
Citation: Frijters, S.; Demey, L. The

Modal Logic of Aristotelian

Diagrams. Axioms 2023, 12, 471.

https://doi.org/10.3390/

axioms12050471

Academic Editor: Oscar Castillo

Received: 12 April 2023

Revised: 10 May 2023

Accepted: 11 May 2023

Published: 13 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

The Modal Logic of Aristotelian Diagrams
Stef Frijters 1 and Lorenz Demey 1,2,∗

1 Center for Logic and Philosophy of Science, KU Leuven, 3000 Leuven, Belgium; stef.frijters@kuleuven.be
2 KU Leuven Institute for Artificial Intelligence, KU Leuven, 3000 Leuven, Belgium
* Correspondence: lorenz.demey@kuleuven.be

Abstract: In this paper, we introduce and study AD-logic, i.e., a system of (hybrid) modal logic that
can be used to reason about Aristotelian diagrams. The language of AD-logic, LAD, is interpreted
on a kind of birelational Kripke frames, which we call “AD-frames”. We establish a sound and
strongly complete axiomatization for AD-logic, and prove that there exists a bijection between
finite Aristotelian diagrams (up to Aristotelian isomorphism) and finite AD-frames (up to modal
isomorphism). We then show how AD-logic can express several major insights about Aristotelian
diagrams; for example, for every well-known Aristotelian family A, we exhibit a formula χA ∈ LAD

and show that an Aristotelian diagram D belongs to the family A iff χA is validated by D (when
the latter is viewed as an AD-frame). Finally, we show that AD-logic itself gives rise to new and
interesting Aristotelian diagrams, and we reflect on their profoundly peculiar status.
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1. Introduction

The interaction between modal logic and Aristotelian diagrams has a rich and well-
documented history. The oldest kind of Aristotelian diagram is the square of opposition
for syllogistics, which dates back to the second century CE [1]. However, from the twelfth
century onwards, philosophers started to make use of these diagrams to explicate their
theorizing on modalities as well [2–5]. Furthermore, historical scholarship has shown
that Aristotelian diagrams for modal logic can be reconstructed from the works of many
earlier authors, such as Theophrastus [6,7], Chrysippus [8,9], and Avicenna [10,11]. Today,
Aristotelian diagrams not only appear in well-known textbooks on modal logic [12,13],
but they are also used in applications of modal logic to a variety of philosophical and
logical topics, such as paraconsistency [14,15], logic-sensitivity [16–18], and theories of
truth [19,20]. It should be emphasized that all of these applications manifest a wide diversity
of Aristotelian diagrams: next to the “ordinary” squares of oppositions, we also find several
types of hexagons, octagons, and even more complex diagrams [21].

In all of this work, Aristotelian diagrams are used to visualize the logical relations
holding among a number of modal statements. In this paper, however, we take a completely
different approach, as we will be using a modal language to describe Aristotelian diagrams.
This boils down to “reversing the directionality” of the interaction between modal logic
and Aristotelian diagrams. Whereas the aforementioned work was mainly concerned
with Aristotelian diagrams for modal logic, in this paper, we rather study the modal logic of
Aristotelian diagrams.

More concretely, we start from the basic observation that Aristotelian diagrams are
graphs, i.e., relational structures consisting of vertices (viz., formulas) and edges (viz.,
Aristotelian relations) between them. Consequently, we can view these diagrams as Kripke
frames, which allows us to interpret, i.e., to provide a relational semantics for, a modal
language. (For reasons of expressivity, we will actually interpret a language of hybrid
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logic, rather than one of “basic” modal logic.) We can then express formulas in this
modal language that correspond exactly with properties of Aristotelian diagrams that we
are interested in. For example, we will exhibit a modal formula χclassical that precisely
captures the property of being a classical square of opposition: an Aristotelian diagram
is a classical square if and only if χclassical is valid on that diagram (considered as a Kripke
frame). Similarly, the modal formulas χdegenerate and χsquare capture the properties of being
a degenerate square and being a square of opposition “in general”, respectively. (Precise
definitions of classical squares, degenerate squares, and squares in general are provided
later in the paper.) We can take this idea of viewing Aristotelian diagrams as Kripke frames
one step further, which gives rise to the modal consequence relation |=AD. Many results
from logical geometry (i.e., the systematic study of Aristotelian diagrams) can now be
formally expressed as AD-valid arguments. Consider, for example, the well-known fact
that every square of opposition is either a classical square or a degenerate square: this is
formally captured by the argument χsquare |=AD χclassical ∨ χdegenerate. (It should be noted
that this approach was partially inspired by the work of Grossi [22,23]: he proposed to view
argumentation frameworks as Kripke frames, which then allowed him to study abstract
argumentation theory using modal logic).

There are several complementary reasons for studying the modal logic of Aristotelian
diagrams from the perspective of logical geometry as well as from that of modal logic itself.
First of all, it nicely illustrates the expressive power of modal—and in particular, hybrid—
languages to describe relational structures. Secondly, even though this is not the main
concern of this paper, we will show how a sound and strongly complete axiomatization of
|=AD can be obtained almost immediately from general results about hybrid logic. Thirdly,
based on the intuitive idea of “viewing an Aristotelian diagram as a Kripke frame”, we
formally define the notion of an AD-frame. We will prove that this definition completely
captures the structural properties of Aristotelian diagrams, thus shedding new light on
the very nature of these diagrams. Fourthly, and perhaps most importantly, the modal
language developed here can be used to formulate generic descriptions of families of
Aristotelian diagrams. For example, in order to define the family of all classical squares
of opposition, we usually refer to an arbitrary logical system (or in more algebraically
oriented parts of logical geometry, to an arbitrary Boolean algebra). Such a definition is
indeed general (because it works for all logical systems), but it is not generic (because it still
refers to some logical system—regardless of whether that system was chosen arbitrarily or
not). For most purposes, such a general definition is appropriate, but there also exist certain
theoretical contexts where we really want to work with generic descriptions of Aristotelian
families (that do not refer to any logical system at all) [24]. Using the modal language
developed in this paper, we can define the family of classical squares of opposition as
consisting of precisely those diagrams which (when viewed as Kripke frames) validate
the formula χclassical. Since this characterization does not refer to any logical system at all,
the modal formula χclassical provides a fully generic description of the family of classical
squares of opposition.

The paper is organized as follows. Section 2 provides some basic background in-
formation on Aristotelian diagrams in order to keep this paper self-contained. Section 3
introduces all the key components of AD-logic, including the modal language LAD, the
AD-frames that this language will be interpreted on, and the consequence relation |=AD. In
Section 4, we prove that there exists a bijection between finite Aristotelian diagrams and
finite AD-frames (up to isomorphism), which shows that AD-frames completely capture
the structural properties of Aristotelian diagrams. Section 5 shows how AD-logic allows us
to express several key results from logical geometry (in particular, characterizations of and
relations between various families of Aristotelian diagrams). In Section 6, we demonstrate
how AD-logic can be used to construct interesting new Aristotelian diagrams, which simul-
taneously contain certain formulas (when viewed as Aristotelian diagrams) and validate
those same formulas (when viewed as AD-frames). Finally, Section 7 wraps things up, and
mentions some avenues for further research.



Axioms 2023, 12, 471 3 of 26

2. The Basic Building Blocks of Logical Geometry

Aristotelian diagrams can be defined in several ways [25]. The most general definition
is in terms of Boolean algebras, but for the purposes of this paper, it suffices to focus
on Aristotelian diagrams relative to logical systems. We first introduce the Aristotelian
relations in Definition 1 and then move on to the diagrams themselves in Definition 2.

Definition 1 (Aristotelian relations). Let S be a logical system, which is assumed to have Boolean
operators and a model–theoretic semantics |=S. The formulas α, β ∈ LS are said to be

S-contradictory iff |=S ¬(α ∧ β) and |=S α ∨ β,
S-contrary iff |=S ¬(α ∧ β) and 6|=S α ∨ β,
S-subcontrary iff 6|=S ¬(α ∧ β) and |=S α ∨ β,
in S-subalternation iff |=S α→ β and 6|=S β→ α.

These relations are abbreviated as CDS, CS, SCS, and SAS.

Definition 2 (Aristotelian diagram). Let S be a logical system, as shown in Definition 1, and let
F ⊆ LS be a non-empty fragment of formulas. An Aristotelian diagram for (F , S) is a vertex- and
edge-labeled graph: its vertices are labeled by the formulas from F , while its edges are labeled by the
Aristotelian relations holding between those formulas (relative to S). Furthermore, the fragment F
is required to satisfy the following conditions:

1. for every α ∈ F , there is a β ∈ F \ {α} such that |=S β↔ ¬α,
2. for every α ∈ F , there is no γ ∈ F \ {α} such that |=S α↔ γ,
3. there is no δ ∈ F such that |=S δ or |=S ¬δ.

Figure 1 shows two basic examples of Aristotelian diagrams, viz., classical squares of
opposition for ({p ∧ q, p ∨ q,¬p ∧ ¬q,¬p ∨ ¬q},CPL) and for ({�p,♦p,�¬p,♦¬p},KD),
where CPL is the system of classical propositional logic, and KD is the system of modal
logic that is interpreted on Kripke frames with a serial accessibility relation [13].

Definition 2’s three conditions on F are motivated by various theoretical and cognitive
considerations [26]. The vast majority of diagrams that are found in the extant literature
indeed satisfy these conditions. In recent theoretical work on Aristotelian diagrams [27],
these conditions are sometimes dropped. However, for the purposes of this paper, we
stick to the more traditional approach, and do include these conditions in our definition.
Finally, note that because of conditions 1 and 2, we can always write the elements of a finite
Aristotelian diagram for (F , S) (up to S-equivalence) asF = {α1,¬α1, α2,¬α2, . . . , αn,¬αn},
which shows that |F | = 2n is an even number.

p ∨ q

p ∧ q ¬p ∧ ¬q

¬p ∨ ¬q

a.

♦p

�p �¬p

♦¬p

b.

Figure 1. Two classical squares of opposition in (a) CPL and (b) KD.

The notion of Aristotelian isomorphism, which was first introduced in [24,28], is of
crucial importance in logical geometry, because it allows us to start studying Aristotelian
diagrams as objects of independent interest. More concretely, Aristotelian isomorphisms
enable us to make abstraction of the specific formulas and logical system that define a given
Aristotelian diagram, and thus, to say that two diagrams are “essentially the same”, despite
being built from completely different fragments and logical systems.

Definition 3 (Aristotelian isomorphism). Consider Aristotelian diagrams D for (F , S) and D′

for (F ′,S′). An Aristotelian isomorphism from D to D′ is a bijection f : F → F ′ such that, for
all α, β ∈ F and all Aristotelian relations RS ∈ {CDS, CS, SCS, SAS}, it holds that RS(α, β) iff
RS′( f (α), f (β)).



Axioms 2023, 12, 471 4 of 26

Upon visual inspection, it is immediately clear that function f , defined by f (p ∧ q) :=
�p, f (p ∨ q) := ♦p, f (¬p ∧ ¬q) := �¬p and f (¬p ∨ ¬q) := ♦¬p, is an Aristotelian
isomorphism between the two Aristotelian diagrams shown in Figure 1. For example, we
have SACPL(p ∧ q, p ∨ q) and SAKD( f (p ∧ q), f (p ∨ q)), i.e., SAKD(�p,♦p).

3. AD-Logic: The Modal Logic of Aristotelian Diagrams

In this section, we introduce the modal logic of Aristotelian diagrams, or AD-logic
for short. We first introduce the language LAD, and then define its semantics in terms of
AD-frames. Finally, we provide a sound and strongly complete axiomatization of AD-logic.

3.1. The Syntax of AD-Logic

We begin by defining the language LAD of AD-logic (Definition 4). This language
is highly expressive: next to the “ordinary” modalities [CD] and [C], we introduce the
global modality � and, especially, some key ingredients from hybrid logic: nominals, the
@-operator, and the ↓-binder. (Note that although all details are provided below, we do
presuppose that the reader has a basic level of familiarity with hybrid logic [29–32].)

Definition 4 (Language). Let I = {i1, i2, . . .} be a countably infinite set of nominals and
V = {x1, x2, x3 . . .} be a countably infinite set of state variables. We use s as a metavariable
ranging over I ∪ V . The language LAD is defined by the following BNF:

ϕ ::= s | ¬ϕ | ϕ ∨ ϕ | [CD]ϕ | [C]ϕ | �ϕ | @s ϕ | ↓ x(ϕ)

The definitions of free and bound (state) variables are as in first-order logic, with ↓ being the only
binding operator.

We now make a number of comments about this language, ranging from technical to
more philosophical in nature. We begin by discussing the primitive and defined operators
of LAD. Given negation and disjunction, the other Boolean connectives are defined as
usual. Given the modal operators [CD], [C] and �, their duals 〈CD〉, 〈C〉 and ♦ are defined
as usual. For our purposes later in this paper, it is useful to define two more operators:
〈SC〉ϕ := 〈CD〉〈C〉〈CD〉ϕ and 〈SA〉ϕ := 〈C〉〈CD〉ϕ; note that these definitions are directly
inspired by Lemmas 2 and 3 of [26]. Finally, given the presence of the global modality in
LAD, the @-operator can actually be defined as @s ϕ := �(s→ ϕ), or alternatively (using an
equivalent formula) as @s ϕ := ♦(s ∧ ϕ) (see [31], p. 284). However, later in this paper, we
will point out that we often do not have to rely on the global modality at all, and therefore,
we follow the more traditional approach and add @ as a primitive operator to our language.

A somewhat peculiar feature of LAD is that it only contains nominals and state vari-
ables (which are true in a unique world), and there are no “ordinary” atomic propositions
(which are typically true in multiple worlds). Using standard terminology from hybrid
logic [29–32], this means that all formulas of LAD are, by definition, pure. Technically speak-
ing, there is nothing that prevents us from taking such atomic propositions into account as
well. However, since they are not needed for the specific purposes of this paper, and some
definitions and results can be formulated more elegantly in their absence, we decided not
to add “ordinary” atomic propositions to LAD.

In order to avoid a potentially dire confusion, one should keep in mind which purposes
the language LAD (and, more generally, the system of AD-logic) is meant to serve and
which ones it is not. More concretely, recall that Aristotelian diagrams were defined in
Section 2 for pairs (F , S), and thus exist relative to some “underlying” logical system S (for
example, CPL or KD; see Figure 1). Furthermore, formulas from the language LS of this
underlying logic occur in the diagram for (F ,S). By contrast, AD-logic does not serve as
such an “underlying” logic of one particular diagram, but is rather meant to describe the
behavior of Aristotelian diagrams in general. Similarly, formulas from LAD do not occur
in Aristotelian diagrams, but are rather interpreted on them. As a notational reminder of
this important distinction, throughout this paper we will systematically use (i) letters from
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the beginning of the Greek alphabet (α, β, γ, etc.) as metavariables over the language LS of
the underlying logic of some Aristotelian diagram (F , S) and (ii) letters from the end of the
Greek alphabet (ϕ, χ, ψ, etc.) as metavariables over the language LAD of AD-logic.

3.2. The Semantics of AD-Logic

We now introduce the semantics of AD-logic. Ultimately, the idea is that LAD-
formulas can be interpreted on Aristotelian diagrams, but for now, we focus on AD-frames
(Definition 5) and AD-models (Definition 6), which are a specific kind of birelational Kripke
frames and models. The connection with actual Aristotelian diagrams will be discussed in
detail in Section 4.

Definition 5 (AD-frame). An AD-frame is a tuple F = 〈W, RCD, RC〉 such that

1. W is a non-empty set, the elements of which are called “worlds” or “states”,
2. RCD ⊆W ×W is a relation such that

(a) for all w, w′ ∈W, if 〈w, w′〉 ∈ RCD, then 〈w′, w〉 ∈ RCD, i.e., RCD is symmetric,
(b) for all w ∈W, 〈w, w〉 /∈ RCD, i.e., RCD is irreflexive,
(c) for all w ∈W there is a w′ ∈W such that 〈w, w′〉 ∈ RCD, i.e., RCD is serial,
(d) for all w, w′, w′′ ∈ W, if 〈w, w′〉, 〈w, w′′〉 ∈ RCD, then w′ = w′′, i.e., RCD is a

partial function,

3. RC ⊆W ×W is a relation such that

(a) for all w, w′ ∈W, if 〈w, w′〉 ∈ RC then 〈w′, w〉 ∈ RC, i.e., RC is symmetric,
(b) for all w ∈W, 〈w, w〉 /∈ RC, i.e., RC is irreflexive,

4. (a) RCD ∩ RC = ∅, i.e., RCD and RC are mutually exclusive,
(b) if 〈w, w′〉, 〈w′′, w′′′〉 ∈ RCD and 〈w, w′′〉 ∈ RC, then 〈w, w′′′〉 /∈ RC and 〈w′, w′′′〉

/∈ RC,
(c) if 〈w, w′′〉, 〈w′, w′′′〉 ∈ RC and 〈w′′, w′′′〉 ∈ RCD, then 〈w, w′〉 ∈ RC.

Definition 6 (AD-model). An AD-model is a tuple M = 〈F, V〉 such that F is an AD-frame and
V : I →W is a valuation function that maps each nominal s ∈ I onto a state V(s) ∈W.

Conditions 2(c–d) of Definition 5 state that the relation RCD can be viewed as a
total function RCD : W → W, so instead of RCD(w, w′), we can also write RCD(w) = w′.
Next, conditions 2(a–b) entail that this function is an involution without any fixed points,
i.e., RCD(RCD(w)) = w 6= RCD(w) for all w ∈ W. Consequently, we can always list
the elements of a finite AD-frame as W = {w1, RCD(w1), w2, RCD(w2), . . . , wn, RCD(wn)},
which shows that |W| = 2n is an even number. Needless to say, the fact that finite
AD-frames have an even number of worlds corresponds exactly to the fact that finite
Aristotelian diagrams have an even number of formulas (see Section 2). More generally,
conditions 2(a)–4(c) are all motivated by the definition of Aristotelian diagrams, as will
become more clear in Section 4. Finally, with respect to Definition 6, it should be noted
that the valuation V only needs to interpret nominals (since there are no “ordinary” atomic
propositions in LAD), and hence, we can simply take its codomain to be W. (Otherwise, we
would have to take the codomain of V to be ℘(W), while imposing the requirement that
|V(s)| = 1 for nominals s ∈ I , as is usually done in hybrid logic [29–31]).

We are now in a position to define the semantics of AD-logic. We introduce two more
auxiliary notions (which are entirely standard from hybrid logic) in Definitions 7 and 8,
and then formulate the semantic clauses for LAD in Definition 9.

Definition 7 (Assignment). An assignment g on an AD-model M = 〈〈W, RCD, RC〉, V〉 is a
function g : V →W that maps each state variable s ∈ V onto a state g(s) ∈W.
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Definition 8 (x-variant). Consider an assignment g on an AD-model M = 〈〈W, RCD, RC〉, V〉,
a state variable x ∈ V , and a world w ∈ W. The x-variant of g that maps x to w, denoted
gx

w : V → W, is the assignment defined by gx
w(x) = w and gx

w(s) = g(s) for all state variables
s ∈ V \ {x}.

Definition 9 (Semantic clauses). Let M = 〈〈W, RCD, RC〉, V〉 be an AD-model, let g be an
assignment on M, and let [s]M,g be V(s) if s ∈ I and g(s) if s ∈ V . Then we define

M, g, w |= s iff [s]M,g = w,
M, g, w |= ¬ϕ iff not M, g, w |= ϕ,
M, g, w |= ϕ ∨ ψ iff M, g, w |= ϕ or M, g, w |= ψ,
M, g, w |= [CD]ϕ iff for all v such that 〈w, v〉 ∈ RCD: M, g, v |= ϕ,
M, g, w |= [C]ϕ iff for all v such that 〈w, v〉 ∈ RC: M, g, v |= ϕ,
M, g, w |= �ϕ iff for all v ∈W: M, g, v |= ϕ,
M, g, w |= @s ϕ iff M, g, [s]M,g |= ϕ,
M, g, w |= ↓ x(ϕ) iff M, gx

w, w |= ϕ.

It is now entirely standard to define the notions of AD-frame validity (Definition 10),
AD-validity (Definition 11) and AD-consequence (Definition 12). Upon unpacking the
definitions, it is easy to see that AD-validity is a special case of AD-consequence if we take
the premise set to be empty (formally: |=AD ϕ iff ∅ |=AD ϕ). Nevertheless, we choose to
define these two notions in two separate definitions, because they will be important later in
this paper for distinct reasons.

Definition 10 (Validity on an AD-frame). The formula ϕ ∈ LAD is said to be valid on the
AD-frame F = 〈W, RCD, RC〉, written as F |= ϕ, iff for every valuation V : I → W on F, every
assignment g : V →W on 〈F, V〉 and every world w ∈W, it holds that 〈F, V〉, g, w |= ϕ.

Definition 11 (AD-validity). The formula ϕ ∈ LAD is said to be AD-valid, written as |=AD ϕ,
iff for every AD-frame F, it holds that F |= ϕ.

Definition 12 (AD-consequence). Given formulas Ψ ∪ {ϕ} ⊆ LAD, we say that ϕ is an AD-
consequence of Ψ, written as Ψ |=AD ϕ, iff for every AD-model M, every assignment g on M and
every world w in M, it holds that if M, g, w |= ψ for every ψ ∈ Ψ, then M, g, w |= ϕ.

3.3. Frame Correspondence and Completeness

Since this paper is strongly semantically driven, we will not spend much time on proof
theory. However, we will show how a sound and strongly complete axiomatization of AD-
logic can be obtained directly from general results about hybrid logic. We start by stating
frame correspondences for all the defining properties of AD-frames. In Lemma 1 below,
expressions such as “2(a)” and “4(c)” refer to the conditions mentioned in Definition 5.

Lemma 1. Let F = 〈W, RCD, RC〉 be an arbitrary birelational Kripke frame.

• F satisfies condition 2(a) (i.e., symmetry of RCD) iff F |= @i〈CD〉j→ @j〈CD〉i,
• F satisfies condition 2(b) (i.e., irreflexivity of RCD) iff F |= @i¬〈CD〉i,
• F satisfies condition 2(c) (i.e., seriality of RCD) iff F |= 〈CD〉>,
• F satisfies condition 2(d) (i.e., partial functionality of RCD) iff F |= (〈CD〉i ∧ 〈CD〉j)→ @i j,
• F satisfies condition 3(a) (i.e., symmetry of RC) iff F |= @i〈C〉j→ @j〈C〉i,
• F satisfies condition 3(b) (i.e., irreflexivity of RC) iff F |= @i¬〈C〉i,
• F satisfies condition 4(a) iff F |= @i〈CD〉j→ @i¬〈C〉j,
• F satisfies condition 4(b) iff F |= (@i〈CD〉j∧@k〈CD〉`∧@i〈C〉k)→ (¬@i〈C〉`∧¬@j〈C〉`),
• F satisfies condition 4(c) iff F |= (@i〈C〉j ∧@k〈C〉` ∧@j〈CD〉`)→ @i〈C〉k.

Proof. All items are easy to check; many of them are standard frame correspondence
results from hybrid logic.
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Let ΨAD be the set consisting of all nine LAD-formulas that are mentioned in Lemma 1.
Together with the formula ♦i (which fully captures the behavior of the global modality ♦;
see [31], p. 284), this yields a sound and strongly complete axiomatization of AD-logic.

Lemma 2. A birelational Kripke frame F is an AD-frame iff for every ψ ∈ ΨAD, F |= ψ.

Proof. This follows immediately from Lemma 1 and Definition 5.

Theorem 1. Let KH(@,↓) be the standard axiomatization of hybrid logic with @ and ↓-binder
(see [30], p. 833 and [31], p. 304). Then, KH(@,↓) + ΨAD ∪ {♦i} is sound and strongly complete
for the class of AD-frames.

Proof. Soundness is straightforward. Strong completeness follows from Theorem 5 of [30],
p. 833 (also see Theorem 5 of [31], p. 304), since all formulas in ΨAD ∪ {♦i} are pure, ♦i is
the sole axiom governing the global modality (see [31], p. 284), and ΨAD defines the class
of AD-frames (see Lemma 2).

We finish this section with a more general, methodological reflection. At first sight,
it might look like the system of AD-logic is quite ad hoc, being a combination of ingre-
dients that have been haphazardly put together with the sole purpose of capturing the
intuitive idea of “viewing Aristotelian diagrams as Kripke frames”. However, we hope
that throughout this section, it has become clear that AD-logic is firmly rooted in the
vast tradition of modal logic research. This includes, most importantly, the notions of
nominals, the @-operator and the ↓-binder from hybrid logic [29–32], but also the study
of global modalities [33,34] and functional accessibility relations [35,36]. Furthermore, in
relational semantics for relevance logic, one of the accessibility relations is an involutive
function (usually called the “Routley star” [37–39]), just like RCD is an involutive function
in AD-frames.

4. The Relation between AD-Logic and Aristotelian Diagrams

At this point, there might seem to be a subtle mismatch between the informal moti-
vation for this paper, as laid out in Section 1, and the technical development of AD-logic
in Section 3. After all, the formulas of LAD are interpreted on AD-frames and AD-models
(see Definitions 9–12), whereas the fundamental intuition was that we wanted to interpret
such formulas on the Aristotelian diagrams themselves. The distinction is a subtle one, as
AD-frames and Aristotelian diagrams are clearly related to each other; for example, the
notations RCD and RC for the relations in an AD-frame are highly suggestive, and the same
holds for the parallel observations regarding even numbers of worlds/formulas in finite
AD-frames/Aristotelian diagrams. In this section, we will close this gap altogether. We
first introduce the notion of an AD-frame being “based on” a given Aristotelian diagram,
and then show that there exists a bijection between finite Aristotelian diagrams (up to Aris-
totelian isomorphism) and finite AD-frames (up to modal isomorphism). (The restriction to
finite diagrams/AD-frames is needed for technical reasons; however, this restriction is not
very significant, since all Aristotelian diagrams and AD-frames that we will be working
with later in the paper are finite anyway).

4.1. AD-Frames Based on Aristotelian Diagrams

We start by introducing the idea of an AD-frame being based on an Aristotelian diagram.
We first formulate this in terms of arbitrary birelational Kripke frames, and then prove that
all such frames are indeed AD-frames (see Lemma 3).

Definition 13 (Birelational Kripke frame based on an Aristotelian diagram). Consider an
Aristotelian diagram D for (F ,S). A birelational Kripke frame F = 〈W, RCD, RC〉 is said to be
based on D iff there exists a bijection h : W → F such that for all w, w′ ∈W:

1. 〈w, w′〉 ∈ RCD iff CDS(h(w), h(w′)),
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2. 〈w, w′〉 ∈ RC iff CS(h(w), h(w′)).

Note that all components of the Kripke frame F and the Aristotelian diagram D play
key roles in Definition 13: the sets W and F are the domain and codomain of the bijection
h, while conditions 1 and 2 specify a correspondence between the relations RCD and RC of
the Kripke frame F and the actual Aristotelian relations that hold among the formulas of
D, relative to the logical system S (see Definition 1). Additionally, note that because of its
bijective nature and the presence of conditions 1 and 2, the function h from Definition 13
looks very much like an Aristotelian isomorphism (see Definition 3); the only difference
is that h connects an AD-frame with an Aristotelian diagram, whereas an Aristotelian
isomorphism is defined between two Aristotelian diagrams. (One point of difference is that
h is concerned with just two relations, RCD and RC, whereas an Aristotelian isomorphism is
concerned with all four Aristotelian relations. However, this difference is very minor, since
SCS and SAS can be defined in terms of CDS and CS; see Lemmas 2 and 3 of [26]).

We now prove that if a birelational Kripke frame is based on an Aristotelian diagram,
then it is an AD-frame. This is exactly as it should be, and justifies our terminological
choice for the word “AD-frame”.

Lemma 3. Let F = 〈W, RCD, RC〉 be a birelational Kripke frame that is based on an Aristotelian
diagram D for (F ,S). Then F is an AD-frame.

Proof. Since F is based on D, there exists a bijection h : W → F that satisfies the two
conditions mentioned in Definition 13. In order to show that F is an AD-frame, it suffices to
check that it satisfies all the conditions of Definition 5. All these conditions follow, via the
bijection h, from Definitions 1 and 2. For example, RC is symmetric because the Aristotelian
relation of S-contrariety is symmetric; in detail: for all w, w′ ∈ W, we have 〈w, w′〉 ∈ RC

iff CS(h(w), h(w′)) iff [|=S ¬(h(w) ∧ h(w′)) and 6|=S h(w) ∨ h(w′)] iff [|=S ¬(h(w′) ∧ h(w))
and 6|=S h(w′) ∨ h(w)] iff CS(h(w′), h(w)) iff 〈w′, w〉 ∈ RC.

For a more elaborate example, we check that condition 4(c) of Definition 5 holds.
Consider arbitrary worlds w, w′, w′′, w′′′ ∈W and suppose that 〈w, w′′〉, 〈w′, w′′′〉 ∈ RC and
〈w′′, w′′′〉 ∈ RCD. It follows that CS(h(w), h(w′′)) and CS(h(w′), h(w′′′)) and CDS(h(w′′),
h(w′′′)). By the definition of CDS and CS, it follows that |=S h(w) → ¬h(w′′) and |=S

¬h(w′′) → h(w′′′) and |=S h(w′′′) → ¬h(w′), and hence, by transitivity, |=S h(w) →
¬h(w′), i.e., |=S ¬(h(w) ∧ h(w′)) (†). Furthermore, it follows from CS(h(w), h(w′′)) that
6|=S h(w) ∨ h(w′′) and, hence, there exists an S-model M such that M 6|= h(w) and M 6|=
h(w′′), i.e., M |= ¬h(w′′). From CD(h(w′′), h(w′′′)) and C(h(w′), h(w′′′)), it follows that
|=S ¬h(w′′)→ h(w′′′) and |=S h(w′′′)→ ¬h(w′) and, hence, by transitivity, |=S ¬h(w′′)→
¬h(w′). Since M |= ¬h(w′′), it follows that M |= ¬h(w′), i.e., M 6|= h(w′). Since M 6|= h(w)
and M 6|= h(w′), it follows that M 6|= h(w) ∨ h(w′) and, hence, 6|=S h(w) ∨ h(w′) (‡). From
(†) and (‡), it follows that CS(h(w), h(w′)) and, hence, 〈w, w′〉 ∈ RC, as required.

We are now ready to entirely close the gap between Aristotelian diagrams and AD-
frames. In particular, validity on an Aristotelian diagram D can straightforwardly be
defined in terms of validity on all AD-frames that are based on D (see Definition 10).

Definition 14 (Validity on an Aristotelian diagram). The formula ϕ ∈ LAD is said to be valid
on an Aristotelian diagram D, written as |=D ϕ, iff for every AD-frame F that is based on D, it
holds that F |= ϕ.

This notion of “diagrammatic validity” will play a crucial role in Sections 5 and 6 later
in the paper. However, in the remainder of the current section, we will first investigate the
relationship between Aristotelian diagrams and AD-frames in more detail.
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4.2. From Aristotelian Diagrams to AD-Frames

We have just introduced the notion of a birelational Kripke frame being based on a given
Aristotelian diagram, and shown that such frames are always AD-frames. However, there
are two questions that have not been answered thus far. First of all, given an Aristotelian
diagram D, we can ask whether there always exists an AD-frame based on D. Secondly, we
can ask to what extent the AD-frames based on a given Aristotelian diagram are unique. In
order to provide an affirmative answer to the first question, we define the canonical frame
FD for a given Aristotelian diagram D.

Definition 15. Consider an Aristotelian diagram D for (F ,S). The canonical frame for D is the
birelational Kripke frame FD = 〈W, RCD, RC〉, where W := F , RCD := CDS ∩ (F × F ) and
RC := CS ∩ (F ×F ).

Lemma 4. Consider an Aristotelian diagram D for (F ,S). Then the canonical frame FD is based
on D, and is thus an AD-frame.

Proof. To see that FD is based on D, it suffices to note that the identity function idF has all
the required properties to fulfill the role of h in Definition 13. By Lemma 3, it immediately
follows that FD is an AD-frame.

Since an Aristotelian diagram D for (F ,S) yields an AD-frame FD “via” the identity
function idF , there is a potentially confusing situation that needs our careful considera-
tion. After all, given a formula α ∈ F and a formula ϕ of AD-logic, it now makes sense
to ask whether (for any valuation V on FD and any assignment g on 〈FD, V〉) we have
〈FD, V〉, g, α |= ϕ, or, using a common abbreviation, whether α |= ϕ. However, this latter
expression does not mean that we are dealing with a valid argument with a single premise α
and conclusion ϕ, but rather, that the formula ϕ ∈ LAD is true at the “formula-viewed-as-a-
world” α ∈ LS (recall our notational convention regarding metavariables for LS and LAD).
For example, given the classical square of opposition for ({�p,♦p,�¬p,♦¬p},KD) that
was already shown in Figure 1b, we can say that �p |= 〈C〉〈CD〉>, since CKD(�p,�¬p)
and CDKD(�¬p,♦p) and ♦p |= >. Furthermore, note that �p |= 〈C〉〈CD〉> does not
mean that the formula �p is contrary to the formula 〈CD〉>: this would involve a category
mistake, since �p belongs to the basic modal language L�, whereas 〈CD〉> belongs to
LAD. (Formally speaking, there is no overarching logic that �p and 〈CD〉> both belong to,
and with respect to which they could be said to be contrary to each other.)

We now turn to the second question about AD-frames based on a given Aristotelian diagram.
It is easy to see that two distinct AD-frames can be based on the same Aristotelian diagram. For
example, the three frames (i) 〈{w, w′}, {〈w, w′〉, 〈w′, w〉}, ∅〉, (ii) 〈{w, v}, {〈w, v〉, 〈v, w〉}, ∅〉
and (iii) 〈{p,¬p}, {〈p,¬p〉, 〈¬p, p〉}, ∅〉 are all nominally distinct from each other, yet all three
are based on the diagram for ({p,¬p},CPL) (recall that CPL is short for classical propositional
logic). We thus cannot hope for there to be a unique AD-frame based on a given Aristotelian
diagram; however, as the example above already suggests, we can show that AD-frames based
on a given Aristotelian diagram are unique up to modal isomorphism. In order to formulate this
correctly, we first recall the notion of modal isomorphism (which is entirely standard from modal
logic; see [40], p. 58) in Definition 16. Furthermore, we will actually prove a slightly stronger result:
if D1 and D2 are two Aristotelian diagrams that are Aristotelian isomorphic to each other, and F1
and F2 are AD-frames that are based on resp. D1 and D2, then F1 and F2 are modally isomorphic
to each other.

Definition 16. Consider AD-frames F1 = 〈W1, RCD
1 , RC

1 〉 and F2 = 〈W2, RCD
2 , RC

2 〉. A modal
isomorphism between these two frames is a bijection g : W1 →W2 such that for all w, w′ ∈W, it
holds that 〈w, w′〉 ∈ RCD

1 iff 〈g(w), g(w′)〉 ∈ RCD
2 and 〈w, w′〉 ∈ RC

1 iff 〈g(w), g(w′)〉 ∈ RC
2 .
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Lemma 5. Consider Aristotelian diagrams D1 for (F1,S1) and D2 for (F2,S2), and consider an
AD-frame F1 = 〈W1, RCD

1 , RC
1 〉 based on D1 and an AD-frame F2 = 〈W2, RCD

2 , RC
2 〉 based on D2.

If D1 and D2 are Aristotelian isomorphic, then F1 and F2 are modally isomorphic.

Proof. For i = 1, 2, since Fi is based on Di, there exists a bijection hi : Wi → Fi that
satisfies the requirements of Definition 13. Furthermore, since D1 and D2 are Aristotelian
isomorphic to each other, there exists a bijection f : F1 → F2 that satisfies the requirements
of Definition 3. We now show that h−1

2 ◦ f ◦ h1 : W1 →W2 is a modal isomorphism.
First of all, note that since h2 : W2 → F2 is a bijection, the function h−1

2 : F2 → W2
exists and is a bijection as well. Furthermore, instead of saying that for all w, w′ ∈ W2,
〈w, w′〉 ∈ RCD

2 iff CDS2(h2(w), h2(w′)) (see Definition 13), we can equivalently say that for
all α, α′ ∈ F2, 〈h−1

2 (α), h−1
2 (α′)〉 ∈ RCD

2 iff CDS2(α, α′). (Exactly the same remark applies to
RC

2 and CS2 .) The function h−1
2 ◦ f ◦ h1 : W1 →W2 is a composition of three bijections and

is itself thus also a bijection. Furthermore, for all w, w′ ∈W1, we have the following chain
of equivalences:

〈(h−1
2 ◦ f ◦ h1)(w), (h−1

2 ◦ f ◦ h1)(w′)〉 ∈ RCD
2

iff 〈h−1
2 ( f (h1(w))), h−1

2 ( f (h1(w′)))〉 ∈ RCD
2 (def. of functional composition)

iff CDS2( f (h1(w)), f (h1(w′))) (by the remark about h−1
2 above)

iff CDS1
(h1(w), h1(w′)) (since f is an Arist. isomorphism)

iff 〈w, w′〉 ∈ RCD
1 (by the properties of h1).

In exactly the same way, we can show that 〈(h−1
2 ◦ f ◦ h1)(w), (h−1

2 ◦ f ◦ h1)(w′)〉 ∈ RC
2 iff

〈w, w′〉 ∈ RC
1 . This shows that h−1

2 ◦ f ◦ h1 : W1 →W2 is a modal isomorphism.

We are now in a position to define a function λ from finite Aristotelian diagrams (up to
Aristotelian isomorphism) to finite AD-frames (up to modal isomorphism). We introduce
some auxiliary notions in Definition 17, and the actual function λ in Definition 18. It is
quite easy to show that λ is injective, which we do in Lemma 6.

Definition 17. For each Aristotelian diagram D and AD-frame F, we define

• [D]AI := {D′ | D′ is an Aristotelian diagram that is Aristotelian isomorphic to D},
• [F]MI := {F′ | F′ is an AD-frame that is modally isomorphic to F}.
Furthermore, we define

• D := {[D]AI | D is a finite Aristotelian diagram},
• F := {[F]MI | F is a finite AD-frame}.

Definition 18. The function λ : D → F is defined by putting λ([D]AI) := [FD]MI, for every
[D]AI ∈ D. Note that this is a well-defined function because of Lemmas 4 and 5: if D1 and D2 are
Aristotelian isomorphic, then FD1 and FD2 are modally isomorphic.

Lemma 6. The function λ is injective.

Proof. Consider arbitrary Aristotelian diagrams D1 for (F1,S1) and D2 for (F2,S2) and
suppose that [FD1 ]MI = λ([D1]AI) = λ([D2]AI) = [FD2 ]MI, i.e., FD1 and FD2 are modally
isomorphic. We show that [D1]AI = [D2]AI, i.e., D1 and D2 are Aristotelian isomorphic.
Since FD1 and FD2 are modally isomorphic, there exists a modal isomorphism f : F1 → F2.
For all α, β ∈ F1, we have

CDS1
(α, β) iff 〈α, β〉 ∈ RCD

1 (by Definition 15)
iff 〈 f (α), f (β)〉 ∈ RCD

2 (by Definition 16)
iff CDS2( f (α), f (β)) (by Definition 15).

Similarly, we can show that CS1
(α, β) iff CS2( f (α), f (β)). Furthermore, since subcontrariety and

subalternation can be defined in terms of contradiction and contrariety (recall Lemmas 2 and 3
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from [26]), we also get SCS1
(α, β) iff SCS2( f (α), f (β)) and SAS1

(α, β) iff SAS2( f (α), f (β)).
This shows that f is an Aristotelian isomorphism between D1 and D2, as desired.

Note that the proof of Lemma 6 does not rely on the fact that D and F contain only
finite Aristotelian diagrams and AD-frames. This stands in sharp contrast with the proof of
Lemma 8 below, which deals with the surjectivity of λ.

4.3. From AD-Frames to Aristotelian Diagrams

In this subsection, we finish our investigation of the relation between AD-frames and
Aristotelian diagrams, by showing that the function λ defined above is not only injective,
but also surjective. This proof will be a bit more involved, so we first introduce the auxiliary
notion of (maximal) F-consistency in Definition 19 and prove Lemma 7. The latter is a
Lindenbaum-type lemma, which states that every F-consistent set can be extended to a
maximally F-consistent set. Finally, it bears emphasizing that the proof of Lemma 8 is
closely related to the algorithm described in Section 4 of [24].

Definition 19. Let F = 〈W, RCD, RC〉 be an AD-frame. A set X ⊆W is said to be F-consistent
iff there are no w, v ∈ X such that 〈w, v〉 ∈ RCD or 〈w, v〉 ∈ RC. Furthermore, X is said to be
maximally F-consistent iff (i) X is F-consistent and (ii) for all w ∈W \ X, the set X ∪ {w} is not
F-consistent. Finally, Π(F) is defined to be the set of all maximally F-consistent subsets of W.

Lemma 7. Let F = 〈W, RCD, RC〉 be an AD-frame. For every F-consistent set X ⊆ W, there
exists a maximally F-consistent set A ∈ Π(F) such that X ⊆ A.

Proof. Let P be the collection of all sets S ⊆W such that X ⊆ S and S is F-consistent. Note
that P is non-empty (since X ∈ P) and that P is partially ordered by ⊆. We now prove
that every non-empty chain in the poset P has an upper bound in P . Consider an arbitrary
chain C in P . Clearly,

⋃ C is an upper bound for C, so it suffices to show that
⋃ C ∈ P , i.e.,

(i) X ⊆ ⋃ C and (ii)
⋃ C is F-consistent. Regarding (i), since C is non-empty, there exists an

S ∈ C ⊆ P , and hence X ⊆ S ⊆ ⋃ C. Regarding (ii), suppose, toward a reductio, that
⋃ C is

not F-consistent. Hence, there exist x, y ∈ ⋃ C such that 〈x, y〉 ∈ RCD or 〈x, y〉 ∈ RC. Since
x, y ∈ ⋃ C, there exist Cx, Cy ∈ C such that x ∈ Cx and y ∈ Cy. Since C is a chain, we have
Cx ⊆ Cy or Cy ⊆ Cx. Consider the case Cx ⊆ Cy (the case Cy ⊆ Cx is analogous). It then
follows that x, y ∈ Cy, and thus Cy is not F-consistent, which contradicts Cy ∈ C ⊆ P .

We have now checked that every non-empty chain in the poset P has an upper bound
in P . By Zorn’s lemma, it follows that P has at least one maximal element, A. Since A ∈ P ,
we have, by definition of P , that X ⊆ A and that A is F-consistent. To show that A ∈ Π(F),
it thus suffices to check that A is maximal. Toward a reductio, assume that there exists
some w ∈W \ A such that A ∪ {w} is F-consistent. Since X ⊆ A ⊆ A ∪ {w} and A ∪ {w}
is F-consistent, we have A ∪ {w} ∈ P . However, since A  A ∪ {w}, this contradicts the
fact that A is a maximal element of P .

Lemma 8. The function λ : D→ F is surjective.

Proof. Consider an arbitrary finite AD-frame F = 〈W, RCD, RC〉. We will show that there
exists an Aristotelian diagram D such that [F]MI = λ([D]AI) = [FD]MI, i.e., such that F is
modally isomorphic to FD. In order to specify D, we have to specify a logical system S
and a fragment F ⊆ LS. For our logical system, we take classical propositional logic, CPL,
while for F , we take the image of W under the function f , which is defined below.

First of all, note that |Π(F)| ≤ 2|W|, so since F is finite, it follows that Π(F) is finite as
well. Now fix an ordering on the elements of Π(F): A1, A2, . . . , A|Π(F)|. Secondly, we con-
sider a partition ΠCPL of CPL consisting of |Π(F)| formulas: ΠCPL := {α1, α2, . . . , α|Π(F)|}.
The set ΠCPL is called a “partition of CPL”, because its elements are mutually exclusive
(i.e., |=CPL ¬(αi ∧ αj) for distinct αi, αj ∈ ΠCPL) and jointly exhaustive (i.e., |=CPL

∨
ΠCPL).

It is easy to see that such a partition ΠCPL always exists; see below for a concrete example
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and see the proof of Theorem 4 in [28] for a general construction method. For each w ∈W,
we define

f (w) :=
∨
{αi ∈ ΠCPL | w ∈ Ai}.

Now let f [W] := { f (w) | w ∈W}, and consider the Aristotelian diagram D for ( f [W],CPL).
(This can also be formulated using the well-known representation format of bitstrings [24,28,41]:
define β(w) ∈ {0, 1}|Π(F)| to be the bitstring that has a 1 in its ith bit position iff w ∈ Ai.)
We will show that f is a modal isomorphism from F to FD.

We first check that f is bijective. Surjectivity follows immediately from the definition
of f . For injectivity, consider arbitrary w, v ∈ W and suppose that w 6= v. We will show
that

∨{αi ∈ ΠCPL | w ∈ Ai} = f (w) 6= f (v) =
∨{αi ∈ ΠCPL | v ∈ Ai}, by showing that

there exists an Ai ∈ Π(F) such that w ∈ Ai iff v /∈ Ai. By the seriality of RCD, there exist
w′, v′ ∈W such that 〈w, w′〉, 〈v, v′〉 ∈ RCD. Now consider the following case distinction:

• The set {w, v′} ⊆W is F-consistent.
By Lemma 7, there exists some Ai ∈ Π(F) such that {w, v′} ⊆ Ai. We have w ∈ Ai
but v /∈ Ai (because Ai is F-consistent, v′ ∈ Ai and 〈v, v′〉 ∈ RCD), as desired.

• The set {w′, v} ⊆W is F-consistent.
Analogously to the previous case, we can now show that there exists some Ai ∈ Π(F)
such that w /∈ Ai but v ∈ Ai, as desired.

• Neither {w, v′} nor {w′, v} is F-consistent.
We will show that this case cannot occur. Since {w, v′} is not F-consistent, we have
〈w, v′〉 ∈ RCD or 〈w, v′〉 ∈ RC. If 〈w, v′〉 ∈ RCD, then it would follow by the sym-
metry and functionality of RCD that w = v, which contradicts our assumption that
w 6= v. Hence, 〈w, v′〉 ∈ RC. Similarly, since {w′, v} is not F-consistent, it follows that
〈w′, v〉 ∈ RC. However, from 〈w, w′〉, 〈v, v′〉 ∈ RCD and 〈w, v′〉 ∈ RC, it follows by
condition 4(b) of Definition 5 that 〈w′, v〉 /∈ RC.

We now check that for all w, v ∈W, we have 〈w, v〉 ∈ RCD iff CDCPL( f (w), f (v)). For
the left to right direction, suppose that 〈w, v〉 ∈ RCD. By the definition of CDCPL, it suffices
to prove the following two claims:

• |=CPL ¬( f (w) ∧ f (v)).
Consider an arbitrary CPL-model M and suppose, toward a contradiction, that M |=
f (w) ∧ f (v). Since M |= f (w) =

∨{αi ∈ ΠCPL | w ∈ Ai}, there exists 1 ≤ i ≤ |Π(F)|
such that M |= αi and w ∈ Ai. Similarly, since M |= f (v) =

∨{αj ∈ ΠCPL | v ∈ Aj},
there exists 1 ≤ j ≤ |Π(F)| such that M |= αj and v ∈ Aj. Since αi and αj are members
of a partition of CPL, it follows from M |= αi and M |= αj that i = j. Hence, we
have w ∈ Ai and v ∈ Aj = Ai, which, together with 〈w, v〉 ∈ RCD, contradicts the
F-consistency of Ai.

• |=CPL f (w) ∨ f (v).
We have to show that |=CPL

∨{αi ∈ ΠCPL | w ∈ Ai} ∨
∨{αi ∈ ΠCPL | v ∈ Ai}, i.e.,

that |=CPL
∨{αi ∈ ΠCPL | w ∈ Ai or v ∈ Ai}. Since |=CPL

∨
ΠCPL, it suffices to show

that for each Ai ∈ Π(F), we have w ∈ Ai or v ∈ Ai.
Consider some Ai ∈ Π(F) and suppose that w /∈ Ai. We will show that v ∈ Ai. Since
Ai is maximal, it follows from w /∈ Ai that Ai ∪ {w} is not F-consistent, i.e., there exist
x, y ∈ Ai ∪ {w} such that 〈x, y〉 ∈ RCD or 〈x, y〉 ∈ RC. Now, if x and y both come from
Ai, then Ai itself would be F-inconsistent. Furthermore, if x and y both come from
{w}, then x = w = y, which contradicts the irreflexivity of RCD and RC. So without
loss of generality, we assume that x ∈ Ai and y = w, and thus we have 〈x, w〉 ∈ RCD

or 〈x, w〉 ∈ RC.
In the first case, i.e., 〈x, w〉 ∈ RCD, it follows by the symmetry and functionality of
RCD that x = v. Since x ∈ Ai, we thus have v ∈ Ai, as desired. We now turn to the
second case: 〈x, w〉 ∈ RC. Toward a contradiction, assume v /∈ Ai. Since Ai is maximal,
it follows that Ai ∪ {v} is not F-consistent, i.e., there exist y, z ∈ Ai ∪ {v} such that
〈y, z〉 ∈ RCD or 〈y, z〉 ∈ RC. Reasoning as before, we again assume, without loss of
generality, that y ∈ Ai and z = v, and thus we have 〈y, v〉 ∈ RCD or 〈y, v〉 ∈ RC.
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In the first subcase, i.e., 〈y, v〉 ∈ RCD, it follows by the symmetry and functionality of
RCD that y = w. Since y ∈ Ai, we thus have w ∈ Ai, which contradicts our assumption
that w /∈ Ai. In the second subcase, i.e., 〈y, v〉 ∈ RC, it follows by condition 4(c)
from Definition 5 that 〈x, y〉 ∈ RC. However, since x, y ∈ Ai, this contradicts the
F-consistency of Ai.

For the right to left direction, suppose that CDCPL( f (w), f (v)) and, toward a contra-
diction, that 〈w, v〉 /∈ RCD. We make the following case distinction:

• 〈w, v〉 /∈ RC.
Then the set {w, v} ⊆W is F-consistent, so by Lemma 7, there exists some A∗ ∈ Π(F)
such that {w, v} ⊆ A∗. It follows from CDCPL( f (w), f (v)) that

∨{αi ∈ ΠCPL | w ∈
Ai} = f (w) |=CPL ¬ f (v) = ¬∨{αi ∈ ΠCPL | w ∈ Ai}. Hence, for all Ai ∈ Π(F), if
w ∈ Ai then v /∈ Ai. This is in contradiction with the fact that w, v ∈ A∗.

• 〈w, v〉 ∈ RC.
By the seriality of RCD, there exist w′, v′ ∈ W such that 〈w, w′〉, 〈v, v′〉 ∈ RCD. Now,
if 〈w′, v′〉 ∈ RCD, then by the symmetry and functionality of RCD it would follow
that w = v′ and v = w′, so 〈w′, v′〉 ∈ RCD would mean that 〈v, w〉 ∈ RCD, and
thus (by the symmetry of RCD) that 〈w, v〉 ∈ RCD, which contradicts RCD ∩ RC = ∅.
This shows that 〈w′, v′〉 /∈ RCD. Furthermore, it cannot happen that 〈w′, v′〉 ∈ RC

either, since together with 〈w, v〉 ∈ RC and the symmetry of RC, that would contradict
condition 4(b) of Definition 5. Since 〈w′, v′〉 /∈ RCD and 〈w′, v′〉 /∈ RC, it follows
that the set {w′, v′} ⊆ W is F-consistent, and hence, by Lemma 7, there exists some
A∗ ∈ Π(F) such that {w′, v′} ⊆ A∗. Note that w /∈ A∗, since together with w′ ∈ A∗

and 〈w, w′〉 ∈ RCD, this would violate the F-consistency of A∗. Analogously, we
show that v /∈ A∗. It follows from CDCPL( f (w), f (v)) that |=CPL f (w) ∨ f (v), i.e.,
|=CPL

∨{αi ∈ ΠCPL | w ∈ Ai} ∨
∨{αi ∈ ΠCPL | v ∈ Ai}. Hence, for all Ai ∈ Π(F), it

holds that w ∈ Ai or v ∈ Ai. This contradicts the fact that w, v /∈ A∗.

In an analogous fashion, we can check that for all w, v ∈ W, we have 〈w, v〉 ∈ RC iff
CCPL( f (w), f (v)). To summarize: f is a modal isomorphism from F = 〈W, RCD, RC〉 to the
AD-frame FD that is based on the Aristotelian diagram D for ( f [W],CPL).

In order to better grasp the proof of Lemma 8, it may be useful to work through a concrete
example. Consider the AD-frame F = 〈W, RCD, RC〉 shown in Figure 2a. An easy calculation
yields Π(F) = {A1 := {w, u}, A2 := {u, s}, A3 := {v, s}}. Since |Π(F)| = 3, we need
to consider a partition ΠCPL that consists of three formulas, for example ΠCPL := {α1 :=
p, α2 := ¬p ∧ q, α3 := ¬p ∧ ¬q}. Since w only belongs to A1, we define f (w) := α1 = p.
Since v only belongs to A3, we define f (v) := α3 = ¬p ∧ ¬q. Since u belongs to A1 and A2,
we define f (u) := α1 ∨ α2 = p ∨ (¬p ∧ q) ≡CPL p ∨ q. Finally, since s belongs to A2 and
A3, we define f (s) := α2 ∨ α3 = (¬p ∧ q) ∨ (¬p ∧ ¬q) ≡CPL ¬p. In this way, we obtain the
Aristotelian diagram D for ( f [W],CPL) that is shown in Figure 2b. Upon visual inspection
of the left- and right-hand sides of Figure 2, it should be immediately clear that F is modally
isomorphic to FD.

u

w v

s

a.

RCD

RC
b.

p ∨ q

p ¬p ∧ ¬q

¬p

Figure 2. (a) The AD-frame F and (b) an Aristotelian diagram D such that F is modally isomorphic
to FD.

We can now put everything together in Theorem 2. The importance of this theorem,
and in particular, of Lemma 8, should not be underestimated. These results tell us that
Definition 5 completely captures the structural properties of Aristotelian diagrams. More
concretely, the various conditions stated in Definition 5 are sufficient to exhaustively describe
the behavior of Aristotelian relations (consider how each of these properties played a role in
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the proof of Lemma 8!). Until now, there was a long list of various properties of Aristotelian
relations (e.g., we know that subalternation is transitive), but it was unknown whether
this list was exhaustive. In other words, it was conceptually possible that some complex
property of the Aristotelian relations might exist that we did not yet know about, and that
does not follow from the properties that are already known. Theorem 2 tells us definitively
that no such properties exist.

Theorem 2. The function λ : D→ F is bijective.

Proof. This follows immediately from Lemmas 6 and 8.

To conclude this section, it is worth mentioning that the proof of Theorem 2 immedi-
ately yields another interesting result as well: every Aristotelian diagram for some finite
fragment F ⊆ LS and some logical system S is Aristotelian isomorphic to a diagram for
a finite fragment FCPL ⊆ LCPL and the logic CPL (Lemma 9). This means that when we
are studying Aristotelian diagrams, we can essentially restrict ourselves to diagrams for
(fragments from) classical propositional logic.

Lemma 9. Consider an Aristotelian diagram D1 for (F ,S), where F is finite. There exist a
finite fragment FCPL ⊆ LCPL and a diagram D2 for (FCPL,CPL) such that D1 is Aristotelian
isomorphic to D2.

Proof. Consider the canonical frame FD1 that is based on D1. In the proof of Lemma 8, we
constructed a finite fragment FCPL ⊆ LCPL (namely, FCPL := f [F ]) and an Aristotelian
diagram D2 for (FCPL,CPL) such that FD1 is modally isomorphic to FD2 . By the proof of
Lemma 6, it follows that the Aristotelian diagrams D1 and D2 themselves are Aristotelian
isomorphic.

5. Characterizing Aristotelian Families in AD-Logic

In this section, we really start putting AD-logic to use, in order to capture some impor-
tant insights from logical geometry. In particular, one of the main ongoing research efforts
in logical geometry is to develop a systematic typology of Aristotelian families (i.e., maximal
classes of Aristotelian diagrams that are closed under Aristotelian isomorphism) [24,28,42].
We will now prove frame correspondence results for several of the most important families
of Aristotelian diagrams: for each such family A, we exhibit a formula χA ∈ LAD, and
show that |=D χA iff D belongs to the Aristotelian family A, for all diagrams D. These
frame correspondences do not refer to any underlying logical system, and thus provide
fully generic descriptions of the Aristotelian families [24] (recall the distinction between
general and generic characterizations of Aristotelian families from Section 1).

5.1. Expressing Frame Cardinalities

We start by mentioning an auxiliary result. Because our language LAD is so expressive,
it can be used to count the number of worlds in a (finite) AD-frame. We write “)n” to
denote a sequence of n closing brackets.

Lemma 10. Consider an AD-frame F = 〈W, RCD, RC〉. Then we have:

|W| = 2 iff F |= ↓ x1(♦(¬x1 ∧ ↓ x2(�(x1 ∨ x2)))),
|W| = 4 iff F |= ↓ x1(♦(¬x1 ∧

↓ x2(♦(¬x1 ∧ ¬x2 ∧
↓ x3(♦(¬x1 ∧ ¬x2 ∧ ¬x3 ∧
↓ x4(�(x1 ∨ x2 ∨ x3 ∨ x4)

8,

and in general, for any even number n:



Axioms 2023, 12, 471 15 of 26

|W| = n iff F |= ↓ x1(♦(¬x1 ∧
↓ x2(♦(¬x1 ∧ ¬x2 ∧
↓ x3(♦(¬x1 ∧ ¬x2 ∧ ¬x3 ∧
...
↓ xn−1(♦(¬x1 ∧ · · · ∧ ¬xn−1 ∧
↓ xn(�(x1 ∨ · · · ∨ xn)2n.

The aforementioned LAD-formula is henceforth abbreviated as χn, so |W| = n iff F |= χn.

Proof. This is an easy exercise in frame correspondence theory for hybrid logic. The
structure of the formula χn is clear: each variable xi gets bound to a world wi ∈W; for all
1 ≤ i < j ≤ n we have a formula of the form ¬xi ∧ · · · ∧ ↓ xj(ϕ) inside χn, which shows
that wi 6= wj; finally, the subformula �(x1 ∨ · · · ∨ xn) of χn means that w1, . . . , wn are all
the worlds in W, and thus |W| = n.

Note that the formula χn contains only the binder and the global modality, and hence,
there is nothing specifically “(Aristotelian) diagrammatical” about χn (in particular, it does
not contain 〈CD〉 or 〈C〉). This is exactly as it should be, since χn merely describes the
cardinality of the AD-frame F, which is (nearly) independent of F’s status as (based on) an
Aristotelian diagram. (But do note that we define χn only for even numbers n, since finite
Aristotelian diagrams/AD-frames have, by definition, an even number of formulas/worlds;
see Definitions 2 and 5).

5.2. Characterizing the Aristotelian Family of Pairs of Contradictories

Within the typology of Aristotelian diagrams, there exists a unique smallest type of
Aristotelian diagram, viz., the pair of contradictories (PCD) (see Figure 3). For a diagram for
(F ,S) to be a PCD, it suffices to require that F contains exactly two formulas; from the
general Definition 2 of an Aristotelian diagram, it then follows that these two formulas are
S-contradictory to each other (hence the term “pair of contradictories”). Consequently, it is
also straightforward to characterize PCDs in AD-logic.

α α′

Figure 3. A pair of contradictories (PCD).

Definition 20. An Aristotelian diagram for (F ,S) is a pair of contradictories iff |F | = 2.

Theorem 3. Define χPCD := χ2. An Aristotelian diagram D for (F ,S) is a PCD iff |=D χPCD.

Proof. For the left to right direction, suppose that D is a PCD and consider an arbitrary
AD-frame F = 〈W, RCD, RC〉 that is based on D. By Definitions 13 and 20, it follows that
|W| = 2, so by Lemma 10, we get F |= χ2, i.e., F |= χPCD.

For the right to left direction, suppose that |=D χPCD, and consider the canonical
AD-frame FD. By Lemma 4, it follows that FD |= χPCD, i.e., FD |= χ2, so by Lemma 10, we
find that |F | = 2, which means that D is a PCD.

Let us have another look at Definition 20 and Theorem 3. At first sight, it might look
like the right-hand side of Definition 20 does not refer to any underlying logical system S
(and is thus fully generic in nature). However, recall that by Definition 2, it follows from the
requirement that |F | = 2 that there are α, β ∈ F such that CDS(α, β), which does involve a
reference to S. Definition 20 is thus general but not generic in nature, because its right-hand
side still (implicitly) refers to some underlying logical system S (even though that system
can be chosen arbitrarily). By contrast, the right-hand side of Theorem 3 does not refer to
any underlying logical system S whatsoever, and thus offers a fully generic characterization
of the Aristotelian family of PCDs. (This contrast between official definitions and LAD-
characterizations will become even clearer when we are dealing with Aristotelian families
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of squares, hexagons, and octagons, because their official definitions refer much more
explicitly to the underlying logical system S).

5.3. Characterizing the Two Aristotelian Families of Squares of Opposition

Within the typology of Aristotelian diagrams, there exist exactly two families of
squares of opposition: the classical square and the degenerate square; see Figure 4 [24,28,42].
The classical square is by far the oldest and most well-known kind of Aristotelian diagram.
In comparison to a classical square, a degenerate square has lost all Aristotelian relations,
except for the two relations of contradiction (which are required to be present by the
very definition of Aristotelian diagram). Both families of squares are straightforwardly
characterized in AD-logic.

Definition 21. Consider an Aristotelian diagram D for (F ,S). Then:

1. D is a square of opposition iff |F | = 4,
2. D is a classical square of opposition iff |F | = 4 and

there exist α, β ∈ F such that CS(α, β),
3. D is a degenerate square of opposition iff |F | = 4 and

there do not exist α, β ∈ F such that CS(α, β).

β′

α β

α′

a.

β′

α β

α′

b.

Figure 4. (a) A classical square of opposition and (b) a degenerate square of opposition.

Theorem 4. Define the LAD-formulas χsquare := χ4, χclassical := χ4 ∧♦〈C〉> and χdegenerate :=
χ4 ∧ ¬♦〈C〉>. Then for any Aristotelian diagram D for (F ,S), we have:

1. D is a square of opposition iff |=D χsquare,
2. D is a classical square of opposition iff |=D χclassical,
3. D is a degenerate square of opposition iff |=D χdegenerate.

Proof. Analogous to the proof of Theorem 3. For purposes of illustration, we prove the
second item. For the left to right direction, suppose that D is a classical square of opposition,
and consider an arbitrary AD-frame F = 〈W, RCD, RC〉 that is based on D. By Definitions 13
and 21, it follows that |W| = 4 and that there exist w, v ∈ W such that 〈w, v〉 ∈ RC. From
|W| = 4, it follows by Lemma 10 that F |= χ4. From 〈w, v〉 ∈ RC, it follows that F |= ♦〈C〉>.
Hence, F |= χ4 ∧♦〈C〉>, i.e., F |= χclassical.

For the right to left direction, suppose that |=D χclassical and consider the canonical
AD-frame FD. By Lemma 4, it follows that FD |= χclassical, i.e., FD |= χ4 ∧ ♦〈C〉>. From
FD |= χ4, it follows by Lemma 10 that |F | = 4. From FD |= ♦〈C〉>, it follows that there
exist α, β ∈ F such that CS(α, β). By Definition 21, this means that D is a classical square
of opposition.

Just like with the PCDs, let us have another look at Definition 21 and Theorem 4.
Note that items 2 and 3 of Definition 21 are general but not generic in nature, because
their right-hand sides still refer to some underlying logical system S (even though that
system can be chosen arbitrarily). By contrast, the right-hand sides of items 2 and 3 of
Theorem 4 do not refer to any underlying logical system S whatsoever, and thus offer
fully generic characterizations of the Aristotelian families of classical and degenerate
squares. Entirely analogous remarks apply to the characterizations of Aristotelian families
of hexagons and octagons in the remainder of this section (compare Definitions 22 and 23
with Theorems 5 and 6, respectively).

Next to characterizing the classical and degenerate squares, we can also easily express
in AD-logic that these two types of diagrams jointly constitute an exhaustive classification
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of the squares of opposition. To illustrate the versatility of AD-logic, we prove the two
parts of Lemma 11 in different fashions: the first item is proved directly “within” AD-logic,
while the second is proved by reducing it to the corresponding result in logical geometry.
(If we had only considered the proof’s difficulty and length, it would have been more
straightforward to prove both items directly within AD-logic).

Lemma 11. The following hold:

1. χsquare ≡AD χclassical ∨ χdegenerate, i.e.,
χsquare |=AD χclassical ∨ χdegenerate and χclassical ∨ χdegenerate |=AD χsquare,

2. |=AD ¬(χclassical ∧ χdegenerate).

Proof. For item 1, propositional reasoning yields χclassical ∨ χdegenerate = (χ4 ∧ ♦〈C〉>) ∨
(χ4 ∧ ¬♦〈C〉>) ≡AD χ4 ∧ (♦〈C〉> ∨ ¬♦〈C〉>) ≡AD χ4 ∧> ≡AD χ4 = χsquare.

For item 2, consider an arbitrary AD-frame F and suppose, toward a contradiction,
that F |= χclassical ∧ χdegenerate. It follows that F |= χ4, so by Lemma 10, F is finite, and by
Lemma 8, there exists an Aristotelian diagram D such that F is modally isomorphic to
FD. Since modal isomorphisms preserve frame validity, it follows from F |= χclassical that
FD |= χclassical, and, by Lemma 5, that F′ |= χclassical for every AD-frame F′ that is based on
D. By Definition 14, this means that |=D χclassical, so by Theorem 4, it follows that D is a
classical square of opposition. In exactly the same way, it follows from F |= χdegenerate that
D is a degenerate square of opposition. However, this is impossible, since by Definition 21,
a diagram cannot simultaneously be a classical and a degenerate square of opposition.

Note that the formula χclassical contains the global modality, ♦, both in its left conjunct
χ4 and in its right conjuct ♦〈C〉>. However, if one prefers to work without the global
modality (e.g., because one adheres to the credo that modal logic should be local; see [40],
p. ix) and is prepared to put the cardinality condition in the metalanguage instead of in
LAD, then we can characterize classical squares of opposition without the global modality
altogether. In particular, we have to replace ♦〈C〉> with the disjunction 〈C〉> ∨ 〈SC〉>.
(Entirely analogous remarks apply to χdegenerate).

Lemma 12. Consider an Aristotelian diagram D for (F , S) and suppose that |F | = 4. Then D is
a classical square of opposition iff |=D 〈C〉> ∨ 〈SC〉>.

Proof. For the left to right direction, suppose that D is a classical square of opposi-
tion, and consider an arbitrary AD-frame F = (W, RCD, RC) that is based on D. By
Definitions 13 and 21, it follows that |W| = 4 and that there exist w, v ∈ W such that
〈w, v〉 ∈ RC (and thus also 〈v, w〉 ∈ RC, by the symmetry of RC). By the seriality and
functionality of RCD, there exist unique w′, v′ ∈ W such that 〈w, w′〉, 〈v, v′〉 ∈ RCD. By
the irreflexivity of RCD and RC, it follows that x 6= y for all x, y ∈ {w, v, w′, v′}, so since
|W| = 4, it follows that W = {w, v, w′, v′}. Consider an arbitrary valuation V on F
and assignment g on 〈F, V〉. Since 〈w, v〉, 〈v, w〉 ∈ RC, we have 〈F, V〉, g, x |= 〈C〉> for
x ∈ {w, v}, and 〈F, V〉, g, x |= 〈SC〉> for x ∈ {w′, v′}. Since W = {w, v, w′, v′}, it follows
that F |= 〈C〉> ∨ 〈SC〉>, as desired.

For the right to left direction, suppose that |=D 〈C〉> ∨ 〈SC〉>, and consider the
canonical AD-frame FD. By Lemma 4, it follows that FD |= 〈C〉> ∨ 〈SC〉>. Consider an
arbitrary valuation V on FD and assignment g on 〈FD, V〉, and a world α ∈ F . We thus have
〈FD, V〉, g, α |= 〈C〉> ∨ 〈SC〉>. On the one hand, if 〈FD, V〉, g, α |= 〈C〉>, then there exists
β ∈ F such that CS(α, β). On the other hand, if 〈FD, V〉, g, α |= 〈SC〉>, then there exists
β ∈ F such that SCS(α, β). By Definitions 1 and 2, there exist γ, δ ∈ F such that γ ≡S ¬α,
δ ≡S ¬β and CS(γ, δ). In both cases, we find, by Definition 21, that D is a classical square
of opposition.



Axioms 2023, 12, 471 18 of 26

5.4. Characterizing the Five Aristotelian Families of the Hexagons of Opposition

One can show that there are exactly five families of hexagons of opposition: the
Jacoby–Sesmat–Blanché (JSB) hexagon, the Sherwood–Czeżowski (SC) hexagon, and the
unconnected-n (U-n) hexagon for n ∈ {4, 8, 12} (see Figures 5 and 6) [42]. The JSB hexagons
are named after Jacoby [43], Sesmat [44], and Blanché [45], and the SC hexagons after
William of Sherwood [46] and Czeżowski [47]. The U4, U8, and U12 hexagons are less
well-known, and are named after the number of pairs of unconnected formulas that they
contain. (Recall that two formulas are said to be unconnected iff they do not stand in any Aris-
totelian relation to each other.) Once again, all families of hexagons are straightforwardly
characterized in AD-logic.
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α β
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Figure 5. (a) A JSB hexagon and (b) an SC hexagon.
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Figure 6. (a) A U4 hexagon, (b) a U8 hexagon, and (c) a U12 hexagon.

Definition 22. Consider an Aristotelian diagram D for (F ,S). Then:

1. D is a hexagon of opposition iff |F | = 6,
2. D is a JSB hexagon iff |F | = 6 and there exist α, β, γ ∈ F such that

CS(α, β), CS(α, γ) and CS(β, γ),
3. D is an SC hexagon iff |F | = 6 and there exist α, β, γ, γ′ ∈ F such that

CS(α, β), CS(α, γ′), CS(β, γ) and CDS(γ, γ′),
4. D is a U4 hexagon iff |F | = 6 and there exist α, β, γ ∈ F such that CS(α, γ) and CS(β, γ),

and for all δ, ε ∈ F , if CS(δ, ε), then {δ, ε} ∈ {{α, γ}, {β, γ}},
5. D is a U8 hexagon iff |F | = 6 and there exist α, β ∈ F such that CS(α, β),

and for all δ, ε ∈ F , if CS(δ, ε), then {δ, ε} = {α, β},
6. D is a U12 hexagon iff |F | = 6 and there do not exist α, β ∈ F such that CS(α, β).

Theorem 5. Define the following LAD-formulas:

1. χhexagon := χ6,
2. χJSB := χ6 ∧♦↓ x(〈C〉〈C〉〈C〉x),
3. χSC := χ6 ∧♦↓ x(〈C〉↓y([C](x ∧ 〈C〉(¬y∧ ↓ z(〈C〉(〈CD〉y ∧ [C]z)))))) ,
4. χU4 := χ6 ∧♦↓ x(〈C〉↓y([C](x ∧ 〈C〉(¬y ∧ [C]x)))),
5. χU8 := χ6 ∧♦↓ x(〈C〉↓y([C](x ∧ [C]y))),
6. χU12 := χ6 ∧ ¬♦〈C〉>.

Then for any Aristotelian diagram D for (F ,S), we have:
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1. D is a hexagon of opposition iff |=D χhexagon,
2. D is a JSB hexagon iff |=D χJSB,
3. D is an SC hexagon iff |=D χSC,
4. D is a U4 hexagon iff |=D χU4,
5. D is a U8 hexagon iff |=D χU8,
6. D is a U12 hexagon iff |=D χU12.

Proof. This is analogous to the proofs of Theorems 3 and 4. For purposes of illustra-
tion, we prove the third item. For the left to right direction, suppose that D is an SC
hexagon, and consider an arbitrary AD-frame F = 〈W, RCD, RC〉 that is based on D.
By Definitions 13 and 22, it follows that |W| = 6 and that there exist w, v, u, u′ ∈ W
such that 〈w, v〉, 〈w, u′〉, 〈v, u〉 ∈ RC and 〈u, u′〉 ∈ RCD. If we let the state variables x,
y and z get bound to the worlds w, u′, and v, respectively, then it is easy to check that
F |= ♦ ↓ x(〈C〉 ↓ y([C](x ∧ 〈C〉(¬y∧ ↓ z(〈C〉(〈CD〉y ∧ [C]z)))))). (Note that the world u
does not get bound to any state variable; u is the world (i) that is RC-reachable from (the
world bound to) z, and (ii) at which 〈CD〉y ∧ [C]z holds.) Furthermore, from |W| = 6 it
follows by Lemma 10 that F |= χ6. In sum, we find that F |= χSC.

For the right to left direction, suppose that |=D χSC, and consider the canonical AD-
frame FD. By Lemma 4, it follows that FD |= χSC, i.e., FD |= χ6 ∧ ♦ ↓ x(〈C〉 ↓ y([C](x ∧
〈C〉(¬y∧ ↓ z(〈C〉(〈CD〉y ∧ [C]z)))))). From FD |= χ6, it follows by Lemma 10 that |F | = 6.
From FD |= ♦↓ x(〈C〉↓y([C](x ∧ 〈C〉(¬y∧ ↓ z(〈C〉(〈CD〉y∧ [C]z)))))), it follows that there
exist α, β, γ, γ′ ∈ F such that CS(α, β), CS(α, γ′), CS(β, γ), and CDS(γ, γ′). (Namely, α, γ′

and β are the worlds that get bound to the state variables x, y, and z, respectively; γ does
not get bound to any state variable, but is the world (i) that is CS-reachable from (the world
bound to) z and (ii) at which 〈CD〉y ∧ [C]z holds.) By Definition 22, this means that D is an
SC hexagon.

Just as before, for some of these characterizing formulas, we can get rid of the global
modality, ♦, if we are prepared to put the cardinality condition in the metalanguage instead
of in LAD. For example, in χJSB, we have to replace ♦↓ x(〈C〉〈C〉〈C〉x) with the disjunctive
formula ↓ x(〈C〉〈C〉〈C〉x ∨ 〈SC〉〈SC〉〈SC〉x).

Lemma 13. Consider an Aristotelian diagram D for (F , S) and suppose that |F | = 6. Then D is
a JSB hexagon iff |=D ↓ x(〈C〉〈C〉〈C〉x ∨ 〈SC〉〈SC〉〈SC〉x).

Proof. This is analogous to the proof of Lemma 12.

5.5. Characterizing Some Aristotelian Families of Octagons of Opposition

In the project of setting up a systematic typology of Aristotelian diagrams, it has been
shown that there are exactly 18 families of octagons of opposition [42]. In this paper, we
will not deal with all these families, but rather focus on some of the most well-known
ones: the Moretti–Pellissier octagons [48,49], the Lenzen octagons [50–52], the Buridan
octagons [53–55], the Beziau octagons [56,57], and the Keynes–Johnson octagons [58,59]
(see Figures 7 and 8). Once again, these families of octagons (and also the other ones, which
we do not deal with in this paper) can straightforwardly be characterized in AD-logic.
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Figure 7. (a) A Moretti–Pellissier octagon, (b) a Lenzen octagon, and (c) a Buridan octagon.
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Figure 8. (a) A Beziau octagon and (b) a Keynes–Johnson octagon.

Definition 23. Consider an Aristotelian diagram D for (F ,S). Then:

1. D is an octagon of opposition iff |F | = 8,
2. D is a Moretti–Pellissier octagon iff |F | = 8 and there exist α, β, γ, δ ∈ F such that

CS(α, β), CS(α, γ), CS(α, δ), CS(β, γ), CS(β, δ) and CS(γ, δ),
3. D is a Lenzen octagon iff |F | = 8 and there exist α, β, γ, γ′, δ, δ′ ∈ F such that

CS(α, β), CS(α, γ′), CS(α, δ), CS(β, γ), CS(β, δ′), CS(γ, δ), CDS(γ, γ′), and CDS(δ, δ′),
4. D is a Buridan octagon iff |F | = 8 and there exist α, β, γ, γ′, δ, δ′ ∈ F such that

CS(α, β), CS(α, γ′), CS(α, δ), CS(β, γ), CS(β, δ′), CDS(γ, γ′) and CDS(δ, δ′),
and for all ε, ζ ∈ F , if CS(ε, ζ) then {ε, ζ} ∈ {{α, β}, {α, γ′}, {α, δ}, {β, γ}, {β, δ′}},

5. D is a Beziau octagon iff |F | = 8 and there exist α, β, γ, δ, δ′ ∈ F such that
CS(α, β), CS(α, γ), CS(α, δ), CS(β, γ), CS(β, δ′) and CDS(δ, δ′),
and for all ε, ζ ∈ F , if CS(ε, ζ) then {ε, ζ} ∈ {{α, β}, {α, γ}, {α, δ}, {β, γ}, {β, δ′}},

6. D is a Keynes–Johnson octagon iff |F | = 8 and there exist α, β, γ, δ ∈ F such that
CS(α, β), CS(α, δ), CS(β, γ) and CS(γ, δ),
and for all ε, ζ ∈ F , if CS(ε, ζ), then {ε, ζ} ∈ {{α, β}, {α, δ}, {β, γ}, {γ, δ}}.

Theorem 6. Define the following LAD-formulas:

1. χoctagon := χ8,
2. χMorPel := χ8 ∧♦↓ x(〈C〉↓y(〈C〉(¬x ∧ 〈C〉x ∧ 〈C〉(¬x ∧ ¬y ∧ 〈C〉x ∧ 〈C〉y)))),
3. χLenzen := χ8 ∧ ♦ ↓ x(〈C〉[C]x ∧ 〈C〉 ↓ y(〈C〉[C]y ∧ 〈C〉(¬x ∧ [C]¬x ∧ 〈C〉(¬x ∧ ¬y ∧

[C]¬y ∧ 〈C〉x)))),
4. χBuridan := χ8 ∧ ♦ ↓ x(〈C〉 ↓ y([C](x ∧ 〈C〉(¬y∧ ↓ z([C](x ∧ 〈C〉 ↓ x2(〈C〉(〈CD〉z ∧

[C](x2 ∧ 〈C〉(〈CD〉y ∧ [C]x2)))))))))),
5. χBeziau := χ8 ∧♦↓ x(〈C〉↓y([C](x ∧ 〈C〉↓ z(〈C〉〈C〉x ∧ 〈C〉(〈CD〉y ∧ [C]z))))),
6. χKeyJo := χ8 ∧♦↓ x(〈C〉↓y(〈C〉(¬x ∧ [C]¬x ∧ 〈C〉(¬x ∧ ¬y ∧ [C]¬y ∧ 〈C〉x)))).
Then for any Aristotelian diagram D for (F ,S), we have:

1. D is an octagon of opposition iff |=D χoctagon,
2. D is a Moretti–Pellissier octagon iff |=D χMorPel,
3. D is a Lenzen octagon iff |=D χLenzen,
4. D is a Buridan octagon iff |=D χBuridan,
5. D is a Beziau octagon iff |=D χBeziau,
6. D is a Keynes–Johnson octagon iff |=D χKeyJo.

Proof. This is analogous to the proofs of Theorems 3–5. For purposes of illustration,
we prove the fifth item. For the left to right direction, suppose that D is a Beziau
octagon, and consider an arbitrary AD-frame F = 〈W, RCD, RC〉 that is based on D.
By Definitions 13 and 23, it follows that |W| = 8 and that there exist w, v, u, s, s′ ∈ W
such that 〈w, v〉, 〈w, u〉, 〈w, s〉, 〈v, u〉, 〈v, s′〉 ∈ RC and 〈s, s′〉 ∈ RCD, and for all r, t ∈ W, if
〈r, t〉 ∈ RC, then {r, t} ∈ {{w, v}, {w, u}, {w, s}, {v, u}, {v, s′}}. If we let the state variables
x, y and z get bound to the worlds w, s and v, respectively, then it is easy to check that
F |= ♦↓ x(〈C〉 ↓y([C](x ∧ 〈C〉 ↓ z(〈C〉〈C〉x ∧ 〈C〉(〈CD〉y ∧ [C]z))))). (Note that the worlds
u and s′ do not get bound to any state variables; these two worlds are RC-reachable from
(the world bound to) z. At u, it holds that 〈C〉x, and at s′, it holds that 〈CD〉y ∧ [C]z.)
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Furthermore, from |W| = 8, it follows by Lemma 10 that F |= χ8. In sum, we find that
F |= χBeziau.

For the right to left direction, suppose that |=D χBeziau, and consider the canonical
AD-frame FD. By Lemma 4, it follows that FD |= χBeziau, i.e., FD |= χ8 ∧ ♦ ↓ x(〈C〉 ↓
y([C](x∧ 〈C〉↓ z(〈C〉〈C〉x∧ 〈C〉(〈CD〉y∧ [C]z))))). From FD |= χ8, it follows by Lemma 10
that |F | = 8. From FD |= ♦ ↓ x(〈C〉 ↓ y([C](x ∧ 〈C〉 ↓ z(〈C〉〈C〉x ∧ 〈C〉(〈CD〉y ∧ [C]z))))),
it follows that there exist α, β, γ, δ, δ′ ∈ F such that CS(α, β), CS(α, γ), CS(α, δ), CS(β, γ),
CS(β, δ′) and CDS(δ, δ′), and that there are no other pairs of S-contrary formulas in F ,
apart from the aforementioned ones. (Namely, α, δ and β are the worlds that get bound to
the state variables x, y, and z, respectively. The worlds γ and δ′ do not get bound to any
state variables: these two worlds are CS-reachable from (the world bound to) z. At γ, it
holds that 〈C〉x, and at δ′, it holds that 〈CD〉y ∧ [C]z.) By Definition 23, this means that D
is a Beziau hexagon.

6. Aristotelian Diagrams for AD-Logic

In Section 2, we introduced the notion of an Aristotelian diagram for a fragment of
formulas F ⊆ LS, relative to some logical system S. For example, we can take S to be some
system of modal logic, and thus study Aristotelian diagrams for modal logic; for example,
recall the classical square of opposition for KD in Figure 1b. Next, in Sections 3–5, we
presented the system of AD-logic. This gives rise to a modal consequence relation |=AD,
and can thus be viewed as the modal logic of Aristotelian diagrams.

Already in the opening paragraphs of this paper, we drew a sharp distinction between
these two approaches. More concretely, we distinguished the system of AD-logic from
the underlying logic S of some Aristotelian diagram; recall the notational convention
introduced at the end of Section 3.1: α, β, γ . . . as metavariables over LS versus ϕ, χ, ψ . . .
as metavariables over LAD. This distinction was, and still remains, important in order to
avoid significant confusions. However, on a strictly technical level, there is no reason why
we cannot take the underlying logic S of our Aristotelian diagrams to be the system of
AD-logic itself. In light of the results of Section 5, this might even be a very fruitful idea. In
this way, we thus end up studying Aristotelian diagrams for AD-logic, or, putting together
the two aforementioned italicized expressions: Aristotelian diagrams for the modal logic of
Aristotelian diagrams.

In this section, we briefly illustrate the viability and fruitfulness of this idea by means
of a concrete example. Recall the formulas χsquare, χclassical, χdegenerate ∈ LAD that were
introduced and studied in Section 5. Since the language LAD is closed under negation,
we also have ¬χsquare,¬χclassical,¬χdegenerate ∈ LAD. Hence, we can define the following
fragment of LAD-formulas:

FAD := {χsquare, χclassical, χdegenerate,¬χsquare,¬χclassical,¬χdegenerate} ⊆ LAD.

We clearly have all the ingredients at our disposal for defining an Aristotelian diagram
(see Definition 2). First of all, note that AD-logic is a logical system with Boolean operators
and a model–theoretic semantics |=AD. Secondly, the fragment FAD ⊆ LAD is non-empty,
and moreover:

Lemma 14. The fragment FAD satisfies the following properties:

1. for every χ ∈ FAD, there is a χ′ ∈ F \ {χ} such that |=AD χ′ ↔ ¬χ,
2. for every χ ∈ FAD, there is no χ′ ∈ F \ {χ} such that |=AD χ′ ↔ χ,
3. there is no χ ∈ FAD such that |=AD χ or |=AD ¬χ.

Proof. Item 1 follows trivially from the definition of FAD. For item 2, we show that χsquare
and χclassical are not AD-equivalent to each other (all other cases are analogous). Consider
some degenerate square of opposition D. By Definition 21, D is a square of opposition but
not a classical square. By Theorem 4, it follows that |=D χsquare and 6|=D χclassical. Hence,
there exists an AD-frame F that is based on D such that F 6|= χclassical and F |= χsquare.
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For item 3, we show that χclassical is AD-contingent, i.e., 6|=AD χclassical and 6|=AD
¬χclassical (all other cases are analogous). Consider some degenerate square D and some
classical square D′. By Definition 21 and Theorem 4, it follows that 6|=D χclassical and
|=D′ χclassical. From 6|=D χclassical, it follows that there exists an AD-frame F that is based
on D such that F 6|= χclassical (and thus 6|=AD χclassical). From |=D′ χclassical, it follows that
FD′ |= χclassical (and thus 6|=AD ¬χclassical).

It remains to be determined what the Aristotelian diagram for (FAD, |=AD) looks like
exactly, i.e., which Aristotelian family it belongs to. This is straightforward to check:

Lemma 15. The following hold:

1. |=AD ¬(χclassical ∧ χdegenerate),
2. 6|=AD χclassical ∨ χdegenerate,
3. |=AD ¬(χclassical ∧ ¬χsquare),
4. 6|=AD χclassical ∨ ¬χsquare,
5. |=AD ¬(χdegenerate ∧ ¬χsquare),
6. 6|=AD χdegenerate ∨ ¬χsquare.

Proof. These are all easy exercises in reasoning about AD-frames. Note that item 1 has
already been proved above, as item 2 of Lemma 11.

Items 1–2 of Lemma 15 state that χclassical and χdegenerate are contrary to each other
in AD-logic (see Definition 1), which we abbreviate as CAD(χclassical, χdegenerate). Com-
pletely analogously, items 3–4 state that CAD(χclassical,¬χsquare), and items 5–6 state that
CAD(χdegenerate,¬χsquare). Since |FAD| = 6, it follows by Definition 22 that the Aristotelian
diagram for (FAD, |=AD) is a JSB hexagon, as shown in Figure 9.

χsquare

χclassical

¬χdegenerate

¬χsquare

χdegenerate

¬χclassical

Figure 9. A JSB hexagon for (FAD, |=AD).

We finish this section by making three comments about this JSB hexagon for AD-
logic, in increasing order of conceptual importance. First of all, recall that it is common in
logical geometry to distinguish two subtypes of JSB hexagons, viz., strong and weak [28].
In general, given a JSB hexagon H for (F ,S) with CS(α, β), CS(α, γ) and CS(β, γ), we
say that H is a strong JSB hexagon iff |=S α ∨ β ∨ γ and that H is a weak JSB hexagon
iff 6|=S α ∨ β ∨ γ. With this definition in mind, it is easy to check that the hexagon for
(FAD, |=AD), as shown in Figure 9, is a strong JSB hexagon, since it follows from Lemma 11
that |=AD χclassical ∨ χdegenerate ∨ ¬χsquare.

Secondly, next to the standard research on Aristotelian diagrams for (formulas coming
from) the object language LS of some logical system S, there is also a flourishing tradition of
studying Aristotelian diagrams for metalogical notions [25,60–65]. For example, given a logic
S, we can say that the Aristotelian relations of S-contrariety and S-subcontrariety are them-
selves contrary to each other (since two LS-formulas cannot simultaneously be S-contraries
and S-subcontraries, while they can be neither S-contraries nor S-subcontraries, e.g., when
they are S-contradictories). From this perspective, the JSB hexagon for (FAD, |=AD), as
shown in Figure 9, is simultaneously an object-level and a meta-level Aristotelian dia-
gram. On the one hand, this hexagon is situated at the object level, because it is concerned
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with formulas such as χclassical and χdegenerate, which come from the object language LAD
of AD-logic. On the other hand, this hexagon is, at the same time, situated at the meta-
level as well, because of the correspondence results established in Section 5. For example,
CAD(χclassical, χdegenerate) means that the Aristotelian families of classical and degenerate
squares are contrary to each other (since an Aristotelian diagram cannot simultaneously
be a classical and a degenerate square, while it can be neither a classical nor a degenerate
square, e.g., when it is a PCD).

Finally, and perhaps most subtly, note that because of their specific setup, Aristotelian
diagrams for AD-logic can simultaneously contain and validate a given formula. Concretely,
let us write D to refer to the JSB hexagon in Figure 9, and consider the formula ¬χsquare.
On the one hand, we have ¬χsquare ∈ FAD and, thus, the formula ¬χsquare occurs inside D
when D is viewed as an Aristotelian diagram for (FAD, |=AD). On the other hand, D is
a JSB hexagon, and thus not a square, which means that |=D ¬χsquare, i.e., the formula
¬χsquare is validated by D, when D is viewed as an AD-frame. It bears emphasizing that
there is nothing paradoxical or inconsistent about this situation. Nevertheless, we do
acknowledge that this can quickly get very confusing, and that is precisely the reason why
we postponed discussing Aristotelian diagrams for AD-logic until this section, at the very
end of the paper.

7. Conclusions

In this paper, we developed the system of AD-logic, i.e., the (hybrid) modal logic of
Aristotelian diagrams. We established a sound and strongly complete axiomatization for
AD-logic, and proved that there exists a bijection between finite Aristotelian diagrams
(up to Aristotelian isomorphism) and finite AD-frames (up to modal isomorphism). This
means that the properties of AD-frames are sufficient to derive all structural properties of
Aristotelian diagrams. We then showed how AD-logic can capture several major results
from logical geometry; for example, for every well-known Aristotelian family A, we
exhibited a formula χA ∈ LAD and showed that an Aristotelian diagram D belongs to
the family A iff χA is validated by D (when the latter is viewed as an AD-frame). These
correspondence results do not refer to any underlying logical system, and thus offer fully
generic characterizations of the Aristotelian families. Finally, we showed that AD-logic
gives rise to interesting new Aristotelian diagrams, and we reflected on their profoundly
peculiar status.

There are many avenues for future research. For example, continuing along the lines
of Section 6, we can investigate further Aristotelian diagrams for AD-logic. In the context
of Section 5, we can continue to formalize significant portions of logical geometry in AD-
logic. For example, we can define characterizing formulas χA ∈ LAD for less well-known
Aristotelian families A. More fundamentally, in logical geometry, we not only consider
Aristotelian (families of) diagrams in isolation of each other, but also study how they are
related to each other. For example, there is work on the notions of subdiagrams (e.g., in
each JSB hexagon, three classical squares of opposition can be embedded as subdiagrams)
and complementarity (e.g., a JSB hexagon is complementary to a Buridan octagon, relative
to an Aristotelian rhombic dodecahedron) [66–68]. Is AD-logic sufficiently expressive to
formalize such relational claims as well?

Finally, we also need to consider what cannot be expressed in AD-logic. In particular,
in the development of a systematic typology of Aristotelian diagrams, it has become clear
that many (though not all) Aristotelian families can be divided into Boolean subfamilies; for
example, there are two Boolean subfamilies of JSB hexagons (usually called “strong” and
“weak”; we briefly encountered these in Section 6), there are three Boolean subfamilies
of Buridan octagons, etc. These Boolean subfamilies cannot be expressed in AD-logic;
for example, there do not exist any formulas χstrongJSB, χweakJSB ∈ LAD such that D is a
strong JSB hexagon iff |=D χstrongJSB and D is a weak JSB hexagon iff |=D χweakJSB. At
first sight, this might appear to be a disadvantage or a limitation of AD-logic. However,
one could also argue that this is exactly what we want, in order to keep AD-logic fully
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generic, i.e., independent of any underlying logic S. For example, whether a JSB hexagon
for (F ,S) is strong or weak fundamentally depends on the underlying logic S; from the
perspective of AD-logic, we do not (want to) have “access” to the entire logic S, but only
to the Aristotelian relations CDS and CS that it gives rise to (via the abstract relations RCD

and RC in the AD-frames). It is clear that more thorough reflection is needed regarding this
subtle issue.

Author Contributions: Both authors contributed equally to (all aspects of) this paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the research project “BITSHARE: Bitstring Semantics for
Human and Artificial Reasoning” (IDN-19-009, Internal Funds KU Leuven) and the ERC Starting
Grant “STARTDIALOG: Towards a Systematic Theory of Aristotelian Diagrams in Logical Geometry”
and was funded by the European Union (ERC, STARTDIALOG, 101040049). The views and opinions
expressed are, however, those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them. The second author holds a research
professorship (BOFZAP) at KU Leuven.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Alex De Klerck, Atahan Erbas, Hans Smessaert,
and two anonymous reviewers for their valuable feedback on an earlier version of this paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Correia, M. Boethius on the Square of Opposition. In Around and Beyond the Square of Opposition; Béziau, J.Y., Jacquette, D., Eds.;

Springer: Basel, Switzerland, 2012; pp. 41–52.
2. Knuuttila, S. Medieval Theories of Modality. In Stanford Encyclopedia of Philosophy (Summer 2017 Edition); Zalta, E.N., Ed.; CSLI:

Stanford, CA, USA, 2017.
3. de Rijk, L.M. Logica Modernorum. A Contribution to the History of Early Terminist Logic. Volume II: The Origin and Early Development

of the Theory of Supposition (Parts One and Two); Van Gorcum: Assen, The Netherlands, 1967.
4. Geudens, C.; Demey, L. On the Aristotelian Roots of the Modal Square of Opposition. Log. Anal. 2021, 255, 313–348.
5. Geudens, C.; Demey, L. The Modal Logic of John Fabri of Valenciennes (c. 1500). A Study in Token-Based Semantics; Springer: Cham,

Switzerland, 2022.
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