [ e ewoal,

where Ay is from Corollary 2.

Proof. From Corollary 6 and modulus properties, we can write

‘d>(a—y+p)+<l>(0'—x+p)
2

1—a
- - o _ o _ 21
2(]/ - x)lfa |:N3](0'*X+p)7q>(0- Y +p) + N3](szy+p)+q)(0' x+ P)} ‘ ( )

y—x y—x
= I L| < =——(|L]| + |L]).
2 |l 2|_ 2 (|1| |2|)

Using (h, m)-convexity of the first sense of function |®’| and Corollary 2, for integral
I, we get

1
|11|§/0 tl—“\¢’(p+a—(xt+(1—t)y))\dt

< [ e fale |+Alm\¢’(5)\ RGO |+m<1—h5<t>>\¢’(1)!)}df

_A1[|‘1)( |+m|q>’( — @ (x |/ Hps (¢ ‘/ H1% 1 — RS (t))dt
2 —
M) A (5] (] >|*“q,,( m‘qy 1 [
2—u

One can write for the second integral I, similarly

1 1
|12\g/0(1—t1—“\c1>’a—x+pt—(1—t)y)|dt:/0 B @ (o + 0 — (1— t)x — ty) |dt

_ AP (p)] + Avm| @' ()| — m| @' ()]
= 2—«

_ “CI)’( m‘CD’ / tl ahs
Thus, we have

A (|2 (p)| +m|®"(F)]) —m(|® ()| + [ ()]

2—uw
(%)‘4‘ @ (¢ )]/Oltlf“hs(t)dt

By multiplying the last inequality by Y5~ and taking into account (21), we
obtain (20). O

2
||+ || <

— [l ()] + @' ()] = m (|
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Corollary 7. If in Theorem 6, we choose x = p and y = o, then we have

‘CD(P) erCD(U) B 2(01_—{;;61_“ {NJ{}‘—(I’(P) + N3]3+¢(U)H
_ Up{2A1|CI>’(p)| —m|® (£)| + (2A; — 1)m|® (Z)|
- 2 2—uw

@ el (o (2)] o (5)))] [ #w o)

If, in addition, m = 1, then

‘CD(p) _;CD(U) — 2(0_1_(;;‘104 [N3]g—<1)(P) + N3]z+q)(0')} |

(22)
_ (0=p) AL = D)(|¥'(p)] + ¥ (0)])
= 22— a) '

Theorem 7. Let @ : [p, 2] — R be a differentiable function. If ' € Ly_1[p,0] and
|| € K* ([p, ), then the following inequality holds for all x,y € [p, 0], & < 1:

,m m

‘@(0y+p)+®(ax+p)

2
_Z(yl—_x‘;”‘ { N3]l(xa—x+p)—q>(0 —y+p)+ N3]f‘g,y+p)+<b(a —x +p)} |
< (y - x)AZ(‘(‘Dz(i)L"‘ m|¢ (%) D _ Y ; x{<|q)/(x)| + }CD/(]/)D /01 tlﬂxhs(t)dt

s ()] + o () [ e nyar,
where Ay is from Corollary 3.

Proof. The proof is analogous to that of Theorem 7, but with the use of Corollary 3 instead
of Corollary 2. [

Corollary 8. If in Theorem 7, we choose x = p, y = o and m = 1, then we have

P(p) + () 1—a ) ’X
2 N 2(0.7())1704 {N?,]afq)(p) + N3jp+q>(g)}|

(23)
<TE(j@' (o) + ’q),(a)‘){zzfza - /01 E I+ ‘h(t))s]dt}'

Theorem 8. Let ® : [p, 2] — R be a differentiable function. If ® € Ly _1[p,0] and
|®'|T e K}lfn([p,%]), then for all x,y € [p,0], « < 1,9 > 1 with % —|—% = 1, the follow-
ing inequality holds:
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‘QJ(U—y—I—p)—i-CD(U—x—I—p)
2

1—a
—W [ N3]1(xg_x+p)—q)(a —y+p)+ N3I(“g_y+p)+q)(‘7 — X+ P)} ‘ (24)

1
y—x 1 P
<

where
B, = {A1|<I>’(p)|q + Agm q’/(%)‘ " q;’(%) ‘q
~ [le'@)"—m @f(%)ﬂ /O1 hs(t)dt}q,
Ci = {A1|<I>’(P)|q + Agm <I>’(%) ‘q - qy(%) ‘q

oG f o

Proof. From Lemma 6 and modulus properties, we can write (21). Using the well-known
%

Holder integral inequality and Corollary 2, since |®'|7 € K}lfn [0, Z]), we get

m

[l )" m

nis [ 0@t~ (xt+ (1 ) |ar

1

< </01 t(l_“)pdt> p{Al /Ol(ycb’(p)V +m q>’(

_/()1[(h5(t)|q>/(x)|q+m(1_hS(t)) ‘D/@)\q)]df}q o
o

3|9
N——
-
N———
=

_<p ! );{Al\qy(p)\MAlm

—ap+1
e ol ()] f e}

Since

1 1
/O(1—t)1’“|<1>’(0—x+pt—(1—t)y)|dt:/0 A0 (p+ 0 — (1— t)x — ty) |dt,

we can write similarly for the second integral

1
|12|§/0 @ (o + 0 — (1 — t)x — ty)|dt

() -
cp/(%)m /01 hs(t)dt}q.

By adding inequalities (25) and (26), we get

o) e

1
1 [ Ny
< <PDCP+1> {A1|CD (P>| +Aim

|l —m

1
P
|+ 5] < ( ) (B +Cy).

p—ap+1
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Multiplying both sides of the last inequality by the expression Y5~ and keeping (21) in
mind yields (24). The proof is complete. [

Corollary 9. If in Theorem 8, we choose x = p, y = o and m = 1, then we have

Q) +P0) 1-w
2 2(c—p)

il 1 v
- 2 p—ap+1

(Al @+ - Dje @) - [0 - @] [ o]

1—a [Ns]g*q)(p) + N3]g+q)(0)} |

q
X

-l @ @) - [[# ) - o] [ ’“S“)‘”}q]'

Theorem 9. Let ® : [p, 2] — R be a differentiable function. If ®' € Ly 1[p,0] and
|®'|T e KZ'S ([0, 2]), then for all x,y € [p,0], « < 1,9 > 1 with %4—% = 1, the follow-

,m

ing inequality holds:

‘¢(a—y+p)+¢(0—x+p)
2

1—« N X
,W { st(aforp)—q)(U' —y+p)+ N3](U,y+p)+q>(0' —x+ p)} ‘

1
y—x 1 P
<
ST (p—ocp—i—l) (B2 + C2),

where

5o = (Ao + Ao (2
1

-fol’ [l (D) [La-soraf

o - {mlo/ 0+ ()

—|<I>/(y)\"/01 1 (#)dt — m‘@’(%) ’q/Ol(l —h(t))sdt}q.

q

Proof. The proof is analogous to that of Theorem 8, but with the use of Corollary 3 instead
of Corollary 2. [
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Corollary 10. If in Theorem 9, we choose x = p, y = 0 and m = 1, then we have

(D(p) + (D(U) 1—uw 14 o
‘ > - 2(0 _ p)l_tx [N3]a—q)(P) + N3]p+q>((7)} ‘

oc—p 1 ;
=72 <P—0<P+1)
{\Ach’(p)\" + Ag|@ ()| — |c1>’(p)\"/01 1 (1)t — |d>’((7)|q/01(1 —h(t))sdt}q

+{Azyc1>'(p)|‘7 + Ag|@ ()| — @ ()| /01 1 (t)dt — | (p) | /01(1 _ h(t))sdt}q].

Theorem 10. Let @ : [p, 2] — R be a differentiable function. If ' € Ly_1[p,0] and
|®'|T € K}lfn([p, 21), then forall x,y € [p,0], « < 1,9 > 1, we have

‘d)(a—y—i—p)—i—(b(a—x—i—p)
2

1—u
—W{st(a wip) PO =Y +0)+ N J{g i)+ PO x—i—p)}‘ (27)

1
—X 1 \'"7
§y2<2_a> (D1 +Ey),

where

D _{Alé%mlumm@'w — @ (3)]"
1= 2—w

— [Jo/@) )" = m|er (L) ‘q / AC dt} ,

5 - { MO Ane @ i)
1= 2—uw

= [Jo'w)|7—m|o'(2) / oS (¢ dt} :

Proof. We first write (21). Then, using the well-known power-mean integral inequality
and Corollary 2, since || € K1 > ([0, 1), for the integral I;, we obtain
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nis [ 0@ oo~ (1 )|
<([ ) (Mol (2)]) [
- [ (ol - oo (£)])]ar
1
q

1—- / q mld' (£ q .
:(Z_a) {A1|CD( )| +A1 ‘CD (m)‘ *‘@’(x)‘qi/oltl_ahs(t)dt

22—«

o ()] [ s

(5 )1;{Al'q"(”)'”Alm>d>’<;>| ()

(28)

By

2 —n 22—«

1
q

- [l ol (§)/] f o)

One can write for the second integral similarly

1
|2 S/ H|@ (o + 0 — (1 —t)x — ty)|dt
0

<< L )1;{A1|¢'(P)|q+A1m|‘b/(i)| —m|® ()"

2 —u 2 —u (29)

1

q

X\ Al
= [lo' )| —mo' (2] }/0 fl “hs(t)dt} :
By adding inequalities (28) and (29), we obtain
1\
el < (525) 0+,

Multiplying both sides of the last inequality by the expression >~ and keeping (21) in
mind, we get (27). The proof is complete. O

Corollary 11. If in Theorem 10, we choose x = p, y = 0 and m = 1, then we have

‘cb(p) T 1-x [ N JE®(p) + NS ()] ‘

2 2(c —p)
1—
()
- 2 2—u
1

, q . Ak 1
{A1|<I> )"+ (A = D[@'(o)" [|¢/(p)|q_|q>/(g)|q] /Oltlu‘hs(t)dt}

N

x 2—u

. / q ! q %
. {<A1 DI+ MO _iq(0))7 - [ () ] /O1 tl“hs(t)df} ]

If, in addition, we suppose q = 1, then we get (22).
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Theorem 11. Let @ : [p, 2] — R be a differentiable function. If ' € Ly_1[p,0] and
|®'|7 € K2s (0, 1), then forall x,y € [p,0], & < 1,9 > 1, we have

‘¢(U—y+p)+¢(a—x+p)
2

11—«
_W[st?gﬂp) Qo —y+p)+ N y+p)+®(0—x+p)}‘

1
-x 1 1=
Syz (2_0) (D2 + Ey),

where

o { O e )
2= 2—uw

1

““¢“x”qﬂf”_”f“”f+”4¢/ ) [ eea )w}}ﬂ

EZZ{AZI¢’< I + Ao (5)

2—u

—{|¢’(y)|q/01tl"‘hs(t)dt+m\d>’ )| / | )dt]}q.

Proof. The proof is analogous to that of Theorem 10, but with the use of Corollary 3 instead
of Corollary 2. O

Corollary 12. If in Theorem 11, we choose x = p, y = o and m = 1, then we have

@(p)—k(b(a) 1—a o o
| 2 - z(o__p)l—a [N3]‘7,(I)(p)+ N3]p+q)(a)}|
i 1 \'"3
- 2 (2—a>
Ar| D (0)|T + Ay | D (¢ , trs
x[{ 2| ()|2_“2| |cp ’/tl h
1 / 10oNg
—|@' (o |/t1 & )dt}q+{A2|‘1’(P)|;ﬂ:izl¢ (o)

1
—|®' (¢ |/t1 “hS(t)dt — | @' (p ]/tl “( )dt}q].

If, in addition, we suppose q = 1, then we get (23).

4. Applications

Throughout the paper, we examined the fractional integral sums

IO + w2 o) = [((E-x)wdt+ [C(y-nT e,

forx,y € [p,0] CR.
We demonstrate the scope and strength of our results through three examples, two
related to trigonometric functions and one to arithmetic means.
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First, consider a convex function. Let @ : [p, 0] = [rr,271] — R, ®(t) = sint, which is

convex on [7t,27|, and fix &« = L Then, according to Theorem 4, we have the inequality

. (x+y 1 Y sint Y sint . (x+y
n(*50) < e L v [ ] < (557
forall x,y € [mr,27].

Second, we consider a non-convex function that has a convex derivative in absolute
value. Let @ : [7,27t] — R, ®(t) = t — cos t, which has a convex derivative @' (t) = 1+ sin ¢
on [r,27], and fix « = % Keeping Remark 2 in mind, applying Corollary 7 or Corollary 8
(with x in place of p and y in place of ¢) yields

X+ 1Y —cosx —cosy — ! ytiCOSth— .L}iCOStdt
Y Y 2yy—x|Jx t—x Jx Jy—t

< 2(y — x)(2 4 sinx +siny)
- 3

forall x,y € [mr,2m].
Finally, consider the convex function @ : [p, 0] C [0,00) — R, ®(t) = t" withn > 1,
and fix & < 1. Then, according to Theorem 4, we have

[a—z+p—qn<p"+an— 1= [/y o dt+/ytndt]
2 2= 2(y —x)' 7 Ux (E=x)* x (y—1)°

n
Spn+an_<x_2|'y)

for x,y € [p, 0], from which we obtain an inequality of arithmetic means:

AR Al )" <2460 — S| [ s [

<24(p" ") = AM(x,y),

where A(u,v) denotes the arithmetic mean A(u,v) = “2.

5. Conclusions

In the present work, we obtained interesting results pertaining to the Jensen—-Mercer-
type Hermite-Hadamard inequalities via non-conformable integrals, using the classical
convex, (h, m)-convex, and (h, m)-convex modified functions. Thus, we presented various
relevant fractional inequalities related to convex functions and differentiable functions of
general convex derivative in absolute value.

As applications, we gave examples of functions for which our main inequalities can
be applied, and we presented the resulting inequalities.

Our results are expected to provide motivation to generate further research on in-
equalities that includes other notions of convexity, such as new variants of the Hermite—
Hadamard—Mercer inequalities obtained in this work. For example, instead of working
with the operators of [26], one can consider the following more general fractional integral:

Definition 7 ([31]). Let ® : [0,00) — [0, 00), such that ® € L]0, o). Generalized fractional
Riemann—Liouville integral of order « € Rand B € R, B # —1, is given as follows:

; ; o 1 x CD(i’)dt
Jou ®(x) krk(oc)/u [@(x,6)]' k(L B)

with ®(t,B) > 0, ®(t,0) = Land ®(x,t) = [ cb(djﬁ). Obviously ®(x,t) = — (t,x).
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By considering the kernel ®(t, ) = t~, we have

xﬂ+1 _ t,BJrl

g+1

and we get the (k, f)-Riemann-Liouville fractional integral in Definition 2.1 of [32]. Fur-
thermore, by setting k = 1, we obtain the Katugampola fractional integral (see [33]).

B+1 _ p+171%
o) - SAETAl

and [®(x, )] F —[ T
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