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Abstract: Presently, there is a method based on Power Geometry that allows one to find asymptotic
forms and asymptotic expansions of solutions to different kinds of non-linear equations near their
singularities. The method contains three algorithms: (1) Reducing the equation to its normal form,
(2) separating truncated equations, and (3) power transformations of coordinates. Here, we describe
the method for the simplest case, a single algebraic equation, and apply it to an algebraic variety, as
described by an algebraic equation of order 12 in three variables. The variety was considered in study
of Einstein’s metrics and has several singular points and singular curves. Near some of them, we
compute a local parametric expansion of the variety.
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1. Introduction

Here, we propose a new method for the solution of a polynomial equation

f (x1, . . . , xn) = 0 (1)

near its singular point. In this example, we demonstrate computations of the method for a
certain polynomial, f and n = 3.

This method is used:

I. The Newton polyhedron for separation of truncated equations and

II. Power transformations for the simplification of these equations.

Below, we provide a short history of both of these objects.
I. The Newton polyhedron. For n = 2, in approximately 1670, Newton [1] suggested to

use one edge of the “Newton open polygon” [2] (Part I, Ch. I, § 2) of a polynomial f (x, y)
to find the branches of solutions to the equation f (x, y) = 0, in the form

y = ∑ bpxp (2)

with rational power exponents p near the origin x = y = 0, where the polynomial f has
no constant and linear terms. Puiseux [3] was already using all the edges of the Newton
open polygon and had given a rigorous substantiation to the solution of the problem by
this method. Liouville [4] was using this approach to find the rational solutions y = y(x)
to the linear ordinary differential equation

a0(x)dny/dxn + . . . + an−1(x)dy/dx + an(x) = 0,
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where ai(x) are polynomials. Briot and Bouquet [5] were using an analog to the Newton
open polygon to find solutions y(x) to the nonlinear ordinary differential equation dy/dx =
f (x, y)/g(x, y) near the point x = y = 0, where polynomials f and g vanish. A survey of
other applications of the Newton (open) polygon was made by Chebotarev [6].

Some properties of solutions in the form of expansions (2) were studied in [7]. In ([2]
Part I, Chapter I, § 2, Section 2.9), a method was proposed for computing the second type
of solutions to equation f (x, y) = 0, in the form

x = ∑
i

biτ
pi , y = ∑

i
ciτ

qi , (3)

where pi and qi are integral numbers and τ is a parameter. It must use continued fractions
and power transformations.

For n > 2, in 1962, the Newton polyhedron was introduced in [8] for an autonomous
system of the ordinary differential equation (ODE) and was called a p o l y h e d r o n M(G).
It was used in [9,10] to study solutions to the Equation (1), in the form

xn = ϕ(x1, . . . , xn−1), (4)

where ϕ is a power series in a rational exponent of its arguments. Moreover, in [10],
supports of the series ϕ in (4) belong to some cones. Such expansions were considered
in [2] (Part I, Chapter I, § 3). However, not all solutions to Equation (1) have the form (4).
Here, we consider solutions of the form

xi = ∑
p

ϕip(t1, . . . , tn−2)ε
p, i = 1, . . . , n,

where coefficients ϕip(t1, . . . , tn−2) are rational functions of global parameters
T = (t1, . . . , tn−2) and power exponents p of the small parameter ε are integers.

II. The power transformation was used by Newton [1] and all his followers in the
simplest form of y = xαz. Weierstrass [11] suggested the sequence of transformations
y = xz and x = zy were analogous to the σ-process in Algebraic Geometry. Power
transformations in the general form of log X = α log Y were suggested in [8]. Hironaka [12]
proved the resolution of singularities of any algebraic variety by means of a σ-process.
However, power transformations make that happen more quickly (see [2] (Part I, Chapter I,
§ 2, Section 2.10)).

Here, the basic ideas of this method are explained for the simplest case: a single
algebraic equation. In Section 2, we provide a generalization of the Implicit Function
Theorem. In Sections 3 and 4, we provide some constructions of Power Geometry [13]. In
Section 5, we explain a way of the computation of asymptotic parametric expansions of
solutions. In Section 6, we demonstrate the computation of an example in detail.

2. The Implicit Function Theorem

Let X = (x1, . . . , xn), Q = (q1, . . . , qn), then

XQ = xq1
1 , . . . , xqn

n , ‖Q‖ = q1 + . . . + qn.

Theorem 1. Let
f (X, ε, T) = ΣaQ,r(T)XQεr, (5)

where 0 ≤ Q ∈ Zn, 0 ≤ r ∈ Z, the sum is finite and aQ,r(T) are some functions of T = (t1, . . . , tm),
besides a00(T) ≡ 0, a01(T) 6≡ 0. Then, the solution to the equation f (X, ε, T) = 0 has the form

ε = ΣbR(T)XR, (6)

where 0 ≤ R ∈ Zn, 0 < ‖R‖, the coefficients bR(T) are functions on T that are polynomials from
aQ,r(T) with ‖Q‖+ r ≤ ‖R‖ divided by a2‖R‖−1

01 . The expansion (6) is unique.
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This is a generalization of Theorem 1.1 of [13] (Ch. II) on the implicit function and
simultaneously a theorem on reducing the algebraic Equation (5) to its normal form (6)
when the linear part a01(T) 6≡ 0 is non-degenerate. In it, we must exclude the values of T
near the zeros of the function a01(T).

Let X = (x1, . . . , xn) ∈ Rn or Cn, and f (X) be a polynomial. A point X = X0,
f (X0) = 0 is called simple if the vector (∂ f /∂x1, . . . , ∂ f /∂xn) in it is non-zero. Otherwise,
the point X = X0 is called singular or critical. By shifting X = X0 + Y, we move the point
X0 to the origin Y = 0. If at this point the derivative ∂ f /∂xn 6= 0, then near X0 all solutions
to the equation f (X) = 0 have the form yn = Σbq1,...qn−1 yq1

1 · · · y
qn−1
n−1 , that is, they lie in the

(n− 1)-dimensional space.

3. The Newton Polyhedron

Let the point X0 = 0 be singular. Write the polynomial in the form

f (X) = ΣaQXQ,

where aQ = const ∈ R, or C. Let S( f ) = {Q : aQ 6= 0} ⊂ Rn.
The set S is called the support of the polynomial f (X). Let it consist of points Q1, . . . , Qk.

The convex hull of the support S( f ) is the set

Γ( f ) =

{
Q =

k

∑
j=1

µjQj, µj ≥ 0,
k

∑
j=1

µj = 1

}
,

which is called the Newton polyhedron.
Its boundary ∂Γ( f ) consists of generalized faces of Γ(d)

j , where d is its dimension of
0 ≤ d ≤ n− 1 and j is its number. The numbering is unique for all dimensions d.

Each (generalized) face Γ(d)
j corresponds to its:

• Boundary subset:

S(d)
j = S ∩ Γ(d)

j ,

• Truncated polynomial:

f̂ (d)j (X) = ΣaQXQ over Q ∈ S(d)
j , and

• Normal: cone:

U(d)
j =

{
P : 〈P, Q′〉 = 〈P, Q′′〉 > 〈P, Q′′′〉, Q′, Q′′ ∈ S(d)

j , Q′′′ ∈ S\S(d)
j

}
,

where P = (p1, . . . , pn) ∈ Rn
∗ , the space Rn

∗ is conjugate (dual) to the space Rn and
〈P, Q〉 = p1q1 + . . . + pnqn is the scalar product.

At X → 0, solutions to the full equation f (X) = 0 tend to non-trivial solutions of those
truncated equations f̂ (d)j (X) = 0, whose normal cone U(d)

j intersects with the negative
orthant P ≤ 0 in Rn

∗ .

4. Power Transformations

Let ln X = (ln x1, . . . , ln xn). The linear transformation of the logarithms of the coordinates is

(ln y1, . . . , ln yn)
def
= ln Y = (ln X)α, (7)

where α, a nondegenerate square n-matrix, is called a power transformation.
In the power transformation (7), the monomial XQ transforms into the monomial YR,

where R = Q(α∗)−1, and the asterisk indicates a transposition.
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A matrix α is called unimodular if all its elements are integers and det α = ±1. For an
unimodular matrix α, its inverse α−1 and transpose α∗ are also unimodular.

Theorem 2. For the face Γ(d)
j , there exists a power transformation (7) with the unimodular matrix

α which reduces the truncated sum f̂ (d)j (X) to the sum from d coordinates, that is, f̂ (d)j (X) =

YS ĝ(d)j (Y), where ĝ(d)j (Y) = ĝ(d)j (y1, . . . , yd) is a polynomial. Here, S ∈ Zn. The additional
coordinates yd+1, . . . , yn are local (small).

The article [14] specifies an algorithm for computing the unimodular matrix α of
Theorem 2.

5. Parametric Expansion of Solutions

Let Γ(d)
j be a face of the Newton polyhedron Γ( f ). Let the full equation f (X) = 0 be

changed into the equation g(Y) = 0 after the power transformation of Theorem 2. Thus,
ĝ(d)j (y1, . . . , yd) = g(y1, . . . , yd, 0, . . . , 0).

Let the polynomial ĝ(d)j be the product of several irreducible polynomials

ĝ(d)j =
m

∏
k=1

hlk
k (y1, . . . , yd), (8)

where 0 < lk ∈ Z. Let the polynomial hk be one of them. Three cases are possible:

Case 1. The equation hk = 0 has a polynomial solution yd = ϕ(y1, . . . , yd−1). Then,
in the full polynomial g(Y), let us substitute the coordinates

yd = ϕ + zd,

for the resulting polynomial h(y1, . . . , yd−1, zd, yd+1 . . . , yn), and again construct the New-
ton polyhedron, separate the truncated polynomials, etc. Such calculations were provided
in the Introduction to [13].

Case 2. The equation hk = 0 has no polynomial solution, but has a parametrization
of solutions

yj = ϕj(T), j = 1, . . . , d, T = (t1, . . . , td−1).

Then, in the full polynomial g(Y), we substitute the coordinates

yj = ϕi(T) + β jε, j = 1, . . . , d, (9)

where β j = const, Σ
∣∣β j
∣∣ 6= 0, and from the full polynomial g(Y), we obtain the polynomial

h = ΣaQ′′ ,r(T)Y
′′Q′′ εr, (10)

where Y′′ = (yd+1, . . . , yn), 0 ≤ Q′′ = (qd+1, . . . , qn) ∈ Zn−d, 0 ≤ r ∈ Z. Thus, a00(T) ≡ 0,

a01(T) =
d
∑

j=1
β j∂ĝ(d)j /∂yj(T).

If in the expansion (8) lk = 1, then a01 6≡ 0. By Theorem 1, all solutions to the equation
h = 0 have the form

ε = ΣbQ′′(T)Y
′′Q′′ ,

, i.e., according to (9), the solutions to the equation g = 0 have the form

yj = ϕj(T) + β jΣbQ′′(T)Y
′′Q′′ , j = 1, . . . , d.
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Such calculations were proposed in [15] and will be shown in the following example.

If in (8) lk > 1, then in (10) a01(T) ≡ 0 and for the polynomial (10) from Y′′, ε, we
construct the Newton polyhedron by supporting S(h) =

{
Q′′, r : aQ′′ ,r(T) 6≡ 0

}
, separating

the truncations, and so on.

Case 3. The equation hk = 0 has neither a polynomial solution nor a parametric
one. Then, using Hadamard’s polyhedron [15], one can compute a piecewise approxi-
mate parametric solution to the equation hk = 0 and look for an approximate parametric
expansion.

Similarly, one can study the position of an algebraic manifold in infinity.
A more conventional approach is given in [16].

6. Variety Ω and Its Singularities

In [17–24], the investigation of the three-parametric family of special homogeneous
spaces from the viewpoint of the normalized Ricci flow was started. The Ricci flows
describe the evolution of Einstein’s metrics on a variety. The equations of the normalized
Ricci flow are reduced to a system of two differential equations with three parameters: a1,
a2 and a3:

dx1

dt
= f̃1(x1, x2, a1, a2, a3),

dx2

dt
= f̃2(x1, x2, a1, a2, a3),

(11)

here, f̃1 and f̃2 are certain functions.
The singular point of this system are associated with the invariant Einstein’s metrics.

At the singular (stationary) point x0
1, x0

2, system (11) has two eigenvalues, λ1 and λ2. If
at least one of them is equal to zero, then the singular (fixed) point x0

1, x0
2 is said to be

degenerate. It was proved in [17–24] that the set Ω of the values of the parameters a1, a2,
a3, in which system (11) has at least one degenerate singular point, is described by the
equation

Q(s1, s2, s3) ≡(2s1 + 4s3 − 1)
(

64s5
1 − 64s4

1 + 8s3
1 + 240s2

1s3 − 1536s1s2
3−

−4096s3
3 + 12s2

1 − 240s1s3 + 768s2
3 − 6s1 + 60s3 + 1

)
−

− 8s1s2(2s1 + 4s3 − 1)(2s1 − 32s3 − 1)(10s1 + 32s3 − 5)−

− 16s2
1s2

2

(
52s2

1 + 640s1s3 + 1024s2
3 − 52s1 − 320s3 + 13

)
+

+ 64(2s1 − 1)s3
2(2s1 − 32s3 − 1) + 2048s1(2s1 − 1)s4

2 = 0,

where s1, s2, s3 are elementary symmetric polynomials, equal, respectively, to

s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, s3 = a1a2a3.

In [25], for symmetry reasons, the coordinates a = (a1, a2, a3) were changed to the
coordinates A = (A1, A2, A3) by the linear transformationa1

a2
a3

 = M ·

A1
A2
A3

, M =

(1 +
√

3)/6 (1−
√

3)/6 1/3
(1−

√
3)/6 (1 +

√
3)/6 1/3

−1/3 −1/3 1/3


Definition 1. Let ϕ(X) be some polynomial, X = (x1, . . . , xn). A point X = X0 of the set
ϕ(X) = 0 is called the singular point of the k-order, if all partial derivatives of the polynomial
ϕ(X) for the x1, . . . , xn turn into zero at this point, up to and including the k-th order derivatives,
and at least one partial derivative of order k + 1 is nonzero.
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In [25], all singular points of the variety Ω in coordinates A = (A1, A2, A3) were found.
The five points of the third order are:

Name Coordinates A

P(3)
1 (0, 0, 3/4)

P(3)
2 (0, 0,−3/2)

P(3)
3

(
− 1+

√
3

2 ,
√

3−1
2 , 1

2

)
P(3)

4

(√
3−1
2 ,− 1+

√
3

2 , 1
2

)
P(3)

5 (1, 1, 1/2)

three points of the second order

Name Coordinates A

P(2)
1

(
1+
√

3
4 , 1−

√
3

4 , 1
2

)
P(2)

2

(
1−
√

3
4 , 1+

√
3

4 , 1
2

)
P(2)

3 (−1/2,−1/2, 1/2)

and three more algebraic curves of singular points of the first order:

F =
{

a1 = a2, 16a3
1 + 16a2

1a3 − 4a1 − 2a3 + 1 = 0
}

,

I =

{
A1 + A2 + 1 = 0, A3 =

1
2

}
,

K =

{
A1 = −9

4
th(t), A2 = −9

4
h(t), A3 =

3
4

, h(t) =
t2 + 1

(t + 1)(t2 − 4t + 1)

}
.

The points P(3)
3 , P(3)

4 and P(3)
5 are of the same type; they pass into each other when

rotated in the plane A1, A2 by an angle 2π/3, just as all points P(2)
1 , P(2)

2 , P(2)
3 . The curves

F , I , K correspond to two more curves of the same type. Therefore, it is sufficient to
study the variety Ω in the neighborhood of points P(3)

1 , P(3)
2 , P(3)

5 , P(2)
3 and curves F , I

and K. In Sections 7–10, the neighborhoods of points P(3)
1 , P(3)

2 , line I and point P(2)
3 are

studied, correspondingly. The methods proposed in [15] and described in Sections 2–5 are
implemented.

In coordinates A, the variety Ω is described by a very cumbersome polynomial of
degree 12 R(A) = Q(s) = 0 with rational coefficients, because the transformation from s
to A has rational coefficients.

In the paper [26], three variants of the global parametrization of the variety Ω were
proposed. These parametrizations were computed using the parametric description of the
discriminant set of a monic cubic polynomial [27] and can be written in radical form [28].
Such a global description of the variety Ω cannot provide an adequate picture of the Ω
structure in the vicinity of its singular points.

7. The Structure of the Variety Ω near the Singular Point P(3)
1

Near the point P(3)
1 , let us introduce the local coordinates x1, x2, x3:

A1 = x1, A2 = x2, A3 = x3 + 3/4
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and from the polynomial R(A), we obtain a polynomial of degree 12 S1(x1, x2, x3) =

R(A) = Q(s1, s2, s3). We calculate its support, the Newton polyhedron Γ1, and its faces Γ(2)
j

and their external normals, using the PolyhedralSets package of the Maple 2021 computer
algebra system [29]. We obtain five faces of Γ(2)

j . The graph of the polyhedron Γ1 is shown
in Figure 1.

Figure 1. Graph of the polyhedron Γ1.

Each generalized face of Γ(d)
j is presented by its number j in an oval. Numbers j are

given by the program automatically. The top line of Figure 1 contains the whole polyhedron
Γ1; the next line contains all the two-dimensional faces Γ(2)

j .

Below that are the edges of Γ(1)
j , then the vertices of Γ(0)

j , and at the bottom, the empty
set.

A face Γ(d)
j is connected with a face Γ(d+1)

k by an arrow, iff Γ(d)
j ⊂ Γ(d+1)

k .

The external normals to its two-dimensional faces Γ(2)
j are

N71 = (−1,−1,−1/2), N143 = (1, 1, 1), N215 = (−1, 0, 0), N239 = (0,−1, 0), N241 = (0, 0,−1).

The neighborhood of the point x1 = x2 = x3 = 0 is approximately described by the
truncated equation

f̂1 ≡−
4096

81
81x8

3 +
3
4

x4
1 +

3
4

x4
2 +

64
3

x2
1x4

3 −
16
3

x3
1x2

3+

+
64
3

x2
2x4

3 −
16
3

x3
2x2

3 +
3
2

x2
1x2

2 + 16x2
1x2x2

3 + 16x1x2
2x2

3 = 0,

corresponding to the face of Γ(1)
j of number j = 71 with the normal N71 = (−2,−2,−1),

which has all negative coordinates.
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According to the article [14], we find the unimodular matrix α =

 1 0 0
0 1 0
−2 −2 1


such that Nα = (0, 0,−1). Consequently, we have to conduct the power transformation
(ln y1, ln y2, ln y3) = (ln x1, ln x2, ln x3) · α, i.e., (ln x1, ln x2, ln x3) = (ln y1, ln y2, ln y3) · α−1.

Since α−1 =

1 0 0
0 1 0
2 2 1

, then

x1 = y1y2
3, x2 = y2y2

3, x3 = y3. (12)

Here, f̂1(x1, x2, x3) = y8
3 · F1(y1, y2);

F1(y1, y2) = −
4096

81
+

3
4

y4
1 +

3
4

y4
2 +

64
3

y2
1 −

16
3

y3
1 +

64
3

y2
2 −

16
3

y3
2 +

3
2

y2
1y2

2 + 16y2
1y2 + 16y1y2

2. (13)

According to the algcurves package from the computer algebra system Maple, the
curve F1(y1, y2) = 0 has genus 0, with parametrization

y1 = b1(t) =− 8(21434756829626557083983t4 + 1417074727891594177202560t3+

+ 31706038193372580461588706t2 + 335726200061958227448792184t+

+ 8333103427347345384379)/δ,

y2 = b2(t) =− 56(3053430900966931440569t4 + 198407502991736938316080t3+

+ 3883533208553253313258158t2 + 9193559104820491279715848t−
− 262262822183337506658650323)/δ,

δ =9
(

85576987369t2 + 3099727166140t + 37630556816821
)2

,

(14)

and the plot shown in Figure 2.

Figure 2. Plot of the curve F1(y1, y2) = 0.
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This is a curvilinear triangle with vertices

(y1, y2) = −
8
3
(1, 1), −8

3

(
−1 +

√
3

2
,

√
3− 1
2

)
, −8

3

(√
3− 1
2

,−
√

3 + 1
2

)
.

Now, to describe the structure of the variety Ω near the point P(3)
1 , we substitute the power

transformation (12) into the polynomial S(x1, x2, x3) and obtain the polynomial T(y1, y2, y3) =
S/y8

3. It decomposes into the sum

T(y1, y2, y3) =
m

∑
k=0

Tk(y1, y2)yk
3

with T0(y1, y2) = F(y1, y2) and using the command coeff(f,x[k],m) in CAS Maple,
selecting monomials containing the factor xm

k ; for k = 3 and m = 1, we obtain

T1
def
= G(y1, y2) = 8y4

1 + 16y2
1y2

2 + 8y4
2 − 1216/27y3

1 + 1216/9y2
1y2 + 1216/9y1y2

2−
−1216/27y3

2 + 3584/27y2
1 + 3584/27y2

2 − 65536/729.
(15)

In the polynomials Tk(y1, y2), we conduct the substitution

y1 = b1(t) + ε, y2 = b2(t) + ε, (16)

and obtain a polynomial u(ε, y3) = T(y1, y2, y3) with coefficients depending on t through
b1(t) and b2(t). In this polynomial

u(ε, y3) =
m

∑
k=0

Tk(b1 + ε, b2 + ε)yk
3 = ∑

p,q>0
upqεpyq

3,

where u00 = F(b1(t), b2(t)) of (13), so u00 ≡ 0,

u10 =
∂F(y1, y2)

∂y1
+

∂F(y1, y2)

∂y2
= 3y3

1 + 128/3y1 + 3y1y2
2 + 3y2

1y2 + 64y1y2 + 3y3
2 + 128/3y2

def
= H(y1, y2), (17)

and in general

upq = ∑
p1+p2=p>1

1
p1!p2!

·
∂pTq

∂yp1
1 · ∂yp2

2
(18)

when p1, p2 > 0, p > 1, yi = bi(t), i = 1, 2, according to (14) and in the substitution of (16).
Presently, according to (15) and (17)

u10(t) = H(b1(t), b2(t)) =

− 32768(254517259607t2 + 8638940893220t + 63662194408079)3×
× (23525t + 3508186)4/(243γ5),

u01(t) = G(b1(t), b2(t)) =

5242880(23525t + 3508186)4×
× (254517259607t2 + 8638940893220t + 63662194408079)4/

/(19683γ6),

γ = 85576987369t2 + 3099727166140t + 37630556816821.

The functions u10(t) and u01(t) each have three multiple roots

t1 = −3508186
23525

, t2,3 = −4319470446610
254517259607

± 904562081493
√

3
254517259607

. (19)
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The values correspond to the vertices of the curvilinear triangle of Figure 4.
According to Theorem 1 on the implicit function, the equation u(ε, y3) = 0 has the

solution as the power series over y3

ε =
∞

∑
k=1

ck(t) · yk
3, (20)

where ck(t) are rational functions that are expressed via the coefficients upq(t), which in
turn are expressed via b1(t) and b2(t) according to (18). This decomposition is valid for all
values of t, except maybe the roots in (19). In particular,

c1(t) = −
u01

u10
= −G

H
=

160(254517259607t2 + 8638940893220t + 63662194408079)
81(85576987369t2 + 3099727166140t + 37630556816821)

,

where the denominator has no real roots. According to (20), approximate r ≈ c1(t)y3.
Let us return to the initial coordinates, which for small |y3| on variety Ω are approxi-

mated by

A1 = x1 = (b1(t) + c1(t)y3)y2
3, A2 = x2 = (b2(t) + c1(t)y3)y2

3. (21)

If y3 = −1/50, i.e., A3 = 73/100, the curve (21) is shown in Figure 3.
It is similar to the curve of Figure 11 in [25], with A3 = 5/8 near the origin.

Figure 3. Plot of the curve (21) for y3 = −1/50.

If y3 = 1/20, i.e., A3 = 4/5, the curve (21) is shown in Figure 4 and is similar to the
curve of Figure 9 in [25], with A3 = 1 near the origin.
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Figure 4. Plot of the curve (21) for y3 = 1/20.

8. The Structure of the Variety Ω near the Singular Point P(3)
2

Near the point P(3)
2 , we introduce the local coordinates x1, x2, x3 :

A1 = x1, A2 = x2, A3 = −3
2
+ x3 (22)

and from the polynomial R(A), we obtain a polynomial of degree 12

S2(x1, x2, x3) = R(A) = Q(s1, s2, s3).

We compute its support, the Newton polyhedron Γ2, its faces Γ(2)
j and their external

normals using the package PolyhedralSets of the Computer Algebra System (CAS) Maple
2021 [29]. We obtain five faces of Γ(2)

j . The graph of the polyhedron Γ2 is shown in Figure 5.

Figure 5. The graph of the polyhedron Γ2.
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The external normals of its two-dimensional faces are N71 = (−1,−1,−1), N143 =
(1, 1, 1), N215 = (−1, 0, 0), N239 = (0,−1, 0), N241 = (0, 0,−1).

The neighborhood of point x1 = x2 = x3 = 0 is approximately described by zeros of
the truncated polynomial

f̂2 = 192x4
1 − 768x3

1x3 + 384x2
1x2

2 + 2304x2
1x2x3 + 1728x2

1x2
3 + 2304x1x2

2x3 + 192x4
2 − 768x3

2x3 + 1728x2
2x2

3 − 1296x4
3, (23)

corresponding to face 71 with normal N71 = (−1,−1,−1), which has all negative coordi-
nates. According to the article [14], we find the unimodular matrix

α =

 1 0 0
0 1 0
−1 −1 1


such that

Nα = (0, 0,−1).

Hence, we have to perform the power transformation

(ln y1, ln y2, ln y3) = (ln x1, ln x2, ln x3) · α,

i.e.,
(ln x1, ln x2, ln x3) = (ln y1, ln y2, ln y3) · α−1.

Since α−1 =

1 0 0
0 1 0
1 1 1

, then

x1 = y1y3, x2 = y2y3, x3 = y3. (24)

Here

f̂1(x1, x2, x3) = y4
3 · F2(y1, y2);

F2(y1, y2) = 192y4
1 + 384y2

2y2
1 + 192y4

2 − 768y3
1 + 2304y2

1y2 + 2304y1y2
2 − 768y3

2 + 1728y2
1 + 1728y2

2 − 1296. (25)

According to procedure genus from the package algcurves of the CAS Maple, the
curve F2(y1, y2) = 0 has genus 0, with parametrization

y1 = b1(t)
def
=

(−7896743880951563283t4 + 72959159746921796820t3 + 73345644408971204346t2−
− 934475500301507600764t2215208663180460531061)/δ,

y2 = b2(t)
def
=

(−8597581719794315283t4 + 98898571174265195220t3 + 415981930082178074106t2+

917438397740936497924t + 961113999918607711499)/δ

δ = 6978188753537418722t4 + 100485794419088992440t3 + 590656639737168405916t2+

1648137191526734939160t + 1877241261261332663762

(26)

and the graph shown in Figure 6.
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Figure 6. Plot of the curve F2(y1, y2) = 0.

This is a curved triangle with vertices

(y1, y2) = −
3
2
(1, 1), −3

2

(
−1 +

√
3

2
,

√
3− 1
2

)
, −3

2

(√
3− 1
2

,−1 +
√

3
2

)
(27)

Now, to describe the structure of the variety Ω near the point P(3)
2 , we substitute (24) into

the polynomial S2 and obtain the polynomial T(y1, y2, y3). It is divided into the sum

T(y1, y2, y3) = y4
3

m

∑
k=0

Tk(y1, y2)yk
3,

with T0(y1, y2) = F2(y1, y2), and using Maple’s command coeff, we find

T1
def
= G(y1, y2) = −

256
3

y5
1 + 256y4

1y2 +
512
3

y3
1y2

2 +
512

3
y3

2y2
1 + 256y1y4

2 −
256

3
y5

2 − 256y4
1−

−512y2
2y2

1 − 256y4
2 +

7808
3

y3
1 − 7808y2

1y2 − 7808y1y2
2 +

7808
3

y3
2 − 6528y2

1 + 4608.
(28)

In the polynomials Tk(y1, y2), we conduct the substitution

y1 = b1(t) + ε, y2 = b2(t) + ε. (29)

We obtain a polynomial u(ε, y3) = T(y1, y2, y3)/y4
3 with coefficients depending on t through

b1(t) and b2(t). In this polynomial,

u(ε, y3) =
m

∑
k=0

Tk(b1 + ε, b2 + ε)yk
3 = ∑

p,q>0
upqεpyq

3,

where u00 = F2(b1(t), b2(t)) of (8); thus, u00 = 0,

u10 =
∂F2(y1, y2)

∂y1
+

∂F2(y1, y2)

∂y2
= 768y3

1 + 768y2
1y2 + 768y1y2

2+

+768y3
2 + 9216y1y2 + 3456y1 + 3456y2

def
= H(y1, y2)

(30)
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and in general

upq = ∑
p1+p2=p

1
p1!p2!

·
∂pTq

∂yp1
1 ∂yp2

2
at yi = bi(t), p1, p2 > 0, p > 1, (31)

according to the (29) replacement. Presently, according to (28) and (30)

u10 =H(b1(t), b2(t)) =

=−
98304ξ3

1ξ4
2

(1867911769t2 + 13448948190t + 30636916141)5 ,

u01 =G(b1(t), b2(t)) =

=−
65536(42013t + 132435)2(1456633369t2 + 4165088670t− 21754631523

)2
ξ3

1ξ4
2

3(1867911769t2 + 13448948190t + 30636916141)9 ,

ξ1 =5192456907t2 + 31062985050t + 39519200759,

ξ2 =5070t + 57223.

The functions u10(t) and u01(t) have three multiple roots each

t1 = −57233
5070

, t2,3 = −5177164175
1730818969

± 3465328898
√

3
5192456907

. (32)

In addition, u01(t) has three more multiple roots

t4 = −132435
42013

, t5,6 = −2082544335
1456633369

± 3465328898
√

3
1456633369

.

The values t1, t2, t3 correspond to the vertices (27) of the curved triangle of Figure 6.
By Theorem 1, on the implicit function, the equation u(ε, y3) = 0 has a solution as a

power series on y3

ε =
∞

∑
k=1

ck(t) · yk
3, (33)

where ck(t) are rational functions that are expressed over the coefficients upq(t), which in
turn are expressed over b1(t) and b2(t) according to (31). This decomposition holds for all
values of t, except, perhaps, the roots of (32). In particular,

c1(t) = −
(

u01

u10

)
= −G

H
= −

2(42013t + 132435)2(1456633369t2 + 4165088670t− 21754631523
)2

ξ1

9(1867911769t2 + 13448948190t + 30636916141)4

where the denominator has no real roots. According to (33), we obtain the approximation
of ε ≈ c1(t)y3.

Let us return to the original coordinates, which for small |y3| on the variety Ω are
approximately equal

x1 = (b1(t) + c1(t)y3)y3, x2 = (b2(t) + c1(t)y3)y3, (34)

in this case
A1 = x1, A2 = x2, A3 = −3

2
+ y3.

If y3 = −1/50, i.e., A3 = −76/50, then the curve (34) is shown in Figure 7. It is similar to
the curve of Figure 2 in [25] near the origin, corresponding to A3 = −2.



Axioms 2023, 12, 469 15 of 23

Figure 7. Plot of the curve (34) for y3 = −1/50.

If y3 = 1/20 (A3 = −29/20), it is shown in Figure 8 and is similar to the curve of
Figure 4 in [25] near the origin, corresponding to A3 = −5/4.

Figure 8. Plot of the curve (34) for y3 = 1/20.

The similarity of these curves confirms the correctness of the found parameterization,
which can be refined.

9. The Structure of the Variety Ω Near the Curve J of Singular Points

On the curve J and near it, let us introduce the local coordinates x1, x2, x3 :

A1 = x1 − x2 −
1
2

, A2 = x1 + x2 −
1
2

, A3 =
1
2
+ x3. (35)
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On the line J , the coordinates x1 = x3 = 0 and x2 are arbitrary.
From the polynomial R(A), we obtain a polynomial of degree 12

S3(x1, x2, x3) = R(A) = Q(s1, s2, s3), (36)

we compute its support, the Newton polyhedron Γ3, its faces Γ(2)
j and their external normals,

using the PolyhedralSets package of the CAS Maple 2021 [29]. We obtain seven faces Γ(2)
j .

The graph of the polyhedron Γ3 is shown in Figure 9.

Figure 9. The graph of the polyhedron Γ3.

The external normals of its two-dimensional faces are N641 = (−1, 0,−1),
N683 = (−1,−1,−2), N1241 = (1, 1, 1), N1699 = (0, 0,−1), N1941 = (−1, 0, 0),
N2003 = (0,−1, 0), N2117 = (0, 1, 0).

The neighborhood of the line x1 = x3 = 0 is approximately described by the zeros of
the truncated polynomial

f̂1 = −1024
81

x2
1x4

2 −
16384

729
x8

2x2
1 +

8192
729

x8
2x2

3 +
8192
243

x2
1x6

2 +
1664

81
x4

2x2
3 −

16
3

x2
2x2

3−

−6400
243

x6
2x2

3 +
4096
243

x1x6
2x3 −

8192
729

x8
2x1x3 −

512
81

x1x4
2x3,

(37)

corresponding to face 641 with normal N641 = (−1, 0,−1), which has two negative coordi-
nates. According to the paper [14], we find the unimodular matrix

α =

 1 0 0
0 1 0
−1 0 1


such that

Nα = (0, 0,−1).

Hence, we have to perform the power transformation

(ln y1, ln y2, ln y3) = (ln x1, ln x2, ln x3) · α,
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i.e.,
(ln x1, ln x2, ln x3) = (ln y1, ln y2, ln y3) · α−1.

Since α−1 =

1 0 0
0 1 0
1 0 1

, then

x1 = y1y3, x2 = y2, x3 = y3. (38)

In this case

f̂1(x1, x2, x3) = y2
3 · F3(y1, y2); F3(y1, y2) = −

16y2
2
(
4y2

2 − 3
)2(64y2

2y2
1 + 32y1y2

2 − 32y2
2 + 27

)
729

.

The equation F3(y1, y2) = 0 has three solutions:

1. y2 = 0. It corresponds to the point P(2)
3 , which we will study separately in Section 10.

2. y2 = ±
√

3/2. It corresponds to points P(3)
4 and P(3)

5 , which we will study separately.
3. Curve

Φ(y1, y2)
def
= 642

2y2
1 + 32y1y2

2 − 32y2
2 + 27 = 0. (39)

According to the procedure genus from the package algcurves program from the
CAS Maple, the curve Φ(y1, y2) = 0 has a genus 0, parameterization

y1 = b1(t)
def
=

5t2 + 2t− 1
19t2 + 22t + 7

, y2 = b2(t)
def
= −19t2 + 22t + 7

16t2 + 24t + 8
, (40)

as shown in the graph in Figure 10.

Figure 10. Plot of the curve Φ(y1, y2) = 0.

This curve is located in the band−1 < y1 < 1
2 , it is symmetric relative to the axis y2 = 0

and the vertical y1 = − 1
4 . When y1 = −1

4
, on it y2 = ±

√
3

2
= ±0.8660254, t = (−5∓ 2

√
3)/13

(i.e., on the curve t = −0.651084 and t = −0.118146). In this |y2| >
√

3/2. At y1 = −1,
t = −1/2, at y1 = 1/2, t = −1, and y2 = ±∞.
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Presently, to describe the structure of variety Ω near the line J , we substitute (38) into
the polynomial S3(x) and obtain the polynomial T(y1, y2, y3). It splits into the sum

T(y1, y2, y3) = y2
3

m

∑
k=0

Tk(y1, y2)yk
3

with T0(y1, y2) = F3(y1, y2); using the coeff command, we obtain

T1
def
= G(y1, y2) =

16384
243

y3
1y4

2 −
32768
243

y6
2y3

1 +
131072

2187
y3

1y8
2 −

11776
81

y1y4
2+

+
8192

81
y1y6

2 +
1280

27
y2

2y2
1 +

65536
729

y8
2y2

1 +
1408

27
y1y2

2 −
4096
81

y2
1y6

2−

−2048
27

y2
1y4

2 + 16 +
4096
243

y6
2 −−

65536
2187

y8
2 +

13312
243

y4
2.

(41)

In the polynomials Tk(y1, y2), we substitute

y1 = b1(t) + ε, y2 = b2(t). (42)

We obtain a polynomial u(ε, y3) = T(y1, y2, y3)/y2
3 with coefficients depending on t through

b1(t) and b2(t). In this polynomial

u(ε, y3) =
m

∑
k=0

Tk(b1 + ε, b2)yk
3 = ∑

p,q≥0
upqεpyq

3,

where u00 = F3(b1(t), b2(t)) from (42), so u00 = 0,

u10 =
∂F(y1, y2)

∂y1
= −

512y4
2
(
4y2

2 − 3
)2
(4y1 + 1)

729
def
= H(y1, y2) (43)

when yi = bi(t), i = 1, 2, and in general

upq =
1
p!
·

∂pTq

∂yp
1

, when yi = bi(t), i = 1, 2, (44)

according to (40). Presently, according to (41) and (43)

u10(t) =H(b1(t), b2(t)) = −
(
19t2 + 22t + 7

)3(13t2 + 10t + 1
)5

497664ζ8 ,

u01(t) =G(b1(t), b2(t)) =
η

1728ζ4 ,

ζ =(t + 1)(2t + 1),

η =2224717t8 + 12017960t7 + 28029436t6 + 37008760t5+

+ 30350558t4 + 15868120t3 + 5174044t2 + 963080t + 78397

By generalized Theorem 1 on the implicit function, the equation u(ε, y3) = 0 has a
solution as a power series over y3

ε =
∞

∑
k=1

ck(t) · yk
3, (45)

where ck(t) are rational functions that are expressed through the coefficients upq(t), which
in turn are expressed through b1(t) and b2(t) according to (44). This expansion is valid
for all values of t, except maybe the roots of the function H(t). They correspond to
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points y1 = −1/4, y2 = ±
√

3/2. Therefore, we have to remove them together with their
neighborhoods. In particular,

c1(t) = −
(

u01

u10

)
= −G

H
=
(

288ηζ4
)

/
((

19t2 + 22t + 7
)
×

×
(

6997t6 + 24846t5 + 37479t4 + 30484t3 + 13971t2 + 3390t + 337
)(

13t2 + 10t + 1
)4
)

,

where the denominator has two real roots t1,2 = (−5 ∓ 2
√

3)/13. According to (45),
approximate ε ≈ c1(t)y3.

Let us return to the original coordinates, which for small |y3| on the variety Ω are
approximated by

x1 = (b1(t) + c1(t)y3)y3, x2 = b2(t), x3 = y3, (46)

in which case
A1 = x1 − x2 −

1
2

, A2 = x1 + x2 −
1
2

, A3 =
1
2
+ y3. (47)

Figure 11 at y3 = 1/20 (i.e., A3 = 11/20) shows the upper and lower sections of the
curve (46) and (47) for 1.4 < |b2(t)| < 3. The sections where |b2(t)| < 1.4 are discarded,
because they are affected by singularities of the singular points P(3)

4 and P(3)
5 . We observe

that these curves are like parallel line segments and almost coincide. In the corresponding
A3 = 0.505 in Figure 12 in [25], similar branches merge.

Figure 11. Plots of curves (46), (47) at y3 = 1/20.

Figure 12 shows the upper and lower sections of the curve (46) and (47) at y3 = −1/20
(i.e., A3 = 9/20). Here, the distance between the branches is larger, which corresponds to
Figure 8 in [25], with A3 = 0.45, where these branches do not merge.

Figure 12. Plots of curves (46), (47) at y3 = −1/20.
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10. The Structure of the Variety Ω near the Singular Point P(2)
3

In Section 10, we moved from the coordinates A to the coordinates x1, x2, x3, which
are local and near the point P(2)

3 . For the polynomial S3(x) , we have already calculated
the Newton polyhedron Γ3, its faces and the normals to the faces (Figure 9). There was a
normal N683 = (−1,−1,−2). It corresponds to a truncated polynomial

f̂2 = −1024
729

x6
1 + 16x3

3 +
2048
243

x4
1x2

2 +
256
27

x4
1x3 −

1024
81

x2
1x4

2 −
64
3

x2
1x2

3 −
16
3

x2
2x2

3 +
1280

27
x2

1x2
2x3. (48)

Presently, we conduct the power transformation

x1 = y1y3, x2 = y2y3, x3 = y2
3, (49)

and obtain

f̂2 = − 16
729

y6
3

(
64y6

1 − 384y4
1y2

2 + 576y2
1y4

2 − 432 y4
1 − 2160y2

1 y2
2 + 972 y2

1 + 243y2
2 − 729

)
.

Here,

F4(y1, y2) = 64y6
1 − 384y4

1y2
2 + 576y2

1y4
2 − 432 y4

1 − 2160y2
1 y2

2 + 972 y2
1 + 243y2

2 − 729.

The curve F4(y1, y2) = 0 has genus 0, with parameterization

y1 =b1(t) = −
3
(
t2 + 229582512

)(
t2 − 52488t− 229582512

)
2β

,

y2 =b2(t) = −
9(t + 26244)3(t− 8748)3

4(t2 + 229582512)β
,

β =t4 + 104976t3 − 1377495072t2 − 24100653779712t + 52708129816230144

(50)

and its graph shown in Figure 13.

Figure 13. Plot of the curve F4(y1, y2) = 0.
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Presently, in the full polynomial S3(x), we conduct the power transformation in (49)
to y and extract from it all terms with y3 in the seventh degree with the procedure mtaylor.
We obtain the polynomial

32y1(512y6
1 − 3072y4

1y4
2 + 4608y2

1y4
2 − 3600y4

1 − 16704y2
1y2

2 − 432y4
2 + 8424y2

1 + 3564y2
2 − 6561)y7

3
2187

Its division by
32

2187
y1y7

3 will provide a polynomial G(y1, y2), which we factorize according
to the parameterization (50)

G(t) =
54(t4 − 34992t3 + 1071385056t2 + 8033551259904t + 52708129816230144)3

(t + 26244)4(t− 8748)4

(t2 + 229582512)4
β3

. (51)

In the full polynomial S3(x1, x2, x3) from Section 9, we replace x with y by the power
transformation (49) and assume

T(y) =
S3(x)

y6
3

=
m

∑
k=0

yk
3Tk(y1, y2).

If we substitute y2 = b1(t), y3 = b2(t) + ε in T(y), then the equation T(y) = 0 takes
the form

u(ε, y3) =
m

∑
k=0

Tk(b1(t), b2(t) + ε)yk
3 = ∑

p,q≥0
upqεpyq

3 = 0, (52)

where u00 = − 16
729

F4(b1(t), b2(t)) = 0, u10 = −1024
729

∂F4

∂y2
= −1024

729
H(b1(t), b2(t)),

H(t) = −
59049

(
t4 − 34992t3 + 1071385056t2 + 8033551259904t + 52708129816230144

)3
(t + 26244)3(t− 8748)3

2β4(t2 + 229582512)
,

and in general

upq =
1
p!
·

∂pTq

∂yp
2

when y1 = b1(t), y2 = b2(t).

According to Theorem 1, the Equation (52) has a solution

ε =
∞

∑
k=1

ck(t)yk
3

i.e., according to (49)

x1 = b1(t)y3, x2 = b2(t)y3 +
∞

∑
k=1

ck(t)yk+1
3 , x3 = y2

3. (53)

According to (35), in the first approximation when y3 is small, we obtain

A1 = −1
2
+ b1(t)y3 − b2(t)y3, A2 = −1

2
+ (b1(t) + b2(t))y3, A3 =

1
2
+ y2

3. (54)

For the real coordinate y3, coordinate x3 > 0. Indeed, in Figure 8 of [25], corre-
sponding to A3 = 0.45, i.e., x3 = −0.05, there is no section of the variety Ω near the
point A1 = −1/2 = A2. Assume y3 = 0.07. Then, in the first approximation x1 = b1(t)y3,
x2 = b2(t)y3, x3 = 0.005. Let us draw a curve (54) in coordinates A1, A2 at−1 6 A1, A2 6 0
(see Figure 14).
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Figure 14. Plot of the curve (54) for y3 = 0.07.

It is similar to Figure 12 of [25] corresponding to A3 = 0.505 in the neighborhood of
the point A1 = A2 = − 1

2 . This confirms the correctness of the expansion (53).
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