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Abstract: A dynamical system is a particle or set of particles whose state changes over time. The
dynamics of the system is described by a set of differential equations. If the derivatives involved
are of non-integer order, we obtain a fractional dynamical system. In this paper, we considered
a fractional dynamical system with the Caputo fractional derivative. We collocated the fractional
differential problem in dyadic nodes and used refinable functions as approximation functions to
achieve a good degree of freedom in the choice of the regularity. The collocation method stands
out as a particularly useful and attractive tool for solving fractional differential problems of various
forms. A numerical result is presented to show that the numerical solution fits the analytical one very
well. We collocated the fractional differential problem in dyadic nodes using refinable functions as
approximation functions to achieve a good degree of freedom in the choice of regularity.

Keywords: fractional differential problem; collocation method; fractional derivative; B-spline

MSC: 00A69

1. Introduction

For a long time, fractional calculus was considered to be a purely mathematical field
with no real applications. Recently, however, this has changed. Think, for example, of all
the problems where it is important to describe the behaviour and evolution of the function
over a period of time and not just at a specific point in time. Think, for example, of materials
with memory. Fractional calculus is, therefore, particularly important for studying and
solving this type of problem.

Many researchers have found that fractional derivatives are suitable for mathematical
modelling of physical problems such as diffusion in biological tissues [1–3], propagation in
porous media [4], anomalous diffusion [5–7], viscoelasticity [8–11], and earthquakes [12].
Fractional calculus has also been considered for pandemic models [13–15] or in finance [16].

Since the fractional derivate involves an integral, many authors use quadrature for-
mulae or discrete derivatives [17] to approximate the fractional derivative. Others use
Galerkin methods [18,19] or spectral methods [20].

In our previous works [21,22], we proved that if we collocate the fractional differential
problem in dyadic nodes and we use the B-splines as approximation functions, we obtain a
collocation method that works very well. Moreover, the method takes advantage of the
refinability and derivability properties of the B-splines in order to produce an accurate
and efficient algorithm. Indeed, the fractional derivatives of the B-splines appearing
in the collocation matrix satisfy a closed form involving fractional B-splines of lower
orders. In this paper, we used this collocation method, generalised to a wider class of
approximating refinable functions [23], and we used this method to numerically solve
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a fractional dynamical system. By using these fractional functions instead of fractional
B-splines, we have more degrees of freedom in the choice of the regularity. For all these
reasons, the collocation method stands out as a particularly useful and attractive tool for
the solution of fractional differential problems of different forms [24].

The paper is structured as follows: In the first section, we describe the fractional
dynamical systems and we define the fractional derivatives in several meaningful ways.
In the second section, fractional refinable functions are introduced, as well as their main
properties. The most-important property in the context of this paper, i.e., the fractional
differential rule, is treated in the third section, as well as the way to differentiate the left-
edge B-splines in the fractional sense. In the following section, a Multiresolution Analysis
(MRA) on the semi-bounded interval [0,+∞) is introduced. The fractional collocation
method is then introduced, specifying the entries of the collocation matrix, and a numerical
test is provided in the last section. We compare one of the other results obtained using
several B-splines and fractional B-splines in [18,21,25,26].

2. Fractional Dynamical Systems

Consider the following fractional dynamical system:{
Dγ

t X(t) = A(t) X(t), γ ∈ (0, 1), t > 0
X(0) = X0

(1)

where X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn, and A(t) ∈ Rn×n.
In this context, Dγ

t y denotes the Caputo fractional derivative with respect to the time t
defined as

Dγ
t y(t) :=

(
J (k−γ)y(k)

)
(t), γ > 0 (2)

where k is an integer such that k− 1 < γ < k and J (γ) is the Riemann–Liouville integral
operator given by

(
J (γ)y

)
(t) :=

1
Γ(γ)

∫ t

0
y(τ) (t− τ)γ−1 dτ, t > 0.

In the above equation, Γ denotes Euler’s gamma function:{
Γ(γ) =

∫ +∞
0 xγ−1e−x dx for γ > 0,

Γ(γ) = γ−1Γ(γ + 1) for γ < 0.

Through the Gamma function, it is possible to define the generalised binomial coeffi-
cients: (

γ

l

)
=

Γ(γ + 1)
Γ(l + 1)Γ(γ− l + 1)

, l ∈ Z. (3)

If γ is a positive integer, the above definition and the usual definition of the binomial
coefficient coincide, while they are infinitely supported if γ ∈ R+\N or zero if l ∈ Z\N.

However, they decay to infinity as [27](
γ

l

)
= O(l−γ−1) for l → ∞ .

We note that, when the homogeneous initial conditions are imposed on the function
y(t), the Caputo definition (2) coincides with the Riemann–Liouville definition:

Dγ
t y(t) :=

dk

dtk

(
J (γ)y

)
(t), t > 0 ,

which requires less regularity on y(t), and both reduce to the usual differential operator in
the case of γ ∈ N [28].
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In the following, we will make use of Dγ
t f (2jt), and so, we will need the following

theorem, already proven in [22].

Theorem 1. Let γ be a real number such that 0 < γ < 1 then

Dγ
t f (2jt) = 2jγDγ

(2jt)
f (2jt).

Proof. Denote F(t) = f (2jt), then F(m)(t) = 2jm f (m)(2jt), m ∈ N. Therefore,

Dγ
t F(t) =

1
Γ(k− γ)

∫ t

0

F(k)(τ)

(t− τ)(γ−k+1)
dτ =

=
1

Γ(k− γ)
2jk
∫ t

0

f (k)(2jτ)

(t− τ)(γ−k+1)
dτ.

After changing the variable in the integral, we obtain

Dγ
t F(t) =

1
Γ(k− γ)

2jk
∫ 2jt

0

f (k)(τ)
(t− 2−jτ)(γ−k+1)

2−jdτ =

=
1

Γ(k− γ)

2jk2−j

2−j(γ−k+1)

∫ 2jt

0

f (k)(τ)
(2jt− τ)(γ−k+1)

dτ = 2jγDγ

(2jt)
f (2jt).

In the next section, we introduce a new collocation method, the multi-scale collocation
method, which takes advantage of multi-scale techniques to produce an efficient and
accurate algorithm.

3. Fractional Cardinal B-Splines and Fractional GP Functions

In the paper [27], the extension of the class of the cardinal B-splines to the fractional
ones is provided by introducing the concept of the fractional finite difference operator.
The starting point is the definition of the classical cardinal B-spline, i.e., the B-spline on
integer knots. Consider the truncated power function:

Tn(x) := (max(0, x))n, x ∈ R, n ∈ N

and the finite difference operator:

∆n f (x) :=
n

∑
k=0

(
n
k

)
(−1)k f (x− k), x ∈ R.

Then, the classical B-spline of integer-order n is defined by the formula:

Bn(x) :=
1

(n + 1)!
∆n+1Tn(x). (4)

From this definition, the Fourier transform of Bn becomes

B̂n(ω) =

(
1− e−iω

iω

)n+1

.

Due to the definition of generalised binomial coefficients, the definition (4) can be
extended to a real index α. Hence, using the fractional finite difference operator:

∆γ f (x) := ∑
k≥0

(
γ

k

)
(−1)k f (x− k),
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we can define the fractional B-spline of order α:

Bα(x) :=
1

Γ(α + 1)
∆α+1Tα(x).

It is also easy to prove that

∆γ Bn(x) =
∆n+1Tn−γ(x)
Γ(n− γ + 1)

.

Thus, due to the finite fractional differential rule [22]:

Dγ Bn(x) = ∆γBn−γ(x) (5)

we can say that the fractional derivative of a B-spline is a fractional B-spline.
It easy to prove that the Fourier transform of Bα becomes

B̂α(ω) =

(
1− e−iω

iω

)α+1

.

A similar theory can be developed for the fractional derivatives of a class of refinable
functions compactly supported in [0, n + 1], called Gori–Pitolli (GP) refinable functions,
depending on a real parameter h ≥ n. These functions are denoted by ϕn,h. Their fractional
derivatives are fractional GP refinable functions, i.e., GP refinable functions with non-
integer-order α: ϕα,h (see Figure 1). See [23,25,26,29] for more details.
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Figure 1. (a) The graphs of the fractional GP for α = 2:0.25:6, h = α + 3, classical GP for α = 2, . . . , 6,
and classical B-splines for h = α integer. (b) The graphs of the fractional GP for α = 2:0.25:6,
h = α + 0.5, classical GP for α = 2, . . . , 6, and classical B-splines for h = α integer.

In Figure 1a, the fractional GP functions are plotted for α = 2:0.25:6 and h = α + 3. It is
possible to see the continuous dependence of the family on the index α and the interpolation
with the fractional B-splines of [27] when α = h.

Instead, when h >> α, each B-spline looks like the corresponding one of degrees less
than 2.

The same observations can be made for Figure 1b, where h = α + 0.5; here, the
fractional functions are more similar to the fractional B-splines.

In both cases, the support of the fractional GP function looks like [0, σ], where
σ = dγe+ 1.
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4. Multiresolution Analysis on R and on [0, ∞)

Let {Vj, j ∈ Z} be a sequence of closed subspaces of L2(R). The sequence forms a
multiresolution analysis (MRA) of L2(R) if:

(i) Vj ⊂ Vj+1, j ∈ Z;

(ii)
⋃
j∈Z

Vj = L2(R);

(iii)
⋂
j∈Z

Vj = {0};

(iv) f (t) ∈ Vj ↔ f (2t) ∈ Vj+1, j ∈ Z;
(v) There exists an L2(R)-stable basis in V0.

An MRA can be generated by a refinable function, i.e., a function defined through a
refinement mask a = {ak ∈ R, k ∈ Z} and a refinement equation, as follows:

ϕ(t) = ∑
k∈Z

ak ϕ(2 t− k) , t ∈ R . (6)

Suitable conditions on the mask coefficients {ak} ensure the existence of a unique
function ϕ solution to (6), which belongs to L2(R) and such that their integer translates
{ϕ(t− k), k ∈ Z} form an L2(R)-stable basis in V0 (see [30] for details). As a consequence,
the refinable function ϕ generates all the spaces Vj through dilation and translation, i.e.,

Vj = span {ϕjk(t) := ϕ(2j t− k), k ∈ Z, t ∈ [0, ∞)}, j ≥ 0.

Let V0
j [0,+∞) denote the restriction of Vj to the semi-infinite interval [0,+∞). Thus,

V0
j [0,+∞) is generated by suitable functions ϕjk, i.e., with ϕjk(0) = 0:

V0
j [0,+∞) = span {ϕjk(t), k ∈ Z, t ∈ [0, ∞]}, j ≥ 0.

It is possible to prove that V0
j [0,+∞) still generate an MRA on [0,+∞) [22].

5. The Fractional Derivative of B-Splines

In this section, we want to analyse the application of the fractional relation (5) to the
B-splines in I = [0, ∞), in particular for the left-edge functions. Let [0, n + 1] be the support
of the cardinal B-spline Bn. Let us consider

Bn
k (x) := Bn(x− k).

Note that, for the Bn
k whose support is entirely contained in I, the index k is greater

than or equal to zero, while the left-edge B-splines have index k = −n, . . . ,−1. Thus,
the following two theorems state the adapted differentiation relation for both types. First,
we state a theorem for the exact calculation of some integrals involved in the integration of
the B-splines derivative. By (6), we have

Bn
0 (x) =

1
n!

n+1

∑
r=0

(−1)r
(

n + 1
r

)
(x− r)n

+

and for the derivative,

d
dx

Bn
0 (x) =

1
(n− 1)!

n+1

∑
r=0

(−1)r
(

n + 1
r

)
(x− r)n−1

+ .

If the index k = −n, . . . ,−1, we have the left-edge B-splines. To determine the
fractional derivative of these functions, for x > 0 and −n ≤ k ≤ −1, we use the difference
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between the whole integral −kDα
x Bn

k (x), which is known, and the part before zero, 0Dα
x Bn

k (x):

0Dα
x Bn

0 (x) :=
1

Γ(1− α)

∫ x

0

B′k(t)
(x− t)α

dt =−k Dα
x Bn

k (x)−−k Dα
0 Bn

k (x) (7)

where

−kDα
x Bn

k (x) :=
1

Γ(1− α)

∫ x

−k

B′k(s + k)
(x− k− s)α

ds.

By summing and subtracting the index k and using the change of the variable t− k = s,
we obtain the following equation:

kDα
0 Bn

k (x) =
1

Γ(1− α)

∫ 0

k

B′k(s + k)
(x− k− s)α

ds =

=
1

Γ(1− α)

∫ −k

0

B′0(s)
(x− k− s)α

ds.

Therefore, (7) can be rewritten as

0Dα
x Bn

k (x) =
∆n+1xn−α

+

Γ(n + 1− α)

∣∣∣∣∣
x−k

−

− 1
Γ(1− α)

∫ −k

0

B′0(s)
(x− k− s)α

ds k = −n, . . . ,−1.

The calculus of the fractional derivatives can be reduced to evaluating kDα
0 Bn

k (x).

Theorem 2. For 0 ≤ α ≤ 1, for the B-splines with all the support in I = [0, T], one has

kDα
x Bn

k (x) =0 Dα
x−kBn

0 (x− k), k = 0, . . . , b− a,

while for the left B-splines,

0Dα
x Bn

k (x) =
∆n+1(x)n−α

+

Γ(n + 1− α)

∣∣∣∣∣
x−k

− 1
Γ(1− α)

∫ −k

0

B′0(s)
(x− k− s)α

ds, k = −n, . . . ,−1

whereby the second term has the following recurrence relation:

1
Γ(1− α)

∫ −k

0

B′0(s)
(x− k− s)α

ds =

=
1

Γ(n + 1− α)

−k−1

∑
r=0

(−1)r
(

n + 1
r

)[
(x− k− r)(n−α) + x1−α

n−1

∑
p=0

(−1)n−p(−k− r)n−1−p(x− k− r)p

(n− 1− p)!

n−1−p

∏
s=1

(α− s)

]
.

Proof. For the B-splines contained in [0, T], we have

kDα
x Bn

k (x) =
1

Γ(1− α)

∫ x

k

B′k(t)
(x− t)α

dt.

By summing and subtracting k and by setting t− k = s, we have

kDα
x Bn

k (x) =
1

Γ(1− α)

∫ x−k

0

B′k(s + k)
(x− k− s)α

ds.
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Since B′k(x) = B′0(x− k), we have

kDα
x Bn

k (x) =
1

Γ(1− α)

∫ x−k

0

B′0(s)
(x− k− s)α

ds =0 Dα
x−kBn

0 (x− k);

This is the first thesis.
As for the second thesis, we remember that B′0(x) is written as

B′0(x) =
d

dx
∆n+1xn

+

n!
=

1
(n− 1)!

n+1

∑
r=0

(−1)r
(

n + 1
r

)
(x− r)n−1

+ .

Putting it in (7) and setting s− r = t, we obtain

−kDα
0 Bn

k (x) =
1

Γ(1− α)(n− 1)!

−k−1

∑
r=0

(−1)r
(

n + 1
r

) ∫ −k−r

−r

tn−1
+

(x− k− r− t)α
dt

=
1

Γ(1− α)(n− 1)!

−k−1

∑
r=0

(−1)r
(

n + 1
r

) ∫ −k−r

0

tn−1
+

(x− k− r− t)α
dt

which is the sum of only the first −k terms.
The integration rules for rational functions are

∫ −k

0

tn−1

(x− k− t)α
dt =

(n− 1)!
∏n

s=1(α− s)
(x− k− t)(1−α)

n−1

∑
r=0

(k− x)r(t)n−1−r

(n− 1− r)!

n−1−r

∏
s=1

(α− s)

∣∣∣∣∣
−k

t=0

=

(n− 1)!
∏n

s=1(α− s)

[
(x− k)(n−α) + x1−α

n−1

∑
r=0

(−1)n−r(−k)n−1−r(x− k)r

(n− 1− r)!
·

·
n−1−r

∏
s=1

(α− s)

]
.

6. The Fractional Collocation Method

Let j be fixed, and for simplicity, we ignore the dependence of j.
In the theory, we are looking for a vector of approximating functions in Vj[0, ∞), i.e.,

x̃i(t) = ∑
k∈Z

cik ϕjk(t), i = 1, . . . , n

which solves the differential problem (1) on a set of collocation points.
In practice, since ϕjk have a fast decay, the series reduces to a finite number of terms:

xi(t) =
K2

∑
k=K1

cik ϕjk(t), i = 1, . . . , n (8)

where K1 and K2 are given by

K1 = min{k ∈ Z | supp(ϕjk) ∩ [0, 1] 6= ∅}

and
K2 = max{k ∈ Z | supp(ϕjk) ∩ [0, 1] 6= ∅}.
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Let

C =

c1K1 . . . c1K2
...

. . .
...

cnK1 . . . cnK2


be the coefficient matrix and

Φ(t) =

ϕjK1(t)
...

ϕjK2(t)

.

Therefore, we can rewrite (8) in matrix form:

X = CΦ(t). (9)

Using the linearity of Dγ and (8), we obtain

DγX(t) = CD(t) (10)

where

D(t) =

Dγ ϕjK1(t)
...

Dγ ϕjK2(t)

.

If we choose as collocation points the dyadic nodes that are defined by {tp = p/2s,
p = 0, . . . , 2s}, then {

DγX(tp) = A(tp) X(tp), p = 0, . . . , 2s

X(0) = X0.
(11)

By (9) and (10), (11) becomes{
CD(tp) = A(tp)CΦ(tp), p = 0, . . . , 2s

CΦ(0) = X0.

Using the Kronecker product, we obtain the following linear algebraic system:{
(D(tp)T ⊗ In −Φ(tp)T ⊗ A(tp)) vec(C) = 0, p = 0, . . . , 2s

(Φ(0)T ⊗ In) vec(C) = X0.

where vec(X) denotes the vectorisation of the matrix X, formed by stacking the columns of
X into a single column vector.

In the next section, we will solve a specific test problem numerically.

7. Numerical Results

In the test, we used the cubic B-spline B3 as an approximation function.
We set

ϕ̃jk(t) := 2
j
2 B3(2jt− k).

Therefore, we define the spaces:

Vj[0, 1] = span {ϕ̃jk(t) , k ∈ Nj, t ∈ [0, 1]} j ≥ j0

where Nj ⊂ Z is the set of admissible indices k and j0 is the initial multiresolution scale.
It is not difficult to prove that these spaces produce an MRA on [0, 1]. See [25] for

more details.
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Now, we consider the following example of a fractional dynamical system in two
dimensions: 

Dγx(t) = 2x(t)− y(t)
Dγy(t) = 4x(t)− 3y(t), t ∈ [0, 1]
x(0) = 1.2
y(0) = 4.2

(12)

where 0 < γ < 1 and whose exact solution is [31]{
x(t) = 1

5 Eγ(tγ) + Eγ(−2tγ)

y(t) = 1
5 Eγ(tγ) + 4Eγ(−2tγ)

.

Eγ is the Mittag–Leffler function, i.e.,

Eγ(z) =
∞

∑
k=0

zk

Γ(γk + 1)
.

We note that the matrix associated with the dynamical system has eigenvalues λI such
that min | arg λi| > γπ/2, so that the stability of the system is guaranteed [32].

Using the collocation method with s = 8 and j = 8, we numerically solved the
dynamic system in the interval [0, 1], and we compared it with the exact solution (Figure 2).
As expected, the error is of the order of the machine precision.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x
j

2

2.5

3

3.5

4

4.5

5

5.5

6

y
j

Exact

Approximate

(a)

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x
j

2

2.5

3

3.5

4

4.5

y
j

Exact

Approximate

(b)

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x
j

1.5

2

2.5

3

3.5

4

4.5

y
j

Exact

Approximate

(c)

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x
j

1.5

2

2.5

3

3.5

4

4.5

y
j

Exact

Approximate

(d)

Figure 2. The approximate solutions xj, yj with j = 8 (red line) obtained with the cubic B-spline
ϕ3,3 ≡ B3 and the exact solutions x(t), y(t) (blue dashed line). We consider four different example
obtained whit different value for γ. In (a) we use γ = 0.10, in (b) γ = 0.25, in (c) γ = 0.5 and in (d)
γ = 0.75.
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8. Conclusions and Future Work

We constructed a collocation method that uses fractional refinable functions as ap-
proximate functions, to solve a fractional non-stationary dynamical system. We provided
an explicit formula that allowed us to evaluate the fractional derivatives of the approx-
imate functions in an accurate and simple way. This formula uses a linear combination
of fractional refinable functions of minor order to obtain the prescribed derivative. The
method can be efficiently implemented by using standard multiscale techniques to evalu-
ate the fractional B-splines and least mean squares for the final rectangular system. The
numerical results showed that this collocation method approximates the solution of a test
fractional system with good accuracy. In the future, we can use, as approximation functions,
the fractional refinable functions described in [29]. The central point of the work is that this
efficient technique can be extended to any fractional differential problem.
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