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Abstract

:

This paper introduces a parameter-free clustering-based approach to detecting critical traffic road segments in urban areas, i.e., road segments of spatially prolonged and high traffic accident risk. In addition, it proposes a novel domain-specific criterion for evaluating the clustering results, which promotes the stability of the clustering results through time and inter-period accident spatial collocation, and penalizes the size of the selected clusters. To illustrate the proposed approach, it is applied to data on traffic accidents with injuries or death that occurred in three of the largest cities of Serbia over the three-year period.
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1. Introduction


Clustering has an important role in road traffic data analysis. Two research lines currently receive the most attention in the field. The first line is related to traffic logistics, e.g., traffic load and congestion analysis, and vehicle routing. The second line is related to traffic safety, e.g., traffic accident pattern detection, hotspot detection and critical road segment detection. Some recent studies that employ clustering in the context of traffic analysis are summarized in Table 1.



This paper goes along the second research line. It introduces a parameter-free approach to clustering critical traffic road segments in urban areas, i.e., road segments of spatially prolonged and high traffic accident risk. With this respect, we build on and extend the specific approach introduced in [19]. Two traffic accidents are considered related (i.e., as belonging to the same cluster) if the spatial distance between them is less than or equal to a predefined threshold value   τ ^  , i.e.,


   a i  ∼  a j   ⇔  d  (  a i  ,  a j  )  ≤  τ ^   .  



(1)







A road segment is considered to be at spatially prolonged traffic accident risk if it is associated with a set of traffic accidents   A = {  a 1  ,  a 2  , … ,  a n  }   in a given period such that the transitive closure of relation (1) over set A provides a connected graph. A road segment is considered to be at high traffic accident risk when it is associated with a significant number of accidents when compared to other road segments in the given area. In the first phase of the algorithm, clusters are determined by the transitive closure of relation (1), which can be described as follows. Let  A  be a set of traffic accidents, each of which is described only by its positional coordinates. At the start of the algorithm, each accident    a i  ∈ A   is assigned to a separate cluster   k (  a i  )  . In addition, let   X ( A ,  τ ^  )   be a sequence of all combinations of two traffic accidents whose distance is less than or equal to   τ ^  . This sequence is ordered by non-decreasing distance between traffic accidents:


  X  ( A ,  τ ^  )  =  (  a 11   a 12  )  ,  (  a 21   a 22  )  , … ,  (  a  n 1    a  n 2   )   ,  



(2)




where


   ( ∀  1 ≤ i ≤ n )  (  {  a  i 1   ,  a  i 2   }  ⊂ A  ∧  d  (  a  i 1   ,  a  i 2   )  <  τ ^   ∧  i < j ⇔ d  (  a  i 1   ,  a  i 2   )  ≤ d  (  a  j 1   ,  a  j 2   )  )  .  



(3)







Sequence   X ( A ,  τ ^  )   is iterated from the first to the last ordered pair. For each pair   (  a  i 1   ,  a  i 2   )  , clusters   k (  a  i 1   )   and   k (  a  i 2   )   are merged, i.e.,


        f o r  e a c h   (  a  i 1   ,  a  i 2   )  ∈ X  ( A , τ )               i f  k  (  a  i 1   )  ≠ k  (  a  i 2   )   t h e n                  m e r g e  c l u s t e r s  k  (  a  i 1   )   a n d  k  (  a  i 2   )      



(4)







In other words, the clusters are merged in a bottom–up manner. In the second phase, the clusters that are dominant in terms of number of accidents are selected as critical. This phase represents an adaptation of the method of threshold selection for image binarization introduced in [20] (pp. 120–121).



It should be noted that the spatial threshold   τ ^   was applied as an input hyperparameter to this algorithm. However, in the general case, its optimal value should be adaptively derived depending on a given traffic area. The contribution of this study can be summarized as follows:




	
We introduce an approach to automatic threshold value estimation based on knee-point detection. In general, a knee point in considered the operational point at which the system achieves the trade-off between cost and performance dependent on a tunable parameter. Thus, the traffic accident data are clustered repetitively by varying threshold value   τ ^  , and the operational threshold value is selected with respect to the introduced internal evaluation measure. Various knee-point detection algorithms have already been applied to determine the optimal number of clusters, cf. [21,22,23]. However, the criteria for the evaluation of clustering results are usually defined in a domain-independent manner, e.g., based on the within-cluster dispersion, between-cluster dispersion, etc. In contrast to those approaches, this paper proposes a novel domain-specific criterion for evaluating the clustering results, which promotes the stability of clustering results through time and inter-period accident spatial collocation, and penalizes the size of selected clusters.



	
We propose an adaptation of the Kneedle algorithm [24] aimed at the automatic determination of the operational threshold value.



	
In our approach, an urban area (e.g., a city) encompasses a set of possibly diverse administrative units (e.g., municipalities), each of which exercises traffic control jurisdiction over its roads. Thus, the criteria for the determination of critical road segments may differ among different administrative units. One of the novelties of the proposed approach is that traffic analysis is conducted for each administrative unit separately, but the clustering results are evaluated at the level of the entire urban area.



	
For the purpose of illustration, the proposed approach is applied to data on traffic accidents with injuries or death that occurred in three of the largest cities of Serbia over the three-year period [25,26,27], as summarized in Table 2. For each accident, only its unique identification number and positional coordinates are taken into account. In an external validation, the obtained clustering results are positively evaluated with respect to the locations of traffic cameras.








The rest of this paper is structured as follows. Section 2 introduces an evaluation measure for traffic accident clustering. Section 3 proposes an adaptation of the Kneedle algorithm. Section 4 and Section 5 present the results and evaluation of the proposed approach. Section 6 concludes the paper.




2. Evaluation Measure for Traffic Accident Clustering


This section introduces an evaluation measure for traffic accident clustering based on three separate but related submeasures:




	
Stability of clustering results through time;



	
Inter-period accident spatial collocation;



	
Area covered by the selected clusters.








2.1. Stability of Clustering Results through Time


To estimate the stability of clustering results through time, the clustering algorithm is applied to data on traffic accidents collected in the same spatial areas over two different periods, which we denote as   P 1   and   P 2  , respectively, where   P 1   precedes   P 2  .



Without loss of generality, let us assume that a city has n municipalities, represented by the vector:


  M =  m 1  ,  m 2  , … ,  m n   .  



(5)







The clustering algorithm is applied separately for each municipality. For the given threshold value   τ j   and municipality   m i  , the following steps are performed:




	1.

	
The clustering algorithm [19] is applied to data on traffic accidents that occurred in municipality   m i   over period   P 1  .




	2.

	
We calculate the shares (i.e., percentage) of all traffic accidents that occurred in municipality   m i   over period   P 1   and   P 2  , respectively, that belong to the clusters selected in Step 1. We denote these shares as    s 1   (  m i  ,  τ j  ,  P 1  )    and    s 2   (  m i  ,  τ j  ,  P 2  )   .









Example 1.

Let us adopt the following input parameter settings:




	
The municipality of Zvezdara (denoted as m);



	
Threshold value   τ = 170  m  ;



	
Period   P 1   runs from January 2019 to December 2020;



	
Period   P 2   runs from January 2021 to December 2021.








The execution of the above algorithm for the adopted parameter settings can be summarized as follows:




	1. 

	
Over period   P 1  , 631 traffic accidents with injuries or death occurred in the municipality of Zvezdara. Figure 1a shows a map of all these traffic accidents. When the clustering algorithm is applied on this set of traffic accidents, four clusters are obtained, as shown in Figure 1b.




	2. 

	
The four selected clusters contain 257 traffic accidents. Thus, the share of the traffic accidents that occurred in the municipality over period   P 1   that belong to the selected clusters is


    s 1   ( m , τ ,  P 1  )  =   257 631   = 40.729 %  .   



(6)








	3. 

	
Over period   P 2  , 317 traffic accidents with injuries or death occurred in the municipality of Zvezdara. Figure 1c shows a map of all these traffic accidents. In addition, each of the clusters given in Figure 1a is represented as the minimum bounding box of its convex hull in Figure 1c. The number of accidents occurred over this period that belong to the areas covered by the clusters selected in Step 1 is 131. The share of the captured traffic accidents is


    s 2   ( m , τ ,  P 2  )  =   131 317   = 41.325 %  .   



(7)















When this sequence of steps is performed for all municipalities in set M, the result can be represented by two vectors:


      S 1   ( M ,  τ j  ,  P 1  )      =  s 1   (  m 1  ,  τ j  ,  P 1  )  ,  s 1   (  m 2  ,  τ j  ,  P 1  )  , … ,  s 1   (  m n  ,  τ j  ,  P 1  )   ,        S 2   ( M ,  τ j  ,  P 2  )      =  s 2   (  m 1  ,  τ j  ,  P 2  )  ,  s 2   (  m 2  ,  τ j  ,  P 2  )  , … ,  s 2   (  m n  ,  τ j  ,  P 2  )   .     



(8)







In general, municipalities in a city may differ in area, the number of inhabitants, traffic density and other various factors. However, we consider them as being equally important in estimating the stability of clustering results through time. Therefore, for a given threshold value   τ j  , the stability of clustering results through time is estimated as the cosine similarity between the vectors in Equation (8):


  s  ( M ,  τ j  ,  P 1  ,  P 2  )  =      ∑  k = 1  n    (  s 1   (  m k  ,  τ j  ,  P 1  )  ·  s 2   (  m k  ,  τ j  ,  P 2  )  )        ∑  k = 1  n    s 1 2   (  m k  ,  τ j  ,  P 1  )    ·     ∑  k = 1  n    s 2 2   (  m k  ,  τ j  ,  P 2  )        .  



(9)







Since all elements of the vectors in Equation (8) are positive, value   s ( M ,  τ j  ,  P 1  ,  P 2  )   is always in range   [ 0 ,  1 ]  , where value 1 represents the maximum stability (i.e., the maximum similarity between the vectors), and 0 represents the minimum stability.



Example 2.

We keep the following subset of input parameters adopted in Example 1 and estimate the stability of the clustering results for the city of Belgrade. The results obtained when the above algorithm is applied to traffic accident data collected in all municipalities over periods   P 1   and   P 2   are given in Table 3. The particular elements of vectors    S 1   ( M ,  τ j  ,  P 1  )    and    S 2   ( M ,  τ j  ,  P 2  )    defined in Equation (8) are given in the fourth and seventh columns of the table. Following Equation (9), the stability of clustering results for the adopted parameter settings is estimated as


   s ( M , τ ,  P 1  ,  P 2  ) = 0.990  .   



(10)










2.2. Inter-Period Accident Spatial Collocation


We define the city-level inter-period accident spatial collocation index as the share (i.e., percentage) of all traffic accidents that occurred in city M over period   P 2   that belong to the areas covered by the clusters obtained when the clustering algorithm was applied to the set of all traffic accidents with injuries or death occurred in M over period   P 1  . This index is denoted as   c ( M ,  τ j  ,  P 1  ,  P 2  )  .



Example 3.

In the last row of Table 3, the following can be observed:




	
The total number of accidents with injuries or death over period   P 2   is 4072.



	
The number of accidents that occurred over this period that belong to the areas covered by the clusters obtained when the clustering algorithm was applied to the set of all traffic accidents with injuries or death occurred over period   P 1   is 1588.








The resulting inter-period accident spatial collocation is


   c  ( M , τ ,  P 1  ,  P 2  )  =   1588 4072   = 38.998 %  .   



(11)










2.3. Relative Size of Selected Clusters


In our approach, the area covered by a cluster of traffic accidents is conceptualized as the area of the minimum bounding box of its convex hull (cf. Figure 1c). In line with this conceptualization, we define the relative size of selected clusters as the share of the area of city M covered by the clusters obtained when the clustering algorithm is separately applied to sets of traffic accidents occurred in all municipalities of M over period   P 1  . The city-level relative cluster size is denoted as   r ( M ,  τ j  ,  P 1  )  .



Example 4.

Adopting the same input parameter settings as in Example 2, for each municipality, Table 4 provides the number of the selected clusters, the area covered by the selected clusters, the area of the municipality and the municipality-level relative size of the selected clusters. The resulting city-level relative size of selected clusters can be derived from the data given in the last row of Table 4:


   r  ( M , τ ,  P 1  )  =    26.502   3231.469    = 0.820 %  .   



(12)










2.4. Integrated Measure for Traffic Accident Clustering


The clustering algorithm introduced in [19] is designed to automatically detect and select critical road segments, intended for application in circumstances of limited human or technical resources for traffic monitoring and management. In line with this, we introduce an integrated measure for traffic accident clustering that promotes the stability of clustering results and inter-period accident spatial collocation index, and penalize the size of selected clusters, i.e., for given city M, threshold value   τ j   and periods   P 1   and   P 2  , the integrated measure is defined as


  η  ( M ,  τ j  ,  P 1  ,  P 2  )  =    s  ( M ,  τ j  ,  P 1  ,  P 2  )  · c  ( M ,  τ j  ,  P 1  ,  P 2  )    r ( M ,  τ j  ,  P 1  ,  P 2  )     ,  



(13)




where we have the following:




	
  s ( M ,  τ j  ,  P 1  ,  P 2  )   represents the stability of the clustering results;



	
  c ( M ,  τ j  ,  P 1  ,  P 2  )   represents the inter-period accident spatial collocation index;



	
  r ( M ,  τ j  ,  P 1  ,  P 2  )   represents the city-level relative size of selected clusters.








Example 5.

Taking (10)–(12) into account, we can calculate the value of the introduced integrated measure:


   η ( M , τ ,  P 1  ,  P 2  ) = 47.082  .   



(14)











3. Threshold Selection


For given city M and periods   P 1   and   P 2  , the integrated measure for traffic accident clustering introduced in the previous section can be considered a function with one input parameter—the threshold value, i.e.,   η ( τ )  . This reduction allows for applying the clustering algorithm introduced in [19] repetitively on traffic accidents occurred in city M over periods   P 1   and   P 2   by varying its input threshold value  τ . This section introduces an algorithm for the selection of an operational threshold value based on the integrated measure defined in Equation (13).



In our approach, the operating threshold value is indicated by a knee point of the plot of the integrated measure   η ( τ )   versus the applied threshold value  τ . Thus, we present an approach for knee point detection. Let   D ^   be a dataset containing n observations for which a knee point should be detected:


   D ^  =  {  (   τ ^  i  ,   η ^  i  )   |  1 ≤ i ≤ n  ∧    τ ^  i  ≥ 0  ∧    η ^  i  ≥ 0 }   ,  



(15)




where    τ ^  i   represents a threshold value,    η ^  i   represents the integrated measure value obtained for    τ ^  i  , and threshold values    τ ^  i   are evenly spaced, i.e.,


   ( ∃  t ∈ R ,  t > 0 )   ( ∀  1 ≤ i < n )   (   τ ^   i + 1   −   τ ^  i  = t )   .  



(16)







First, values    τ ^  i   and    η ^  i   are normalized to range   [ 0 ,  1 ]   without changing the distribution of the data [24], i.e.,


   D ¯  =  {  (   τ ¯  i  ,   η ¯  i  )   |    τ ¯  i  =      τ ^  i  −   τ ^   m i n       τ ^   m a x   −   τ ^   m i n       ∧    η ¯  i  =      η ^  i  −   η ^   m i n       η ^   m a x   −   η ^   m i n       ∧   (   τ ^  i  ,   η ^  i  )  ∈  D ^  }   ,  



(17)




where


      τ ^   m i n      =  min  1 ≤ i ≤ n     τ ^  i   ,                                              η ^   m i n      =  min  1 ≤ i ≤ n     η ^  i   ,     



(18)






      τ ^   m a x      =  max  1 ≤ i ≤ n     τ ^  i   ,                                              η ^   m a x      =  max  1 ≤ i ≤ n     η ^  i   .     



(19)







To select knee-point candidates, we consider the differences between the normalized dataset points and the linear function   f ( τ ) = 1 − τ   that represent the main diagonal of the unit square to which the original dataset was normalized. Then, a new dataset that captures the difference distribution is derived as follows:


  D = {  (  τ i  ,  η i  )   |   τ i  =   τ ¯  i   ∧   η i  = 1 −   τ ¯  i  −   η ¯  i   ∧   (   τ ¯  i  ,   η ¯  i  )  ∈  D ¯  }  .  



(20)







To select a knee point, we identify the most concave point   ( τ , η )   in the curve representing difference distribution  D . Thus, similar to [24], a set of knee-point candidates is defined as containing the points of salient concavity, i.e., it is selected by means of local maxima in set  D :


   K 1  =  {  (  τ i  ,  η i  )   |  1 < i < n  ∧   η i  >  η  i − 1    ∧   η i  >  η  i + 1    ∧   (  τ i  ,  η i  )  ∈ D }   .  



(21)







If set   K 1   is not empty, the concavity at any point   (  τ i  ,  η i  )   in the set is estimated as the angle at that point:


      γ 1   (  τ i  ,  η i  )      = arctan      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |      + arctan      τ  i + 1   −  τ i     |   η  i + 1   −  η i   |               =      arctan (        τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     +     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |       1 −     τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     ·     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |        )  ,     if      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     ·     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |     < 1  ,       arctan (        τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     +     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |       1 −     τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     ·     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |        ) + π  ,     if      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |     ·     τ  i + 1   −  τ i     |   η  i + 1   −  η i   |     > 1  ,         π 2    ,     otherwise  ,          



(22)




as illustrated in Figure 2a. The most concave point in set   K 1   is selected by minimizing the estimated angle:


   (  τ *  ,  η *  )  =   argmin    (  τ i  ,  η i  )  ∈  K 1       γ 1   (  τ i  ,  η i  )    .  



(23)







Otherwise, if set   K 1   is empty (i.e., difference distribution  D  is monotonically decreasing), we relax condition (21). In this case, a set of knee-point candidates is defined as containing all concave points (i.e., not just salient) in the curve representing difference distribution  D .



Having in mind that function   η ( τ )   is discrete, where  τ -values are evenly spaced (cf. Equation (16)), its second derivative can be represented as


        ∂ 2  η  ( τ =  τ i  )    ∂  τ 2        =    ∂ (    ∂ η ( τ =  τ i  )   ∂ τ    )   ∂ τ             =    η  ( τ =  τ  i + 1   )  − 2 · η  ( τ =  τ i  )  + η  ( τ =  τ  i − 1   )    t 2     .     



(24)







Thus, a set of all concave points can be formally represented as a set of points, in which the second derivative is less than zero:


   K 2  =  {  (  τ i  ,  η i  )   |  1 < i < n  ∧  2  η i  >  η  i − 1   −  η  i + 1    ∧   (  τ i  ,  η i  )  ∈ D }   ,  



(25)




which is in line with the angle-based condition applied in [21]. The concavity at any point   (  τ i  ,  η i  )   in set   K 2   is estimated as the angle at that point   (  τ i  ,  η i  )  :


   γ 2   (  τ i  ,  η i  )  =      arctan      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |      − arctan      τ  i + 1   −  τ i     |   η  i + 1   −  η i   |      + π  ,     if   η  i − 1   <  η i  <  η  i + 1    ,       arctan      τ  i + 1   −  τ i     |   η  i + 1   −  η i   |      − arctan      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |      + π  ,     if   η  i − 1   >  η i  >  η  i + 1    ,       arctan      τ i  −  τ  i − 1      |   η i  −  η  i − 1    |      +   π 2    ,     if   η  i − 1   <  η i  =  η  i + 1    ,       arctan      τ  i + 1   −  τ i     |   η  i + 1   −  η i   |      +   π 2    ,     if   η  i − 1   =  η i  >  η  i + 1    .       



(26)







The first case in Equation (26) is illustrated in Figure 2b. The most concave point in set   K 2   is selected by minimizing the estimated angle:


   (  τ *  ,  η *  )  =   argmin    (  τ i  ,  η i  )  ∈  K 2       γ 2   (  τ i  ,  η i  )    .  



(27)







Finally, since value   τ *  —derived either from Equation (23) or Equation (27)—is normalized (cf. (Equation 17)), to obtain the operational threshold value, it should be denormalized:


    τ ^  *  =   τ ^   m i n   +  τ *   (   τ ^   m a x   −   τ ^   m i n   )   .  



(28)







It is easy to show that the set defined in Equation (25) is always a superset of the set defined in Equation (21). However, these two conditions are considered separately and in the stated particular order for the purpose of algorithm efficiency. The threshold selection algorithm is illustrated in the next section.




4. Results


The proposed approach is applied to a set of 18,880 real-life traffic accidents with injuries or death (cf. Table 2). Following the idea presented in Section 3, we consider the following sequence of threshold values:


  T ≡ 100  m , 110  m , 120  m , … , 400  m  ,  



(29)




among which we select an operational threshold value.



The values of all the measures introduced in Section 2 obtained for the city of Belgrade are given in Table 5. The plot of the normalized integrated measure  η  versus the applied normalized threshold value  τ  is given in Figure 3a. In addition, the derived differences between the normalized dataset points and the main diagonal of the unit square are denoted in Figure 3b. The operational threshold value is estimated as


    τ ^  *   ( M = Belgrade ,  P 1  =  [ 2019 ∼ 2020 ]  ,  P 2  =  [ 2021 ]  )  = 150  m  .  



(30)







The differences between the normalized dataset points and the main diagonal of the unit square obtained for the cities of Novi Sad and Niš are denoted in Figure 3c,d, respectively. The operational threshold values are estimated as


       τ ^  *   ( M = Novi  Sad ,  P 1  =  [ 2019 ∼ 2020 ]  ,  P 2  =  [ 2021 ]  )      = 170  m  ,         τ ^  *   ( M =  Ni š  ,  P 1  =  [ 2019 ∼ 2020 ]  ,  P 2  =  [ 2021 ]  )      = 160  m  .     



(31)







The clustering results obtained by applying the automatically determined threshold values for the considered cities (cf. Equations (30) and (31)) are provided in Table 6, Table 7 and Table 8, respectively, including the numbers of the selected clusters for each municipality, the area covered by the selected clusters, the area of the municipalities, the municipality-level relative size of the selected clusters and the city-level relative size of selected clusters.




5. Discussion


The results reported in the previous section demonstrate the stability of the algorithm results. From Equations (30) and (31), it can be observed that the algorithm computes similar threshold values for all of the considered cities. In addition, the areas of the selected cluster represent just 0.522, 0.069, and 0.063 percent of the city area, respectively, cf. Table 6, Table 7 and Table 8.



However, in order to practically validate the proposed approach, we evaluate the obtained results externally, i.e., with respect to the locations of traffic cameras in Belgrade. The installation of traffic cameras has been a long-term process. However, we decided to consider the locations of traffic cameras in a particular moment, i.e., August 2020 [28], for the following reasons:




	
Data availability: The information on the locations of traffic cameras as of August 2020 can be derived from the publicly available information provided by the Ministry of Interior of the Republic of Serbia [28].



	
External criterion: The locations are determined based on expert analysis performed by a third party and independently of this study. The camera locations are indicative, inter alia, of traffic hotspots and may be used as an external evaluation criterion.



	
Time appropriateness: We consider the locations of traffic cameras in an early installation phase, under the assumption that the installation has started with the most critical traffic hotspots. In addition, the clusters are obtained by applying the clustering algorithm on traffic accidents that occurred over period   P 1  . The selected “ground-truth” moment (i.e., August 2020) is close in time to the end of period   P 1  .



	
The considered cameras were not put into official use during periods   P 1   and   P 2  , i.e., they did not influence the traffic participant behavior during these periods.








As of August 2020, 154 camera poles (carrying 392 cameras) were installed in 9 of 17 municipalities in Belgrade. The clustering results for these nine “inner” municipalities and the camera pole locations are illustrated in Figure 4.



The distribution of camera poles and cameras across these municipalities is given in the first three columns of Table 9. The numbers and the shares of camera poles and cameras covered by the clusters obtained by applying the threshold value (30) are given in the last four columns of this table.



The clustering results can be summarized as follows. The total area of the clusters represents only 0.522 percent of the city area (cf. Table 6) and covers 40.26 percent of all camera poles and 35.97 percent of cameras in the city (cf. Table 9). These results may be considered satisfactory, especially keeping in mind our goal to introduce an approach suitable for application in circumstances of limited human or technical resources for traffic monitoring and management. In addition, one of the municipalities (i.e., Novi Beograd, cf. Figure 4a) was more comprehensively covered by cameras. The area of this municipality represents only 1.26 percent of the city area (i.e., 4075.6 km   2   of 3231.469 km   2  , cf. Table 6) but contains 47.40 percent of all camera poles (i.e., 73 of 154 camera poles) and 55.87 percent of all cameras (i.e., 219 of 392, cf. Table 9). The distribution of cameras in this municipality was determined by reasons that were not exclusively related to traffic and thus is not primarily indicative of traffic hotspots. If we exclude this municipality from the consideration, the remaining clusters cover 60.49 percent of all camera poles and 63.58 percent of cameras.




6. Conclusions


This paper introduced a parameter-free approach to traffic accident clustering in urban areas intended for the determination of road segments of spatially prolonged and high traffic accident risk. At the specification level, the proposed algorithm promotes the stability of clustering results through time and inter-period accident spatial collocation, and penalizes the size of the selected clusters. To illustrate the proposed approach, it was applied to data on a set of 18,880 real-life traffic accidents with injuries or death that occurred in three of the largest cities in Serbia over the three-year period.



The reported results demonstrated the stability of the algorithm results, i.e., the algorithm computed similar threshold values for all of the considered cities. In addition, the clustering results obtained for Belgrade were positively evaluated with respect to an external criterion, i.e., with respect to the locations of traffic cameras. The total area of the clusters represents only 0.522 percent of the city area and covers 40.26 percent of all camera poles and 35.97 percent of cameras in the city. Finally, it should be noted that the proposed approach can be applied to any urban area with a hierarchically organized traffic control jurisdiction.
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Figure 1. (a) All traffic accidents with injuries or death that occurred in the municipality of Zvezdara over period   P 1  . (b) Four obtained clusters. (c) All traffic accidents with injuries or death that occurred in the municipality of Zvezdara over period   P 2  . In addition, for each cluster of traffic accidents in (b), the minimum bounding box of its convex hull is represented in (c). The maps were generated using the ArcMap component of the Esri’s ArcGIS suite (https://www.esri.com, accessed on 1 March 2023). 
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Figure 2. (a) A salient concavity (i.e., a local maximum point) and (b) non-salient concavity in difference distribution  D . 
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Figure 3. (a) The plot of the normalized integrated measure  η  versus the applied normalized threshold value  τ  for Belgrade. (b–d) The plots of differences between the normalized dataset points and the main diagonal of the unit square for Belgrade, Novi Sad and Niš, respectively. 
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Figure 4. Nine “inner” municipalities of the city of Belgrade with traffic cameras as of August 2020. For each municipality, the camera pole locations and the clusters obtained by applying the threshold value   τ = 150  m   are indicated. Each cluster of traffic accidents in represented by a minimum bounding box of its convex hull. The maps were generated using the ArcMap component of the Esri’s ArcGIS suite (https://www.esri.com, accessed on 1 March 2023). 
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Table 1. Summary of some recent studies that employ clustering in the context of traffic safety.
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	Ref.
	Task
	Clustering Approach





	[1]
	traffic load analysis
	improved k-means clustering algorithm



	[2]
	traffic congestion analysis
	self-organizing maps neural network



	[3]
	traffic state classification
	k-medoids algorithm



	[4]
	road network level identification
	k-means algorithm



	[5]
	traffic congestion analysis
	grey relational clustering model



	[6]
	traffic accidents and pattern extraction
	ROCK algorithm



	[7]
	traffic accident pattern identification
	COOLCAT algorithm



	[8]
	traffic accident factor analysis
	k-means algorithm



	[9]
	road traffic accident modeling
	a comparative study of machine learning classifiers



	[10]
	traffic accident black spots identification
	HDBSCAN algorithm



	[11]
	traffic congestion analysis
	k-means algorithm



	[12]
	driving behavior risk analysis
	k-means algorithm



	[13]
	optimal path routing
	a modified K-medoids algorithm



	[14]
	analysis of pedestrian crash fatalities and severe injuries
	KDE method



	[15]
	traffic-management system
	DBSCAN agorithm



	[16]
	severity of traffic accident analysis
	DBSCAN algorithm



	[17]
	highway safety assessment
	k-means algorithm



	[18]
	pedestrian crash severity analysis
	KDE method



	[19]
	detection of road segments of spatially prolonged and high traffic accident risk
	a clustering algorithm based on the Gestalt principle of proximity
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Table 2. Traffic accidents with injuries or death.
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	City
	2019
	2020
	2021
	Total





	Beograd
	4684
	3720
	4072
	12,476



	Novi Sad
	1710
	1464
	1574
	4748



	Niš
	607
	521
	528
	1656



	Total
	7001
	5705
	6174
	18,880
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Table 3. Estimating the stability of clustering results through time. The algorithm is applied to traffic accident data collected in Belgrade over periods   P 1   and   P 2   and for the arbitrarily selected threshold value    τ ^  = 170  m  . All decimal numbers are rounded to three decimal places.
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Municipality

	
     P 1  =  [ 2019 ∼ 2020 ]     

	
     P 2  =  [ 2021 ]     




	
# Accidents

	
# Selected

Accidents

	
Share [%]

    s 1   (  m 1  ,  τ j  )    

	
# Accidents

	
# Selected

Accidents

	
Share [%]

    s 2   (  m 1  ,  τ j  )    






	
Barajevo

	
123

	
54

	
43.902

	
51

	
21

	
41.176




	
Grocka

	
295

	
105

	
35.593

	
150

	
40

	
26.667




	
Lazarevac

	
281

	
98

	
34.875

	
123

	
31

	
25.203




	
Mladenovac

	
206

	
59

	
28.641

	
113

	
30

	
26.549




	
Novi beograd

	
1126

	
401

	
35.613

	
537

	
186

	
34.637




	
Obrenovac

	
376

	
129

	
34.309

	
220

	
59

	
26.818




	
Palilula

	
962

	
308

	
32.017

	
384

	
132

	
34.375




	
Rakovica

	
297

	
105

	
35.354

	
141

	
44

	
31.206




	
Savski venac

	
572

	
311

	
54.371

	
270

	
155

	
57.407




	
Sopot

	
100

	
28

	
28.000

	
49

	
10

	
20.408




	
Stari grad

	
316

	
263

	
83.228

	
176

	
145

	
82.386




	
Surčin

	
231

	
86

	
37.229

	
125

	
30

	
24.000




	
Voždovac

	
879

	
324

	
36.860

	
447

	
177

	
39.597




	
Vračar

	
412

	
272

	
66.019

	
182

	
139

	
76.374




	
Zemun

	
800

	
257

	
32.125

	
393

	
126

	
32.061




	
Zvezdara

	
631

	
257

	
40.729

	
317

	
131

	
41.325




	
Čukarica

	
797

	
258

	
32.371

	
394

	
132

	
33.503




	
Total

	
8404

	
3315

	
39.446

	
4072

	
1588

	
38.998
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Table 4. Relative sizes of all selected clusters in Belgrade over period   P 1   and for the arbitrarily selected threshold value    τ ^  = 170  m  . All decimal numbers are rounded to three decimal places.
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	Municipality
	# Selected

Clusters
	Area of Selected

Clusters [km    2   ]
	Municipality

Area [km    2   ]
	Relative Cluster

Size [%]





	Barajevo
	19
	0.011
	212.831
	0.005%



	Grocka
	22
	0.072
	299.349
	0.024%



	Lazarevac
	21
	0.123
	382.540
	0.032%



	Mladenovac
	9
	0.151
	338.764
	0.045%



	Novi Beograd
	1
	7.057
	40.756
	17.316%



	Obrenovac
	3
	0.644
	409.588
	0.157%



	Palilula
	2
	4.563
	450.351
	1.013%



	Rakovica
	7
	0.222
	30.025
	0.739%



	Savski venac
	2
	2.321
	14.082
	16.484%



	Sopot
	11
	0.003
	270.506
	0.001%



	Stari grad
	1
	2.232
	5.376
	41.527%



	Surčin
	20
	0.053
	288.303
	0.018%



	Voždovac
	3
	2.233
	148.409
	1.505%



	Vračar
	1
	2.424
	2.911
	83.256%



	Zemun
	8
	1.500
	149.682
	1.002%



	Zvezdara
	4
	1.612
	31.087
	5.186%



	Čukarica
	6
	1.280
	156.909
	0.815%



	Total
	140
	26.502
	3231.469
	0.820%
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Table 5. The measures obtained when the introduced algorithm is applied for each threshold value in sequence (29) to traffic accidents occurred in Belgrade over periods   P 1   and   P 2  . All decimal numbers are rounded to three decimal places.
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Threshold

Value

	
Stability of

Clustering

Results

	
Relative Size of

Selected

Clusters

	
Inter-Period

Spatial

Collocation

	
Integrated

Measure for

Traffic Accident

Clustering




	
   τ ^   

	
   s (  τ ^  )   

	
   r (  τ ^  )   

	
   c (  τ ^  )   

	
    η ^   (  τ ^  )    






	
100

	
0.980

	
0.001

	
0.297

	
302.465




	
110

	
0.982

	
0.001

	
0.286

	
220.035




	
120

	
0.975

	
0.002

	
0.327

	
176.388




	
130

	
0.980

	
0.002

	
0.319

	
127.509




	
140

	
0.981

	
0.004

	
0.368

	
94.753




	
150

	
0.978

	
0.005

	
0.329

	
61.536




	
160

	
0.987

	
0.007

	
0.363

	
54.953




	
170

	
0.990

	
0.008

	
0.390

	
47.082




	
180

	
0.991

	
0.010

	
0.416

	
40.827




	
190

	
0.992

	
0.011

	
0.440

	
38.685




	
200

	
0.993

	
0.013

	
0.454

	
35.308




	
210

	
0.994

	
0.014

	
0.466

	
33.419




	
220

	
0.993

	
0.015

	
0.461

	
31.504




	
230

	
0.994

	
0.017

	
0.477

	
27.453




	
240

	
0.995

	
0.019

	
0.510

	
26.685




	
250

	
0.996

	
0.022

	
0.532

	
24.345




	
260

	
0.996

	
0.024

	
0.569

	
23.539




	
270

	
0.996

	
0.025

	
0.591

	
23.275




	
280

	
0.997

	
0.026

	
0.587

	
22.600




	
290

	
0.997

	
0.028

	
0.594

	
21.453




	
300

	
0.997

	
0.029

	
0.589

	
20.412




	
310

	
0.997

	
0.030

	
0.601

	
19.732




	
320

	
0.998

	
0.035

	
0.629

	
17.872




	
330

	
0.998

	
0.036

	
0.637

	
17.489




	
340

	
0.998

	
0.037

	
0.641

	
17.186




	
350

	
0.998

	
0.037

	
0.642

	
17.118




	
360

	
0.999

	
0.038

	
0.647

	
17.047




	
370

	
0.999

	
0.040

	
0.661

	
16.406




	
380

	
0.999

	
0.041

	
0.667

	
16.178




	
390

	
0.999

	
0.045

	
0.682

	
15.263




	
400

	
0.999

	
0.048

	
0.690

	
14.371
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Table 6. The clustering results for Belgrade (    τ ^  *  = 150  m  ). All decimal numbers are rounded to three decimal places.
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	Municipality
	# Selected

Clusters
	Area of Selected

Clusters [km    2   ]
	Municipality

Area [km    2   ]
	Relative Cluster

Size [%]





	Barajevo
	19
	0.008197
	212.831
	0.004%



	Grocka
	57
	0.045736
	299.349
	0.015%



	Lazarevac
	21
	0.085380
	382.540
	0.022%



	Mladenovac
	14
	0.049522
	338.764
	0.015%



	Novi Beograd
	1
	3.575020
	40.756
	8.772%



	Obrenovac
	3
	0.516352
	409.588
	0.126%



	Palilula
	2
	4.257652
	450.351
	0.945%



	Rakovica
	6
	0.132195
	30.025
	0.440%



	Savski Venac
	2
	1.855433
	14.082
	13.176%



	Sopot
	11
	0.003422
	270.506
	0.001%



	Stari Grad
	1
	1.196700
	5.376
	22.260%



	Surčin
	41
	0.035323
	288.303
	0.012%



	Vozdovac
	4
	1.324443
	148.409
	0.892%



	Vracar
	2
	1.171392
	2.911
	40.240%



	Zemun
	8
	0.653254
	149.682
	0.436%



	Zvezdara
	6
	1.064036
	31.087
	3.423%



	Čukarica
	5
	0.898991
	156.909
	0.573%



	Total
	203
	16.873
	3231.469
	0.522%
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Table 7. The clustering results for Novi Sad (    τ ^  *  = 170  m  ). All decimal numbers are rounded to three decimal places.
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	Municipality
	# Selected

Clusters
	Area of Selected

Clusters [km    2   ]
	Municipality

Area [km    2   ]
	Relative Cluster

Size [%]





	Bač
	6
	0.010
	367.268
	0.003%



	Bačka Palanka
	19
	0.052
	589.496
	0.009%



	Bački Petrovac
	7
	0.001
	158.257
	0.000%



	Beočin
	8
	0.001
	184.105
	0.001%



	Bečej
	21
	0.036
	486.196
	0.007%



	Novi Sad
	2
	2.523
	698.816
	0.361%



	Srbobran
	13
	0.005
	283.939
	0.002%



	Sremski Karlovci
	8
	0.001
	50.538
	0.002%



	Temerin
	14
	0.031
	169.525
	0.019%



	Titel
	1
	0.000
	260.600
	0.000%



	Vrbas
	10
	0.131
	375.326
	0.035%



	Žabalj
	18
	0.003
	399.566
	0.001%



	Total
	127
	2.794
	4023.633
	0.069%
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Table 8. The clustering results for Niš (    τ ^  *  = 160  m  ). All decimal numbers are rounded to three decimal places.
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	Municipality
	# Selected

Clusters
	Area of Selected

Clusters [km    2   ]
	Municipality

Area [km    2   ]
	Relative Cluster

Size [%]





	Aleksinac
	6
	0.116
	706.335
	0.016%



	Doljevac
	10
	0.001
	121.275
	0.001%



	Gadžin Han
	1
	0.000
	324.931
	0.000%



	Merošina
	2
	0.000
	193.089
	0.000%



	Niš
	2
	1.594
	449.929
	0.354%



	Niška Banja
	5
	0.002
	146.185
	0.001%



	Ražanj
	2
	0.000
	288.512
	0.000%



	Svrljig
	6
	0.001
	496.894
	0.000%



	Total
	34
	1.714
	2727.151
	0.063%
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Table 9. External validation results.






Table 9. External validation results.





	Municipality
	# Camera Poles
	# Cameras
	# Covered

Camera Poles
	Share of

Covered Camera

Poles [%]
	# Covered

Cameras
	Share of

Covered

Cameras [%]





	Novi Beograd
	73
	219
	13
	17.81
	31
	14.16



	Palilula
	7
	17
	4
	57.14
	10
	58.82



	Savski venac
	13
	20
	9
	69.23
	15
	75.00



	Stari grad
	15
	42
	12
	80.00
	35
	83.33



	Vračar
	5
	10
	4
	80.00
	9
	90.00



	Voždovac
	14
	19
	8
	57.14
	11
	57.89



	Zemun
	24
	57
	9
	37.50
	22
	38.60



	Zvezdara
	2
	6
	2
	100.00
	6
	100.00



	Čukarica
	1
	2
	1
	100.00
	2
	100.00



	Total
	154
	392
	62
	40.26
	141
	35.97
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