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Abstract: Recent research suggests that long memory can be caused by regime switching and is
easily confused with it. However, if the causes of confusion were properly controlled, they could
be distinguished. Motivated by this idea, our study aims to distinguish between the long memory
and regime switching of financial volatility. We firstly modeled the long memory and regime
switching of volatility using the Fractionally Integrated Exponential GARCH (FIEGARCH) and
Markov Regime-Switching EGARCH (MRS-EGARCH) frameworks, respectively, and performed
a simulation study on their finite-sample properties when innovations followed a non-normal
distribution. Subsequently, we demonstrated the confusion between the FIEGARCH and MRS-
EGARCH processes using simulations. A recent study theoretically proved that the time-varying
smoothing probability series can induce the presence of significant long memory in the regime-
switching process. To control for its effect, the two-stage two-state FIEGARCH and MRS-FIEGARCH
frameworks are proposed. The Monte Carlo studies showed that both frameworks can effectively
distinguish between the pure FIEGARCH and pure MRS-EGARCH processes. When the MRS-
FIEGARCH model was further employed to fit series generated with the MRS-FIEGARCH process,
it outperformed the ordinary FIEGARCH model. Finally, an empirical study of NASDAQ index
return was conducted to demonstrate that our MRS-FIEGARCH model can provide potentially more
reliable long-memory estimates, identify the volatility states and outperform both the FIEGARCH
and MRS-EGARCH models.
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1. Introduction

Long-memory persistence describes the property of financial series whose sample
autocorrelations are significantly different from zero, even for large lags [1–4]. In many
recent studies, long-memory persistence is extensively observed, especially in financial
return series [5–8]. However, apart from the actual everlasting effects of autocorrelations, it
is well known that regime switching can also cause long memory [3,9–13]. Diebold and
Inoue [3] give a theoretical explanation of this phenomenon, and their simulation study
further demonstrates that when structural breaks or stochastic regime switching exist, they
are related to long memory and are easily confused with it (a regime-switching process,
such as Markov switching, can be identified as non-stationary [14]; therefore, it is expected
that it could be confused with long memory from a technical point of view). Further, they
argue that long memory and regime switching are interchangeable concepts and should
not be studied separately.

However, in an influential study, Perron and Qu [15] propose a test to effectively
distinguish the long- and short-memory processes with mean shifts in the first moment
of financial return series. Motivated by their work, it is expected that if the effects of
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regime switching can be appropriately controlled, the pure long-memory process can be
distinguished from the pure regime-switching process.

This paper aims to distinguish between long memory and regime switching based on
the second moment of the financial return series (it is widely recognized that the definitions
of long memory and regime switching may be referred to much broader non-linear concepts;
as explained in the paper, we focus on fractional integration (long memory) and Markov
switching-type non-linearity (regime switching) of financial data). Among the existing
models of financial volatility, the GARCH family models [16] have enjoyed great popularity
because of their ability to capture the properties of financial volatility, such as time-
varying heteroskedasticity and volatility clustering [8,17–23]. In particular, to incorporate
long-memory persistence in the GARCH framework, the Fractionally Integrated GARCH
(FIGARCH) model has been proposed [1]. This model is based on the application of the
fractional differencing operator to the autoregressive structure of conditional variance by
assuming that it follows hyperbolic rather than exponential decay [1]. Despite the model’s
popularity, Davidson [24] argues that FIGARCH cannot measure the real long memory
based on the second moment and proposes to use the Fractionally Integrated Exponential
GARCH (FIEGARCH) model developed by Bollerslev and Mikkelsen [2] as an alternative.
In contrast, the Markov Regime-Switching GARCH (MRS-GARCH) model is developed
in the seminar work by Hamilton [25] by including regime-switching parameters into
the GARCH framework to make jumps between state spaces possible. In particular, the
MRS-GARCH model discussed in Haas et al. [26] outperforms other specifications by
appropriately modeling the path dependency of conditional volatility [8]. To consider
modeling the real long memory and compare its counterpart with the regime-switching
framework, we employ FIEGARCH and MRS-EGARCH, respectively, in this paper.

Regarding the distribution of innovations, it is originally assumed to be Gaussian, and the
Quasi-Maximum Likelihood Estimation (QMLE) of GARCH family models is developed based
on the Gaussian distribution. However, significant evidence suggests that the financial return
series is rarely Gaussian but typically leptokurtic and exhibits heavy-tail behavior [27–30]. In
terms of the FIEGARCH model, it is argued that even if the true innovation does not follow a
normal distribution, QMLE based on the normal distribution is still asymptotically consistent [2].
Nevertheless, MLE based on the true distribution is expected to be more efficient than its QMLE
counterpart. With respect to the MRS-GARCH model, however, Klaassen [31], Ardia [32] and
Haas [33] notice that if regimes (states) are not normal but leptokurtic, the use of within-regime
normality can seriously affect the identification of the regime process. The details can be
found in Haas and Paolella [34], who further argue that QMLE based on normal components
does not provide a consistent estimator of the MRS-GARCH model if the true distribution of
innovations is not normal. The same argument may also apply to the MRS-EGARCH extension.
We, therefore, performed a Monte Carlo study on the QMLE property of the FIEGARCH and
MRS-EGARCH models, where simulated data actually followed Student’s t-distribution. Our
results suggest that the QMLE of FIEGARCH is consistent but not efficient and that the QMLE of
MRS-EGARCH is neither consistent nor efficient. Those results are consistent with the existing
literature. As a result, this indicates that a non-Gaussian distribution of innovations should
always be used to analyze the long memory and regime switching of the volatility of financial
return series with GARCH-type models.

To demonstrate the confusion between FIEGARCH and MRS-EGARCH, we performed
a simulation study and conducted the usual residual diagnostics. Similarly to Diebold
and Inoue [3], it was found that the MRS-EGARCH Data Generation Process (DGP)
can lead to significant estimates of long memory. In addition, all of the usual residual
diagnostics, including the Brock–Dechert–Scheinkman (BDS) test, the Ljung–Box test, the
ARCH Lagrange multiplier (LM) test and the square root of the mean square error tended
to favor the FIEGARCH model, even if the true DGP was MRS-EGARCH. Li and Mak [35]
proposed portmanteau statistics for the time series goodness-of-fit test to examine whether
the ARCH specification of financial volatility is adequate. Based on their work, Fisher and
Gallagher [36] developed a more powerful weighted version of this test. However, the
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results of both tests are similar to those of the usual residual diagnostics, which still prefer
the FIEGARCH model to the MRS-EGARCH model, even if the true DGP is MRS-EGARCH.
Thus, residual diagnostics cannot distinguish between long memory and regime switching.

Diebold and Inoue [3] theoretically analyze the causality of long memory in the
regime-switching DGP based on the assumption that transition probability is time-varying.
However, in the standard MRS model, it is actually constant over time [25]. Thus, a recent
study by Shi [37] gives an improved theoretical proof where transition probability is a
non-time-varying constant and suggests that the existing long memory in the MRS process
is caused by smoothing probability, which indicates the specific state that the financial series
lies in over time. Based on this proof, Shi [37] further shows that if the effects of smoothing
probability can be appropriately controlled, the long memory of the MRS process should
disappear. Although the above results were developed based on the first moment, it is
expected that they also hold for the MRS-EGARCH DGP.

We firstly verified this argument based on the second moment by proposing a two-
stage FIEGARCH framework. This two-stage framework is motivated by a similar model
fitting of the first moment of financial series studied by Shi [37]. The intercept in the
FIEGARCH framework is allowed to switch between states, which are identified using
the smoothing probability extracted from the MRS-EGARCH model. Similar to Shi [37], a
Monte Carlo study demonstrated that with the pure MRS-EGARCH DGP, the estimates of
long memory with the two-stage FIEGARCH framework were mostly insignificant and
close to 0, while those with the pure FIEGARCH DGP were mostly significant and not far
from the true values.

Based on this, to further incorporate the effects of smoothing probability into the
FIEGARCH model, we propose an MRS-FIEGARCH framework. Another Monte Carlo
study was performed, where three DGPs were considered: pure FIEGARCH, pure MRS-
EGARCH and MRS-FIEGARCH DGP. We observed the following facts according to the
results: when the true DGP was pure MRS-EGARCH, the estimates of long memory in the
MRS-FIEGARCH model were mostly insignificant and close to 0; when the true DGP was
pure FIEGARCH, the estimates were mostly significant and close to the true values; when
the true DGP was MRS-FIEGARCH, the estimates were smaller than those of FIGARCH
and were close to the true values. Therefore, the MRS-FIEGARCH framework can be used
to distinguish between long memory and regime switching, as well as to model the data at
the same time.

To empirically compare the model evaluations, we fitted the FIEGARCH, MRS-EGARCH
and MRS-FIEGARCH frameworks to the daily NASDAQ Composite Index ranging from
1 January 2001 to 31 December 2022. According to the estimates, it was demonstrated
that the MRS-FIEGARCH framework could estimate the true transition probabilities and
identify the volatility states. Compared with the FIEGARCH model, it could generate
smaller estimates of long-memory persistence. In terms of model evaluations, the MRS-
FIEGARCH framework outperformed both the FIEGARCH and MRS-EGARCH models.

The contributions of this paper to the existing literature are fourfold: First, we adopted
a recently developed fast Fourier transformation algorithm [38] to calculate the fractionally
integrated component of the (MRS-)FIEGARCH model. Compared with the widely used
truncation strategy [1], it is more accurate and is still computationally efficient. Hence, our
simulation and empirical results are more reliable, especially for data of large size. Second,
using a comprehensive simulation study, we demonstrated that the QMLE of MRS-EGARCH
is not consistent for fat-tailed data. To the best of our knowledge, although this problem is
mentioned in various research studies, no systematic study has been performed to support
the theoretical argument. Therefore, our simulation results provide further evidence for
relevant literature. Third, our proposed MRS-FIEGARCH model can effectively distinguish
between the long memory and regime switching of financial series based on the second
moment. Although related studies, such as Beine et al. [39], Lux and Morales-Arias [40] and
Raggi and Bordignon [41], consider the incorporation of regime switching into the long-memory
model, they mostly focus on estimating the long-memory parameter and forecasting the
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volatility of data with long memory. Additionally, despite those studies mentioning that
the estimated long-memory parameter from this incorporation approach is potentially more
reliable, no evidence or reason is provided. Following the cause of the confusion between
long memory and regime switching found by Shi [37], our study additionally sheds light
on the capability of the MRS-FIEGARCH model to distinguish between them based on the
second moment of financial series. Hence, this can further explain the reliability of estimates
obtained with the MRS-FIEGARCH framework, which significantly complements the works by
Beine et al. [39], Lux and Morales-Arias [40] and Raggi and Bordignon [41]. Finally, this paper
also supplements existing studies on long memory and regime switching based on the second
moment. Compared with Shi and Yang [42], and Ho and Shi [43], FIEGARCH may be able to
capture the real long memory, rather than the hyperbolic memory, based the second moment.
With respect to Gao et al. [44] and Shi [45], the FIEGARCH model can provide an asymmetric
measure of shocks to the conditional volatility.

Additionally, our results can provide useful implications for financial studies where long
memory is the main concern. In real financial data, due to reasons such as structural breaks in the
real economy, regime switching is very likely to exist [46–48]. Thus, the long memory observed
in such data is ‘spurious’, as it could be caused by regime switching [11,49,50]. Therefore,
the MRS-FIEGARCH framework, which can control for the effects of regime switching, is a
competitive option to estimate the ‘true’ (not caused by regime switching) long memory. For
instance, it can be used to enhance the accuracy of dynamic hedging strategies and derivative
pricing models, as the long-memory persistence of asset volatility is a key input in these
strategies and models [51–53].

The remainder of this paper proceeds as follows: Section 2 describes the FIEGARCH
model and studies its QMLE property using simulations. Section 3 explains MRS-EGARCH
with a simulation study on its QMLE property. In Section 4, the results from the simulations
demonstrate the confusion between long memory and regime switching. In Section 5,
we propose the MRS-FIEGARCH model with a Monte Carlo study. Section 6 presents an
empirical study using the daily NASDAQ Composite Index. We conclude the paper in
Section 7.

2. Long Memory and the FIEGARCH Model

As described in Diebold and Inoue [3], long memory is defined using the rate of growth

variances of partial sums as var(ST) = O(T2d+1), where ST =
T
∑

t=1
yt, {yt} is a sequence of

interested financial series, T is the number of observations and St is the summation of yt.
Then, d is the long-memory parameter.

For the study of time-varying financial volatility, the FIGARCH model is widely
employed to estimate the long-memory characteristic. The FIGARCH model was proposed
by Baillie et al. [1], and it was extended from GARCH family models. As concluded
by Marcucci [46], GARCH family models have enjoyed popularity among academics
because of their ability to capture some of the typical stylized facts of financial return
series, such as volatility clustering. French et al. [17], and Franses and van Dijk [18] show
that GARCH family models take into account the feature of time-varying volatility over a
long period and provide good in-sample estimates. Despite the effectiveness of the model,
Davidson [24] points out that the FIGARCH model cannot measure the real long memory.
Thus, an alternative for this aim is the FIEGARCH model proposed by Bollerslev and
Mikkelsen [2]. The original FIEGARCH(1,d,1) model, where 1, d and 1 correspond to the
AR, long memory and MA factors in the conditional variance equation, respectively, is
described as
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rt = µ + εt

εt = ηt
√

ht where ηt
iid∼ N(0, 1)

log ht = ω +
1− φL
1− βL

(1− L)−d(ηt−1 + γ|ηt−1|)
(1)

where εt is the error at time t, ht is the conditional variance of εt at time t, ηt is an identical
and independent sequence following a Gaussian distribution, L is the lag operator, γ
measures the asymmetric effect of shocks to conditional volatility and (1 − L)d is the
fractional differencing operator as defined by Hosking [54], i.e.,

(1− L)d =
∞

∑
k=0

δk(d)Lk, δk(d) =
k− 1− d

k
δk−1(d) and δ0(d) = 1 (2)

where d is the long-memory parameter. We have a stationary long-memory process when
0 < d < 1/2. If d = 0, the process reduces to an ordinary EGARCH process without the
long-memory property [55].

The infinity process in Equation (2) is replaced by (1− L)d = ∑t−1
k=0 δk(d)Lk in practice.

However, this recursive summation process can be very slow for large sample sizes T.
Hence, a widely employed strategy is to truncate it at 1000 lags (replace t− 1 with 1000)
as performed by Baillie et al. [1]. Despite its computational efficiency, the accuracy of this
approach is questionable, especially for large-sized data. In order to enhance the accuracy
and keep the computation efficient, we employed the fast Fourier transformation algorithm
developed in a recent study by [38]. Compared with results obtained with the truncation
strategy, our results are more reliable, as they cover the entire dataset without truncation,
and are still computationally efficient.

We notice that in Equation (1), the distribution of innovations is assumed to be
Gaussian. However, significant evidence suggests that the financial return series is rarely
Gaussian but typically leptokurtic and exhibits heavy-tail behavior [27–30]. In addition,
Student’s t-distribution is a widely used alternative, which can accommodate the excess
kurtosis of innovations [27].

To estimate the parameters of the FIEGARCH models, Bollerslev and Mikkelsen [2]
suggested a QMLE method based on the Gaussian distribution. QMLE estimators are
argued to be asymptotically consistent, even if the true distribution is not Gaussian.
However, Student’s t-distribution is generally expected to result in more efficient estimations
than the Gaussian distribution in GARCH family models [28].

We performed a Monte Carlo study to investigate this argument. Altogether, nine sets
of simulations with different d, φ and β were generated, where µ = 0, ω = 0.1, γ = 0 and
T = 5000 (we set T to 5000, because in Diebold and Inoue [3], the confusion between long
memory and regime switching was the most significant when T = 5000). Moreover, the
simulated data followed Student’s t-distribution with 3 degrees of freedom. To avoid the
starting bias, 10,000 simulated points were generated for each simulation; then, the first
5000 points were truncated. Finally, we produced 500 replicates for each set of parameters,
where the first 200 replicates were discarded to avoid simulation bias.

The simulated data were fitted into FIEGARCH models with a Gaussian distribution
(FIEGARCH-N) and Student’s t (FIEGARCH-t)-distribution, respectively. In Table 1, the
bias, root mean square error (RMSE) and standard error (SE) of d, φ and β are reported.
Bias is the mean difference between the true parameter and its estimate; RMSE is the
square root of the mean of the squared difference between the true parameter and its
estimate; and SE is the standard error of the estimates. It was shown that the biases of
all parameters of FIEGARCH-N were quite small and similar to those of FIEGARCH-
t. In contrast, the SE, which is the indicator of estimation efficiency, suggests that the
FIEGARCH-t model outperformed the FIEGARCH-N model. Thus, we demonstrated that
the QMLE estimators of the FIEGARCH model are consistent but less efficient than the
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estimators of the FIEGARCH-t model. As a result, the FIEGARCH-t model was employed
to fit the dataset in the rest of this study.

Table 1. Report of simulation results of FIEGARCH(1,d,1) models.

d φ β Biasd RMSEd SEd Biasφ RMSEφ SEφ Biasβ RMSEβ SEβ

Panel A: FIEGARCH(1,d,1) Model with Normal Distribution
0.25 0.20 0.30 −0.0181 0.0808 0.0792 −0.0065 0.1949 0.1957 0.0192 0.2339 0.2343

0.25 0.25 −0.0251 0.0623 0.0573 0.1104 0.2951 0.2751 0.1263 0.3209 0.2965
0.30 0.20 −0.0152 0.0509 0.0488 0.0313 0.2390 0.2382 0.0558 0.2737 0.2693

0.30 0.20 0.30 −0.0318 0.0527 0.0422 0.0326 0.2438 0.2429 0.0657 0.2515 0.2440
0.25 0.25 −0.0171 0.0551 0.0526 0.0548 0.2520 0.2472 0.0331 0.2507 0.2498
0.30 0.20 −0.0140 0.0677 0.0666 0.0618 0.2448 0.2381 0.0815 0.2598 0.2479

0.40 0.20 0.30 −0.0320 0.0748 0.0679 0.0970 0.2741 0.2577 0.1301 0.2925 0.2633
0.25 0.25 −0.0348 0.0498 0.0359 0.0805 0.2546 0.2428 0.1079 0.2807 0.2604
0.30 0.20 −0.0078 0.1226 0.1229 0.0555 0.2063 0.1997 0.0628 0.2308 0.2232

Panel B: FIEGARCH(1,d,1) Model with Student’s t-Distribution
0.25 0.20 0.30 −0.0324 0.0387 0.0213 0.0243 0.1814 0.1807 0.0419 0.1906 0.1869

0.25 0.25 −0.0144 0.0298 0.0262 −0.0588 0.2073 0.1998 −0.0547 0.2268 0.2212
0.30 0.20 −0.0179 0.0266 0.0197 −0.0027 0.1810 0.1819 −0.0061 0.1658 0.1665

0.30 0.20 0.30 −0.0263 0.0361 0.0250 −0.0250 0.1566 0.1554 −0.0006 0.1890 0.1899
0.25 0.25 −0.0220 0.0355 0.0281 −0.0070 0.2465 0.2477 −0.0133 0.2580 0.2590
0.30 0.20 −0.0218 0.0311 0.0223 0.0034 0.2030 0.2040 0.0158 0.2031 0.2035

0.40 0.20 0.30 −0.0297 0.0366 0.0215 −0.0223 0.1710 0.1704 −0.0034 0.1956 0.1965
0.25 0.25 −0.0221 0.0344 0.0265 −0.0423 0.2270 0.2241 −0.0391 0.2361 0.2340
0.30 0.20 −0.0198 0.0278 0.0196 0.0288 0.1786 0.1771 0.0132 0.1595 0.1598

This table presents the report of the simulation results of FIEGARCH(1,d,1) models with normal and Student’s
t-distributions. d, φ and β are true values of parameters. Bias is the Monte Carlo bias. RMSE is the square root of
the mean square error. SE is the standard error. The Monte Carlo study was based on 300 replications, and the
sample size was 5000.

3. MRS-EGARCH Model

The main weakness of the GARCH family model is that it assumes that the conditional
volatility has only one regime over the entire period. Unfortunately, this is not always true.
Marcucci [46] argues that due to reasons such as structural breaks in the real economy and
changes in operators’ expectations about the future, financial returns may exhibit sudden
jumps and do not stay in the same regime over a long period.

Hamilton [25] proposes the inclusion of regime-switching parameters to make jumps
between state spaces possible. To retain the advantages of GARCH models and make
structural breaks possible at the same time, Cai [56], and Hamilton and Susmel [57] apply
this seminal idea to the ARCH specification. However, the extension to the GARCH
specification is difficult because of the path dependency of the conditional volatility term,
and researchers such as Gray [58], Dueker [59], Lin [60] and Klaassen [31] have generate
various algorithms to overcome this issue. The details can be found in Marcucci [46].

In this paper, to be comparable with the FIEGARCH model, we employed a two-state
MRS-EGARCH(1,1) model with Student’s t-innovations (MRS-EGARCH-t), which is based
on the MRS-EGARCH model investigated in Haas et al. [26], as follows:

rt = µst + εst ,t

εst ,t = ηt
√

hst ,t where ηst ,t
iid∼ t(0, 1, v)

log hst ,t =

{
ω1 + α1(η1,t−1 + γ1|η1,t−1|) + β1 log h1,t−1 when st = 1
ω2 + α2(η2,t−1 + γ2|η2,t−1|) + β2 log h2,t−1 when st = 2

(3)
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where εst ,t is the residual at time t in state st; st is the state that the stock lies in at time t; ηst ,t
is an identical and independent sequence following Student’s t-distribution, with mean of
0 and standard deviation of 1; v is the degree of freedom of Student’s t-distribution; and
hst ,t is the conditional variance in state st at time t. Further, the sequence {st} is assumed to
be a stationary, irreducible Markov process with discrete state space {1, 2} and transition
matrix P = [pjk], where pjk = P(st+1 = k|st = j) is the transition probability of moving
from state j to state k (j, k ∈ {1, 2}).

As argued by Mullen et al. [61], Equation (3) can also capture the volatility clustering
as in the GARCH model, as well as making structural breaks in unconditional variance
possible. In the jth regime, the unconditional logged variance is

log σ2
j =

ωj

1− β j
(4)

as long as |β j| < 1, that is, the process is covariance stationary [16,26]. In this paper, we
indicate state 1 as the calm (low-volatility) state and state 2 as the turbulent (high-volatility)
state, so that log σ2

1 < log σ2
2 . In addition, we use the notations P1 = β1 and P2 = β2 to

measure persistence (of logged volatility) in the calm and turbulent states, respectively.
We estimated the parameters of the MRS-EGARCH model using MLE. The conditional

density of εt is given by Mullen et al. [61] as

Ωt−1 = {εst ,t−1, εst ,t−2, ..., εst ,1,}
θ = (µ1, µ2, ω1, ω2, α1, α2, β1, β2, γ1, γ2, p11, p22, v)′

f (εst ,t|st = j, θ, Ωt−1) =
Γ[(v+1)/2]

Γ(v/2)
√

π(v−2)hj,t

[
1 +

ε2
j,t

(vj−2)hj,t

] v+1
2

(5)

By inserting the filtered probability in state j at time t− 1, ρj,t−1 = P(st−1 = j|θ, Ωt−1),
into Equation (5) and integrating out the state variable st−1, the density function in
Equation (5) becomes

f (εst ,t|θ, Ωt−1) =
2

∑
j=1

2

∑
k=1

pjkρj,t−1 f (εst ,t|st = j, θ, Ωt−1). (6)

ρj,t−1 can be obtained using an integrative algorithm given in Hamilton [25]. The log-
likelihood function corresponds to Equation (3) as

L(θ|ε) =
T

∑
t=2

ln f (εst ,t|θ, Ωt−1), where ε = (εst ,1, εst ,2, ..., εst ,T)
′, (7)

and the MLE estimator θ̂ is obtained by maximizing Equation (7).
To identify which state the financial return series lies in at time t, the smoothing

probability of the calm state is constructed as follows [25]:

P(st = 1|θ, ΩT) = ρ1,t[
p11P(st+1 = 1|θ, ΩT)

P(st+1 = 1|θ, Ωt)
+

p12P(st+1 = 2|θ, ΩT)

P(st+1 = 2|θ, Ωt)
] (8)

Using the fact that P(sT = 1|θ, ΩT) = ρ1,T , the smoothing probability series P(st = 1|θ, ΩT)
can be generated by iterating Equation (8) backwards from T to 1. As suggested by
Hamilton [25], a widely recognized rule to identify the state of rt is that if P(st = 1|θ, ΩT)
is less than 0.5, rt is assumed to lie in the turbulent state at time t, and otherwise, in the
calm state.
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We did not use QMLE and MRS-EGARCH with the Gaussian distribution (MRS-
EGARCH-N) for the following reasons: As noted by Klaassen [31], Ardia [32] and
Haas [33], if regimes are not Gaussian but leptokurtic, the use of within-regime normality
can seriously affect the identification of the regime process. The details can be found in
Haas and Paolella [34], who further argue that the QMLE based on Gaussian components
does not provide a consistent estimator of the MRS-GARCH model if the true distribution of
innovations is not Gaussian. This argument may also apply to the MRS-EGARCH extension.

A Monte Carlo study was performed to verify this argument. We constructed simulations
for 12 sets of different p11, p22 (in Diebold and Inoue [3], the confusion between long memory
and regime switching is much more significant when transition probabilities are greater than
or equal to 0.99; thus, we only selected the transition probabilities studied in their work that
are greater than or equal to 0.99; we also investigated the case where transition probabilities
are smaller (e.g., 0.90 and 0.95), and the results were generally consistent), P1 and P2, where
µ1 = µ2 = 0, ω1 = 0.1, ω2 = 0.5, α1 = 0.1, α2 = 0.2, γ1 = γ2 = 0 and T = 5000. Note that
although the original MRS-EGARCH model makes regime switching in the mean possible, it
is not our focus in this study. Thus, we set both µ1 and µ2 to 0, which is the widely observed
mean for financial return. Moreover, the simulated data followed Student’s t-distribution with
3 degrees of freedom. The replicates and each simulation were further truncated as described in
Section 2 to avoid simulation bias. All simulated data were fitted to the MRS-EGARCH-N and
MRS-EGARCH-t models, and the results are presented in Table 2.

The bias in Table 2 suggests that the MRS-EGARCH-N model is not consistent in
either transition probabilities or volatility persistence. The SE further indicates that the
MRS-EGARCH-N model is much less efficient than the MRS-EGARCH-t model. Thus, we
demonstrated that the QMLE estimator of the MRS-EGARCH model is neither consistent
nor efficient when the true distribution of innovations is not Gaussian. As a result, the
MRS-EGARCH-t model was employed in the rest of this study.
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Table 2. Report of simulation results of MRS-EGARCH(1,1) models.

p11 p22 P1 P2 Biasp11 RMSEp11 SEp11 Biasp22 RMSEp22 SEp22 BiasP1 RMSEP1 SEP1 BiasP2 RMSEP2 SEP2

Panel A: MRS-EGARCH(1,1) Model with Normal Distribution
0.99 0.999 0.70 0.90 −0.1018 0.1085 0.0379 −0.7786 0.7847 0.0982 0.1056 0.1188 0.0548 0.0938 0.0951 0.0158

0.80 0.80 −0.1070 0.1136 0.0383 −0.7865 0.7963 0.1251 −0.0615 0.1118 0.0938 0.1818 0.1866 0.0420
0.90 0.70 −0.0982 0.1037 0.0333 −0.8242 0.8311 0.1072 −0.2640 0.2748 0.0768 0.2455 0.2809 0.1372

0.999 0.99 0.70 0.90 −0.1045 0.1085 0.0290 −0.7037 0.7112 0.1038 0.0484 0.1006 0.0886 0.0920 0.0928 0.0116
0.80 0.80 −0.0979 0.1032 0.0328 −0.7592 0.7697 0.1274 −0.0686 0.0827 0.0464 0.1835 0.1965 0.0706
0.90 0.70 −0.0960 0.1005 0.0299 −0.7538 0.7622 0.1139 −0.1510 0.1588 0.0494 0.2891 0.2903 0.0272

0.99 0.99 0.70 0.90 −0.0934 0.0970 0.0260 −0.7198 0.7337 0.1426 0.1364 0.1606 0.0852 0.0903 0.0944 0.0279
0.80 0.80 −0.1034 0.1068 0.0272 −0.7490 0.7557 0.1009 0.0121 0.0370 0.0352 0.1929 0.1931 0.0080
0.90 0.70 −0.1098 0.1136 0.0292 −0.7757 0.7798 0.0805 −0.1355 0.1407 0.0378 0.2654 0.2932 0.1252

0.999 0.999 0.70 0.90 −0.0870 0.0901 0.0235 −0.6683 0.6912 0.1771 0.1759 0.1904 0.0734 0.0896 0.0964 0.0358
0.80 0.80 −0.0971 0.1010 0.0282 −0.7000 0.7218 0.1772 0.0583 0.0910 0.0702 0.1912 0.1918 0.0151
0.90 0.70 −0.1152 0.1186 0.0284 −0.7696 0.7766 0.1040 −0.1273 0.1417 0.0627 0.2854 0.2867 0.0274

Panel B: MRS-EGARCH(1,1) Model with Student’s t-Distribution
0.99 0.999 0.70 0.90 −0.0065 0.0202 0.0192 −0.0002 0.0008 0.0008 −0.0567 0.2206 0.2143 −0.0008 0.0337 0.0339

0.80 0.80 −0.0032 0.0148 0.0145 −0.0003 0.0009 0.0009 −0.0661 0.1747 0.1625 −0.0098 0.0475 0.0467
0.90 0.70 −0.0049 0.0201 0.0196 −0.0003 0.0010 0.0010 −0.0490 0.1261 0.1168 −0.0071 0.0550 0.0548

0.999 0.99 0.70 0.90 −0.0003 0.0009 0.0009 −0.0034 0.0118 0.0114 −0.0207 0.0606 0.0572 −0.0445 0.1606 0.1551
0.80 0.80 −0.0005 0.0015 0.0014 −0.0046 0.0162 0.0156 −0.0046 0.0524 0.0524 −0.0594 0.2087 0.2010
0.90 0.70 −0.0010 0.0027 0.0025 −0.0070 0.0204 0.0193 −0.0092 0.0388 0.0379 −0.0278 0.1886 0.1875

0.99 0.99 0.70 0.90 -0.0009 0.0030 0.0028 −0.0008 0.0033 0.0032 −0.0953 0.1620 0.1317 −0.0058 0.0491 0.0490
0.80 0.80 −0.0021 0.0049 0.0044 −0.0004 0.0034 0.0034 −0.0682 0.1772 0.1644 −0.0007 0.0533 0.0536
0.90 0.70 −0.0028 0.0077 0.0073 −0.0017 0.0068 0.0066 −0.0392 0.0875 0.0786 -0.0359 0.1188 0.1138

0.999 0.999 0.70 0.90 −0.0004 0.0014 0.0014 −0.0007 0.0021 0.0020 −0.0205 0.0898 0.0879 −0.0015 0.0472 0.0474
0.80 0.80 −0.0003 0.0015 0.0014 −0.0004 0.0024 0.0024 −0.0018 0.0529 0.0531 −0.0002 0.0506 0.0508
0.90 0.70 −0.0011 0.0078 0.0078 −0.0016 0.0100 0.0100 −0.0161 0.0499 0.0474 −0.0107 0.0975 0.0974

This table presents the report of the simulation results of MRS-EGARCH(1,1) models with normal and Student’s t-distributions. p11 and p22 are true values of the transition probabilities
in calm and turbulent states, respectively. P1 is the persistence of the calm state (P1 = α1 + β1). P2 is the persistence of the turbulent state (P2 = α2 + β2). For explanations of other
variables, please see Table 1.
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4. Confusion between Long Memory and Regime Switching

Diebold and Inoue [3] argue that under certain conditions, even if the true DGP
is MRS, it can cause long memory and is easily confused with it. We demonstrate
this in Tables 3 and 4, where the previously generated FIEGARCH and MRS-EGARCH
simulations are fitted into MRS-EGARCH-t and MRS-FIEGARCH-t models, respectively.

In Table 3, it can be seen that although the true DGP was MRS-EGARCH, the mean
estimate of d obtained with the FIEGARCH model is considerably large in all cases.
Additionally, the fraction of rejection with H0 : d = 0 at 5% is large and close to 1 in
all cases, which significantly suggests that the MRS-EGARCH DGP can be confused with
the FIEGARCH DGP. In Table 4, the mean estimates of p11 and p22 are all greater than 0.9.
Thus, the true FIEGARCH DGP can also lead to confused MRS-EGARCH estimates (we
also extended our study to the FIEGARCH DGP where d is greater than 0.5; the estimations
led to the same conclusion and are available upon request). Nevertheless, it is interesting
to note that the mean estimates of the degree of freedom with Student’s t-distribution are
very close to 3. This suggests that even if the DGP is fitted into the ‘wrong’ model, the
distribution of innovations can be properly fitted and identified.

To distinguish these two DGPs, we performed the regular residual diagnostics for
(squared) standardized residuals (in the MRS-EGARCH model, estimated volatility is the
weighted average of estimated volatility in the calm and turbulent states; the weights
are set to the corresponding update probability P(st|θ, Ωt−1); the details can be found in
Hamilton [25], Hamilton [62] and Haas et al. [26]) for both the FIEGARCH and MRS-
EGARCH models, including the BDS test, the ARCH LM test, the Ljung–Box test and RMSE
(where r2

t is assumed to be the true volatility at time t). In Table 5, it can be seen that both the
FIEGARCH and MRS-EGARCH models generated similar residual diagnostics when the
true DGP was FIEGARCH. More specifically, it appears that residual diagnostics from the
FIEGARCH model were slightly better. In relation to the MRS-EGARCH DGP, in Table 6,
it can be observed that the same conclusions still hold. In summary, the regular residual
diagnostics cannot distinguish between the FIEGARCH and MRS-EGARCH DGPs. In
addition, the FIEGARCH model tends to generate comparatively better residual diagnostics,
even if the true DGP is MRS-EGARCH.

In addition to the traditional residual diagnostics, Li and Mak [35] proposed portmanteau
statistics for the time series goodness-of-fit test to detect whether the fitted ARCH process is
adequate. Based on their work, Fisher and Gallagher [36] proposed a weighted version of this
test and argued that their test is more powerful. We here generated the original portmanteau
statistics and their weighted version for the FIEGARCH and MRS-EGARCH DGPs. However,
in Table 7, no matter which DGP was true, the FIEGARCH and MRS-EGARCH models
led to similar results. In addition, FIEGARCH still tended to generate slightly better
portmanteau statistics. Thus, we demonstrated that the (weighted) portmanteau statistics
cannot distinguish between the FIEGARCH and MRS-EGARCH DGPs either.

The above conclusions are consistent with those by Diebold and Inoue [3], who argue
that long memory and regime switching are interchangeable concepts and should not be
distinguished. In addition, they further argue that the long memory in regime switching is
caused by the time-varying transition probabilities p11 and p22. However, in the standard
MRS(-EGARCH) framework, transition probabilities are not time dependent. Thus, based
on proposition three in Diebold and Inoue [3], Shi [37] gives a refined proof, arguing that
the significant long memory of the MRS DGP is caused by the smoothing probability series
P(st = 1|ΩT). Further, the author demonstrates that if the effects of P(st = 1|ΩT) can
be appropriately controlled for, the long memory of MRS DGP will disappear. Although
the results obtained by Shi [37] were derived for the first moment, the same idea could
be straightforwardly extended to the case of the MRS-EGARCH DGP. In the next section,
we will test this argument by proposing different approaches to control for the effect of
P(st = 1|ΩT).
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Table 3. Report of FIEGARCH(1,d,1) models fitted for simulated MRS-EGARCH(1,1) data.

p11 p22 P1 P2 Meand SEd Frac. Rej. Meanφ SEφ Meanβ SEβ Meanv SEv

0.99 0.999 0.7 0.9 0.8395 0.1457 1.0000 0.0361 0.0726 0.5350 0.1051 2.9584 0.1834
0.8 0.8 0.6930 0.2382 1.0000 0.0436 0.2125 0.3854 0.2298 2.7952 0.2064
0.9 0.7 0.6593 0.2932 0.9889 −0.0125 0.3756 0.2498 0.3971 2.5941 0.2275

0.999 0.99 0.7 0.9 0.6956 0.2140 1.0000 0.0783 0.2281 0.4051 0.2292 2.6630 0.1511
0.8 0.8 0.7811 0.2045 1.0000 0.0242 0.1928 0.4253 0.2232 2.6982 0.1029
0.9 0.7 0.9008 0.1190 1.0000 0.0198 0.0730 0.5369 0.1113 2.7589 0.0849

0.99 0.99 0.7 0.9 0.8827 0.1098 1.0000 0.0619 0.0672 0.6158 0.1081 3.0658 0.1139
0.8 0.8 0.8017 0.1376 1.0000 0.0688 0.0922 0.5226 0.1350 2.9318 0.1054
0.9 0.7 0.7733 0.1729 1.0000 0.0747 0.1450 0.4837 0.1776 2.7564 0.1083

0.999 0.999 0.7 0.9 0.5659 0.1620 1.0000 0.1725 0.2833 0.4438 0.2305 3.0655 0.2113
0.8 0.8 0.5164 0.1882 1.0000 0.0404 0.1580 0.2703 0.2199 3.0241 0.1915
0.9 0.7 0.5998 0.2889 1.0000 0.1027 0.3688 0.3820 0.3579 2.8984 0.1972

This table presents the report of FIEGARCH(1,d,1) models fitted to simulated MRS-EGARCH(1,1) data. v is the degree of freedom of Student’s t-distribution. Mean is the mean of
simulated data. Frac. Rej. is the Z-test fraction of rejection with the hypotheses H0 : d = 0 against H1 : d 6= 0 at the 5% level. For explanations of other variables, please see Tables 1 and 2.

Table 4. Report of MRS-EGARCH(1,1) models fitted for simulated FIEGARCH(1,d,1) data.

d φ β Meanp11 SEp11 Meanp22 SEp22 MeanP1 SEP1 MeanP2 SEP2 Meanv SEv

0.25 0.20 0.30 0.9590 0.1433 0.9437 0.1510 0.9100 0.0664 0.8214 0.2269 3.0826 0.2381
0.25 0.25 0.9424 0.1456 0.9377 0.1224 0.7925 0.1957 0.7951 0.2062 3.0923 0.2318
0.30 0.20 0.9554 0.1269 0.9502 0.1067 0.7894 0.1474 0.7784 0.1800 3.1204 0.1874

0.30 0.20 0.30 0.9135 0.1795 0.9077 0.1558 0.9259 0.0756 0.8002 0.2018 3.1227 0.2959
0.25 0.25 0.9616 0.1135 0.9511 0.1140 0.8247 0.1351 0.8239 0.1633 3.0969 0.1802
0.30 0.20 0.9703 0.0898 0.9686 0.0769 0.7042 0.1857 0.8540 0.1597 3.0916 0.1970

0.40 0.20 0.30 0.9578 0.1338 0.9258 0.1102 0.8909 0.1278 0.8092 0.2501 3.1506 0.2758
0.25 0.25 0.9619 0.1304 0.9567 0.1220 0.8023 0.1580 0.8988 0.1096 3.1118 0.1826
0.30 0.20 0.9610 0.1125 0.9578 0.0914 0.7706 0.1413 0.8600 0.1500 3.1242 0.2096

This table presents the report of MRS-EGARCH(1,1) models fitted to simulated FIEGARCH(1,d,1) data. For explanations of other variables, please see Tables 1–3.
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Table 5. Residual diagnostics of simulated FIEGARCH(1,d,1) data.

d φ β T .S. MeanF SEF MeanM SEM

0.25 0.20 0.30 BDS10 0.0133 0.7662 0.1410 0.8988
Q2

10 5.2108 11.2434 5.5899 12.1978
ARCH10 5.2340 11.5583 5.6299 12.6512

RMSE 4.2066 6.8830 4.1902 6.8768
0.25 0.25 BDS10 −0.0752 0.7469 0.0000 1.4380

Q2
10 4.9148 8.6911 8.5754 15.1184

ARCH10 4.9179 8.7818 8.4879 15.0239
RMSE 13.7959 55.1468 13.6060 54.7151

0.30 0.20 BDS10 −0.0734 0.7924 −0.1212 0.9680
Q2

10 6.3342 15.5035 8.6708 21.9205
ARCH10 6.3570 15.7050 8.7277 22.4546

RMSE 13.4668 73.0038 13.1959 70.4409
0.30 0.20 0.30 BDS10 0.0233 0.7576 0.0524 1.0280

Q2
10 5.6352 6.6167 6.0118 6.6788

ARCH10 5.6528 6.6078 6.0537 6.7141
RMSE 44.8645 293.6618 44.1183 289.2863

0.25 0.25 BDS10 −0.1220 0.8157 −0.1836 0.9124
Q2

10 4.6718 6.5992 5.8339 8.8904
ARCH10 4.6670 6.6617 5.8326 9.0970

RMSE 5.5702 9.7724 5.5939 9.8677
0.30 0.20 BDS10 −0.1757 0.8408 −0.1794 0.9776

Q2
10 11.2824 34.2011 11.6563 31.1345

ARCH10 11.2057 34.2707 11.3387 31.0032
RMSE 9.6294 25.0198 9.5893 24.7331

0.40 0.20 0.30 BDS10 0.0491 0.7625 −0.1545 1.0405
Q2

10 5.3454 9.1005 7.2278 12.2329
ARCH10 5.4062 9.2654 7.2497 12.4573

RMSE 11.7022 29.0003 11.7131 29.2845
0.25 0.25 BDS10 −0.0368 0.6686 −0.0700 0.9103

Q2
10 9.5683 40.3191 10.8221 35.5858

ARCH10 9.9554 44.0926 11.0835 38.2291
RMSE 20.6759 118.8271 20.6013 117.8379

0.30 0.20 BDS10 −0.0318 0.6903 0.1064 0.7356
Q2

10 5.1676 13.8613 7.4817 14.8697
ARCH10 5.2513 14.1162 7.5215 14.8597

RMSE 16.0734 53.5696 16.2058 53.3645
This table presents the residual diagnostics of simulated FIEGARCH(1,d,1) data fitted by the FIEGARCH(1,d,1)
and MRS-EGARCH(1,1) models. T.S. is the test statistics. BDS10 is the Brock–Dechert–Scheinkman test statistics
of 2 times the standard error of the standardized residuals at embedding dimension 10. Q2

10 is the Ljung–Box
test statistics of the squared standardized residuals at lag 10. ARCH10 is the ARCH LM test statistics at lag 10.
Subscripts F and M indicate that the data were fitted by the FIEGARCH and MRS-EGARCH models, respectively.
For explanations of other variables, please see Tables 1 and 3.
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Table 6. Residual diagnostics of simulated MRS-EGARCH(1,1) data.

p11 p22 P1 P2 T .S. MeanM SEM MeanF SEF

0.99 0.999 0.7 0.9 BDS10 0.3789 0.7057 −0.7888 0.7851
Q2

10 4.9945 8.7739 4.0924 6.3254
ARCH10 4.9792 8.7360 4.0842 6.2429

RMSE 75.8941 336.8425 77.5118 342.6671
0.8 0.8 BDS10 0.3576 0.8572 −1.0068 0.8686

Q2
10 8.5721 25.0754 6.6365 21.2849

ARCH10 8.5611 24.9695 6.6462 21.1483
RMSE 17.5032 17.8837 18.3780 19.0081

0.9 0.7 BDS10 0.2964 0.8398 −1.0093 0.9724
Q2

10 14.9499 75.2543 11.7877 61.6853
ARCH10 15.0995 75.5511 11.8934 61.8627

RMSE 16.5833 39.8978 17.8228 43.1337
0.999 0.99 0.7 0.9 BDS10 −0.5348 0.7244 −0.5901 0.8186

Q2
10 5.6235 8.1374 3.8480 5.8484

ARCH10 5.6175 8.1308 3.9184 5.8912
RMSE 6.6577 8.7166 6.8684 8.8018

0.8 0.8 BDS10 0.0647 0.8045 −0.6146 0.9179
Q2

10 5.4688 10.0268 3.8438 6.9547
ARCH10 5.4655 10.0327 3.8459 6.9297

RMSE 10.3642 26.7462 10.8935 28.2904
0.9 0.7 BDS10 0.4511 0.7632 −0.5370 0.7882

Q2
10 9.2003 21.0549 7.0127 15.6293

ARCH10 8.8097 20.7949 6.8447 15.5942
RMSE 18.0351 74.4141 18.6012 76.1240

0.99 0.99 0.7 0.9 BDS10 1.3985 0.9943 −0.6543 0.8123
Q2

10 7.4908 10.7930 3.2657 4.7852
ARCH10 7.5250 10.7864 3.2891 4.7723

RMSE 29.3711 87.7145 30.3360 92.6413
0.8 0.8 BDS10 1.6589 0.9200 −0.7349 0.7260

Q2
10 8.8385 27.2079 3.3795 5.1603

ARCH10 8.8320 27.3229 3.3994 5.1391
RMSE 15.0225 30.7302 15.6088 31.9617

0.9 0.7 BDS10 1.4306 0.8139 −0.9010 0.6738
Q2

10 7.0922 14.3596 3.7008 4.0653
ARCH10 7.1238 14.3857 3.7407 4.0581

RMSE 8.4510 7.5836 8.8776 7.8413
0.999 0.999 0.7 0.9 BDS10 −0.2073 0.9299 −0.2667 0.8951

Q2
10 7.3378 21.9069 3.4260 3.7045

ARCH10 7.3352 21.8138 3.4409 3.6902
RMSE 23.8958 37.4255 23.8092 37.5175

0.8 0.8 BDS10 0.2222 0.7140 −0.2229 0.8439
Q2

10 9.2715 37.2369 5.3637 17.0294
ARCH10 9.6403 40.5428 5.4710 17.8718

RMSE 19.3006 35.2455 19.7992 36.5110
0.9 0.7 BDS10 0.4342 0.7573 −0.2745 0.9140

Q2
10 8.2538 20.8893 6.7830 27.8055

ARCH10 8.3362 21.6387 6.9858 29.8967
RMSE 12.7156 31.9479 13.0580 32.3474

This table presents the residual diagnostics of simulated MRS-EGARCH(1,1) data fitted by the MRS-EGARCH(1,1)
and FIEGARCH(1,d,1) models. For explanations of other variables, please see Tables 2, 3 and 5.
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Table 7. Portmanteau statistics of simulated data.

Simulated FIEGARCH(1,d,1) Data

d φ β MeanW
F SEW

F MeanW
M SEW

M MeanF SEF MeanM SEM

0.25 0.20 0.30 3.0678 8.3217 3.4293 9.5178 5.0218 11.2059 5.3218 12.1739
0.25 0.25 2.9581 7.4701 4.8434 10.2001 4.5253 8.5798 8.0232 14.7383
0.30 0.20 3.1981 10.4140 4.3097 14.7415 5.7398 15.4295 7.7122 21.2627

0.30 0.20 0.30 3.0578 4.3022 3.1437 4.3853 4.8892 6.0705 5.1166 6.2266
0.25 0.25 2.8924 5.3889 3.2516 7.0844 4.3713 6.5793 5.1175 8.5981
0.30 0.20 5.9332 20.4833 5.4874 17.4369 10.1563 33.6301 9.9749 29.4303

0.40 0.20 0.30 2.8901 5.8113 3.5237 6.1205 4.6193 8.2164 5.5376 8.4298
0.25 0.25 6.0485 32.0432 6.3216 27.9729 8.1199 39.9561 8.7933 35.0051
0.30 0.20 3.2342 12.2935 3.5299 6.5648 4.9023 13.7975 6.9829 14.7758

Simulated MRS-EGARCH(1,1) Data

p11 p22 P1 P2 MeanW
M SEW

M MeanW
F SEW

F MeanM SEM MeanF SEF

0.99 0.999 0.7 0.9 2.9800 6.6697 2.3693 4.6585 4.6091 8.6743 3.7827 6.2437
0.8 0.8 4.4845 14.8655 3.6094 12.8819 7.6088 24.4392 6.1025 21.1678
0.9 0.7 7.2082 29.0092 5.5365 23.6750 14.6289 75.1146 11.4641 61.5562

0.999 0.99 0.7 0.9 2.7065 3.6826 1.9050 3.0922 4.5501 5.914 3.2845 5.1376
0.8 0.8 3.0007 7.0769 2.0661 4.5270 4.8775 9.8641 3.4009 6.7012
0.9 0.7 5.1750 12.7450 4.0420 11.3556 8.5149 21.0259 6.4298 15.4619

0.99 0.99 0.7 0.9 4.0323 5.7687 1.7833 2.6296 6.6398 9.5846 2.9948 4.6574
0.8 0.8 4.6478 13.9927 1.7534 2.6817 8.4526 27.1193 3.1012 5.1196
0.9 0.7 4.1918 10.3562 1.9848 2.4181 6.6259 14.3723 3.3306 3.9616

0.999 0.999 0.7 0.9 3.5769 10.8329 1.8607 2.5056 6.9607 21.8346 3.1524 3.5797
0.8 0.8 6.2002 35.1877 3.2757 15.5554 8.2514 36.7399 4.6226 16.2494
0.9 0.7 5.8826 18.5949 4.9015 24.9273 7.8856 20.9005 6.4630 27.7951

This table presents the summary of portmanteau statistics (from the original Li and Mak [35] test and the new
weighted version extended by Fisher and Gallagher [36]) of simulated FIEGARCH(1,d,1) and MRS-EGARCH(1,1)
data. The lag was set to 10. The number of ARCH parameters was set to 1. The reported test statistics are for
correlations. Superscript W indicates the new weighted portmanteau statistics. Superscript W stands for the
weighted portmanteau statistics. Subscripts F and M stand for the FIEGARCH and MRS-EGARCH models,
respectively. For explanations of other variables, please see Tables 1–3.

5. MRS-FIEGARCH Framework

To control for the effect of P(st = 1|ΩT), as studied in Shi [37], we firstly propose a
two-stage two-state FIEGARCH (2S-FIEGARCH) model.

5.1. 2S-FIEGARCH(1,d,1) Model

Adopting the idea of time-varying FIEGARCH family models [63,64], we allow the
intercept of the FIEGARCH process to be time dependent with the following steps: First,
a MRS-EGARCH model is fitted to the data to estimate the smoothing probability series
P(st = 1|ΩT). Using the criteria of Hamilton [25], when P(st = 1|ΩT) is greater than
0.5, rt is assumed to lie in the calm state, and otherwise, in the turbulent state. Second,
the intercept ω in Equation (1) is set to ω1 if rt lies in the calm state and is set to ω2 if
rt lies in the turbulent state. Moreover, we require ω1 < ω2 so that the calm state has a
smaller volatility. In this way, the time-varying intercept ω should capture the variation in
P(st = 1|ΩT). As a result, if long memory is purely caused by regime switching, we expect
the estimate of d to be close to 0 when the data are fitted into the 2S-FIEGARCH model.

To verify this, we fitted both the previously simulated FIEGARCH and MRS-FIEGARCH
datasets into the 2S-FIEGARCH model with Student’s t-distribution. The essential estimates
are summarized in Table 8. It can be seen that when the true DGP was FIEGARCH, the
mean of the estimated d was mostly significant (indicated by the fraction of rejection with
H0 : d = 0) and not far from the true value. Further, when the true DGP was MRS-EGARCH,
the mean estimate of d was mostly insignificant and close to 0. Hence, we demonstrated that
the 2S-FIEGARCH framework is effective in controlling for P(st = 1|ΩT) and distinguishes
between FIEGARCH and MRS-EGARCH DGPs. In addition, the mean estimates of v were
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close to the true value of 3 in all cases, indicating the capability of this model of identifying
and estimating the underlying distribution.

Table 8. Summary of 2S-FIEGARCH(1,d,1) models.

Simulated FIEGARCH(1,d,1) Data

d φ β Meand SEd Frac. Rej. Meanω1 SEω1 Meanω2 SEω2 Meanv SEv

0.25 0.20 0.30 0.1691 0.1067 0.9800 0.0591 0.0443 0.2138 0.3139 3.0271 0.1626
0.25 0.25 0.2478 0.0871 1.0000 0.1679 0.4801 0.1057 0.1473 3.0154 0.1884
0.30 0.20 0.2112 0.1571 0.9600 0.0745 0.0393 0.2427 0.1907 3.0198 0.1816

0.30 0.20 0.30 0.2838 0.1103 1.0000 0.2107 0.8536 0.3553 0.2817 2.9876 0.1669
0.25 0.25 0.2891 0.1178 0.9900 0.2015 0.3423 0.4944 0.4932 2.9509 0.1936
0.30 0.20 0.2475 0.1725 0.9900 0.0921 0.0480 0.3147 0.3123 3.0278 0.2199

0.40 0.20 0.30 0.3908 0.1262 1.0000 0.2375 1.0061 0.9295 1.5330 2.9758 0.1679
0.25 0.25 0.4157 0.1973 0.9800 0.0922 0.0573 0.3489 0.3163 2.9486 0.2088
0.30 0.20 0.4863 0.1931 0.9900 0.1558 0.0718 0.6042 0.4183 2.8983 0.1836

Simulated MRS-EGARCH(1,1) Data

p11 p22 P1 P2 Meand SEd Frac. Rej. Meanω1 SEω1 Meanω2 SEω2 Meanv SEv

0.99 0.999 0.7 0.9 0.0057 0.0163 0.0000 0.0760 0.0790 0.5680 0.0811 2.9745 0.1314
0.8 0.8 0.0044 0.0084 0.0000 0.0964 0.0263 0.5405 0.0806 3.0309 0.1492
0.9 0.7 0.0063 0.0109 0.0000 0.1806 0.2766 0.5069 0.0912 2.9662 0.1502

0.999 0.99 0.7 0.9 0.0028 0.0064 0.0100 0.1045 0.0168 0.9268 0.2750 2.9831 0.1377
0.8 0.8 0.0071 0.0224 0.0208 0.1025 0.0180 0.5871 0.1739 2.9869 0.1527
0.9 0.7 0.0167 0.0832 0.0204 0.1091 0.0200 0.4926 0.3023 2.9953 0.1557

0.99 0.99 0.7 0.9 0.0012 0.0025 0.0000 0.1066 0.0193 0.9467 0.1909 2.9775 0.1575
0.8 0.8 0.0007 0.0020 0.0000 0.1306 0.0211 0.7257 0.1333 3.0422 0.1677
0.9 0.7 0.0026 0.0063 0.0100 0.1396 0.0224 0.5155 0.1034 3.0571 0.1912

0.999 0.999 0.7 0.9 0.0030 0.0061 0.0103 0.0871 0.0172 0.6986 0.1464 2.9574 0.1351
0.8 0.8 0.0043 0.0088 0.0000 0.1042 0.0168 0.5419 0.0949 3.0040 0.1326
0.9 0.7 0.0137 0.0827 0.0208 0.1230 0.0278 0.4207 0.1163 3.0012 0.1587

This table presents the summary of 2S-FIEGARCH(1,d,1) models fitted to simulated FIEGARCH(1,d,1) and
MRS-EGARCH(1,1) data. For explanations of other variables, please see Tables 1–3.

5.2. 2S-V-FIEGARCH(1,d,1) Model

To be more flexible, the φ, β and γ of the FIEGARCH process in Equation (1) can also
be time-varying. In this paper, we only considered the case where the long-memory term is
constant for a finite sample, that is, the long-memory parameter d is not allowed to change
along with time. Since the long-memory parameter d is defined by var(ST) = O(T2d+1),
allowing it to change over time for a finite period could lead to problematic interpretation.
Therefore, we extended the 2S-FIEGARCH model to the two-state time-varying FIEGARCH
(2S-V-FIEGARCH) model by setting φ, β and γ to φ1, β1 and γ1 for the calm state and to φ2,
β2 and γ2 for the turbulent state.

We further fitted the simulated FIEGARCH and MRS-EGARCH datasets into the 2S-
V-FIEGARCH model, and the results can be used to check the robustness of our previous
conclusions. In Table 9, the summarized estimates suggest that the mean estimates of d
were mostly significant and not far from the true value with the FIEGARCH DGP and were
mostly insignificant and close to 0 with the MRS-EGARCH DGP. In addition, the mean
estimates of v were still similar to the true value of 3.

As a result, we demonstrated that when φ and β are time-varying, the more flexible 2S-
V-FIEGARCH model can also distinguish between the FIEGARCH and MRS-EGARCH DGPs.



Axioms 2023, 12, 446 16 of 25

Table 9. Summary of 2S-V-FIEGARCH(1,d,1) models.

Simulated FIEGARCH(1,d,1) Data

d φ β Meand SEd Frac. Rej. Meanω1 SEω1 Meanω2 SEω2 Meanv SEv

0.25 0.20 0.30 0.1650 0.1116 0.9400 0.0500 0.0568 0.2789 0.4052 3.0271 0.1869
0.25 0.25 0.2565 0.0924 1.0000 0.1983 0.3863 0.1348 0.1336 3.0406 0.2358
0.30 0.20 0.1912 0.1456 0.9495 0.0722 0.0591 0.2974 0.2809 3.0527 0.2033

0.30 0.20 0.30 0.2976 0.1239 1.0000 0.1166 0.0994 0.2749 0.3647 2.9871 0.1734
0.25 0.25 0.2743 0.1357 0.9800 0.2080 0.4098 0.3091 0.3214 2.9892 0.1904
0.30 0.20 0.2557 0.2012 0.9697 0.1002 0.0547 0.3001 0.3196 3.0364 0.2167

0.40 0.20 0.30 0.4075 0.2041 0.9798 0.1511 0.3152 2.0066 2.0958 2.8172 0.4020
0.25 0.25 0.4596 0.2184 0.9700 0.0920 0.0611 0.3921 0.4710 2.9473 0.2321
0.30 0.20 0.5343 0.1824 1.0000 0.1513 0.0783 0.6857 0.4919 2.8758 0.1776

Simulated MRS-EGARCH(1,1) Data

p11 p22 P1 P2 Meand SEd Frac. Rej. Meanω1 SEω1 Meanω2 SEω2 Meanv SEv

0.99 0.999 0.7 0.9 0.0048 0.0151 0.0000 0.1449 0.0612 0.5083 0.0621 3.0103 0.1315
0.8 0.8 0.0041 0.0083 0.0217 0.1352 0.1039 0.5028 0.0783 3.0253 0.1419
0.9 0.7 0.0076 0.0147 0.0333 0.2011 0.4379 0.5209 0.1067 2.9649 0.1544

0.999 0.99 0.7 0.9 0.0026 0.0065 0.0200 0.1098 0.0195 0.8820 0.5270 2.9944 0.1472
0.8 0.8 0.0101 0.0477 0.0313 0.1018 0.0183 0.8369 0.4900 2.9907 0.1660
0.9 0.7 0.0063 0.0132 0.0107 0.1048 0.0208 0.9144 0.6240 2.9777 0.1625

0.99 0.99 0.7 0.9 0.0009 0.0020 0.0101 0.1490 0.0342 0.6406 0.1301 3.0514 0.1653
0.8 0.8 0.0016 0.0088 0.0000 0.1444 0.0348 0.6167 0.1331 3.0600 0.2060
0.9 0.7 0.0030 0.0096 0.0108 0.1370 0.0422 0.7413 0.2604 2.9356 0.2845

0.999 0.999 0.7 0.9 0.0024 0.0049 0.0000 0.1120 0.0284 0.5515 0.1231 3.0094 0.1495
0.8 0.8 0.0042 0.0083 0.0102 0.1053 0.0262 0.5470 0.1350 3.0010 0.1394
0.9 0.7 0.0077 0.0244 0.0220 0.1341 0.1848 0.5581 0.2044 2.9193 0.2245

This table presents the summary of 2S-V-FIEGARCH(1,d,1) models fitted to simulated FIEGARCH(1,d,1) and
MRS-EGARCH(1,1) data. For explanations of other variables, please see Tables 1–3.

5.3. MRS-FIEGARCH(1,d,1) Model

Instead of controlling for the effect of smoothing probability in separate stages, we
can incorporate it in the integrated one-stage framework. Based on this idea, we tried to
model the regime-switching process into the FIEGARCH framework, and we propose the
following MRS-FIEGARCH(1,d,1) model with Student’s t-distribution:

rt = µst + εst ,t

εst ,t = ηt
√

hst ,t where ηst ,t
iid∼ t(0, 1, v)

log hst ,t =


ω1 +

1− φL
1− βL

(1− L)−d(η1,t−1 + γ|η1,t−1|) when st = 1

ω2 +
1− φL
1− βL

(1− L)−d(η2,t−1 + γ|η2,t−1|) when st = 2

(9)

where only µ and ω can switch between states and st is defined in the same way as in
Equation (3). We can further allow φ and β to be time-varying and construct the MRS-V-
FIEGARCH(1,d,1) model with Student’s t-distribution. Thus, the new conditional variance
equations are

log hst ,t =


ω1 +

1− φ1L
1− β1L

(1− L)−d(η1,t−1 + γ1|η1,t−1|) when st = 1

ω2 +
1− φ2L
1− β2L

(1− L)−d(η2,t−1 + γ2|η2,t−1|) when st = 2
(10)

where φ, β and γ can also switch between states. In addition, the MRS-(V-)FIEGARCH
model can be estimated with the MLE in the same way as the MRS-EGARCH model.
Further, as the unconditional volatility of the FIGARCH model does not exist [65], which
may also be applicable to FIEGARCH, we require that for finite T, the mean of conditional
volatility in the calm state is smaller than that in the turbulent state.
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We here argue that the MRS-FIEGARCH framework can also distinguish between the
FIEGARCH and MRS-EGARCH DGPs. To verify this, previously simulated data were
fitted into the MRS-FIEGARCH and MRS-V-FIEGARCH models, and the estimates are
summarized in Tables 10 and 11, respectively.

The mean estimates of d in Table 10 were all significant and close to the true values
with the FIEGARCH DGP and were mostly insignificant and close to 0 with the MRS-
EGARCH DGP in all cases. As its robustness check, in Table 11, the estimated d with the
MRS-V-FIEGARCH model led to almost the same conclusion. Turning to the simulated
MRS-EGARCH data, the mean estimates of p11 and p22 in Tables 10 and 11 were close
to the corresponding true values. Therefore, we further argue that MRS-FIEGARCH can
consistently identify the states of the MRS-EGARCH DGP. In addition, we note that the
mean estimates of v were still close to the true value of 3 in all cases.

Finally, it is interesting to see how the MRS-FIEGARCH framework performs when the
true DGP contains both long memory and regime switching. The MRS-V-FIEGARCH(1,d,1)
DGP (we also conducted a simulation study with the MRS-FIEGARCH DGP (only ω
was allowed to change), and the results were robust and are available upon request) was
employed to generate the simulation, where µ, ω1, ω2, φ1, β1, φ2 and β2 were set to 0, 0.1, 1,
0.2, 0.3, 0.3 and 0.2, respectively. Additionally, Student’s t-distributed innovation was used,
with v = 3. There were 12 combinations of different p11, p22 and d, the specific values of
which were consistent with those in previous simulations. We still generated 300 replicates
with 5000 simulated points for each combination. To avoid starting and simulation biases,
we adopted the same strategies described in Section 2. Each simulated dataset was then
fitted into the original FIEGARCH and MRS-V-FIEGARCH models, and the estimates are
summarized in Table 12.

Table 10. Summary of MRS-FIEGARCH(1,d,1) models.

Simulated FIEGARCH(1,d,1) Data

d φ β Meand SEd Frac. Rej. Meanp11 SEp11 Meanp22 SEp22 Meanv SEv

0.25 0.20 0.30 0.2456 0.0664 1.0000 0.8990 0.2247 0.5304 0.3741 3.0311 0.1888
0.25 0.25 0.2373 0.0898 1.0000 0.8972 0.2226 0.4898 0.3534 3.0699 0.2835
0.30 0.20 0.2271 0.0791 1.0000 0.7167 0.3685 0.6113 0.3687 3.0586 0.2027

0.30 0.20 0.30 0.3029 0.0952 1.0000 0.8548 0.2718 0.5159 0.3685 3.0258 0.1946
0.25 0.25 0.2673 0.0798 1.0000 0.9577 0.1320 0.5130 0.3502 3.0904 0.2046
0.30 0.20 0.2627 0.0846 1.0000 0.9615 0.1192 0.5008 0.3845 3.0966 0.1812

0.40 0.20 0.30 0.4034 0.0783 1.0000 0.9525 0.1221 0.5682 0.3585 3.0174 0.1283
0.25 0.25 0.3747 0.1097 1.0000 0.9000 0.2184 0.5841 0.3673 3.0390 0.1582
0.30 0.20 0.3574 0.0944 1.0000 0.8728 0.2284 0.6150 0.3640 3.0234 0.1544

Simulated MRS-EGARCH(1,1) Data

p11 p22 P1 P2 Meand SEd Frac. Rej. Meanp11 SEp11 Meanp22 SEp22 Meanv SEv

0.99 0.999 0.7 0.9 0.0115 0.0274 0.0000 0.9863 0.0147 0.9987 0.0008 2.9753 0.1242
0.8 0.8 0.0061 0.0100 0.0000 0.9884 0.0113 0.9988 0.0007 3.0337 0.1512
0.9 0.7 0.0081 0.0129 0.0000 0.9822 0.0204 0.9969 0.0093 2.9797 0.1453

0.999 0.99 0.7 0.9 0.0041 0.0074 0.0100 0.9988 0.0008 0.9866 0.0114 2.9995 0.1346
0.8 0.8 0.0108 0.0243 0.0306 0.9968 0.0123 0.9853 0.0160 2.9888 0.1506
0.9 0.7 0.0129 0.0274 0.0208 0.9939 0.0152 0.9805 0.0230 3.0079 0.1521

0.99 0.99 0.7 0.9 0.0067 0.0160 0.0204 0.9907 0.0022 0.9896 0.0032 2.9054 0.1464
0.8 0.8 0.0078 0.0141 0.0000 0.9883 0.0036 0.9894 0.0034 2.9799 0.1574
0.9 0.7 0.0099 0.0181 0.0000 0.9819 0.0114 0.9868 0.0082 3.0409 0.1781

0.999 0.999 0.7 0.9 0.0042 0.0074 0.0102 0.9986 0.0015 0.9983 0.0018 2.9684 0.1308
0.8 0.8 0.0072 0.0128 0.0000 0.9977 0.0100 0.9985 0.0025 2.9899 0.1389
0.9 0.7 0.0101 0.0237 0.0208 0.9979 0.0043 0.9978 0.0048 3.0205 0.1585

This table presents the summary of MRS-FIEGARCH(1,d,1) models fitted to simulated FIEGARCH(1,d,1) and
MRS-EGARCH(1,1) data. For explanations of other variables, please see Tables 1–3.
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Table 11. Summary of MRS-V-FIEGARCH(1,d,1) models.

Simulated FIEGARCH(1,d,1) Data

d φ β Meand SEd Frac. Rej. Meanp11 SEp11 Meanp22 SEp22 Meanv SEv

0.25 0.20 0.30 0.2538 0.0596 1.0000 0.9484 0.1397 0.6532 0.3624 3.0097 0.1434
0.25 0.25 0.2516 0.0885 1.0000 0.9643 0.1208 0.5828 0.3218 3.0223 0.1561
0.30 0.20 0.2369 0.0732 1.0000 0.9710 0.0843 0.5298 0.3377 3.0647 0.1831

0.30 0.20 0.30 0.3008 0.0933 1.0000 0.9542 0.1315 0.6362 0.3819 3.0632 0.2791
0.25 0.25 0.2834 0.0969 1.0000 0.9523 0.1617 0.6577 0.3385 3.0594 0.1583
0.30 0.20 0.2766 0.0780 1.0000 0.9470 0.1655 0.5648 0.3496 3.1050 0.1917

0.40 0.20 0.30 0.4057 0.0745 1.0000 0.9749 0.0787 0.7098 0.3113 3.0231 0.1081
0.25 0.25 0.3854 0.0996 1.0000 0.9325 0.1699 0.5717 0.3502 3.0334 0.1402
0.30 0.20 0.3688 0.0915 1.0000 0.9445 0.1370 0.6975 0.3326 3.0515 0.2049

Simulated MRS-EGARCH(1,1) Data

p11 p22 P1 P2 Meand SEd Frac. Rej. Meanp11 SEp11 Meanp22 SEp22 Meanv SEv

0.99 0.999 0.7 0.9 0.0087 0.0209 0.0000 0.9851 0.0165 0.9986 0.0013 2.9945 0.1308
0.8 0.8 0.0056 0.0097 0.0000 0.9877 0.0117 0.9978 0.0090 3.0407 0.1520
0.9 0.7 0.0094 0.0128 0.0000 0.9878 0.0106 0.9972 0.0102 2.9714 0.1474

0.999 0.99 0.7 0.9 0.0038 0.0070 0.0100 0.9987 0.0008 0.9865 0.0113 3.0108 0.1333
0.8 0.8 0.0118 0.0283 0.0309 0.9974 0.0084 0.9856 0.0161 2.9932 0.1552
0.9 0.7 0.0139 0.0342 0.0109 0.9976 0.0038 0.9822 0.0214 3.0166 0.1567

0.99 0.99 0.7 0.9 0.0023 0.0042 0.0000 0.9890 0.0029 0.9891 0.0032 2.9842 0.1400
0.8 0.8 0.0090 0.0187 0.0000 0.9878 0.0045 0.9894 0.0035 2.9947 0.1671
0.9 0.7 0.0137 0.0219 0.0220 0.9872 0.0070 0.9882 0.0073 3.0050 0.1673

0.999 0.999 0.7 0.9 0.0031 0.0061 0.0000 0.9983 0.0028 0.9982 0.0023 2.9892 0.1304
0.8 0.8 0.0077 0.0147 0.0000 0.9987 0.0014 0.9984 0.0032 2.9921 0.1395
0.9 0.7 0.0114 0.0309 0.0105 0.9982 0.0026 0.9970 0.0081 3.0269 0.1607

This table presents the summary of MRS-V-FIEGARCH(1,d,1) models fitted to simulated FIEGARCH(1,d,1) and
MRS-EGARCH(1,1) data. For explanations of other variables, please see Tables 1–3.

The mean estimates of d with the FIEGARCH model in Table 12 were all significant,
and all led to positive bias. This is consistent with our previous findings that regime
switching can lead to ‘spurious’ long memory in the FIEGARCH model. In addition, it is
interesting to note that the biases of d were generally greater in the cases where p11 and
p22 were smaller. Transition probabilities measure the expected length of remaining in
the interested state [8]. Hence, a smaller value of pjj means that rt tends to leave state
j quicker, and the transition between states is more frequent. Our results suggest that a
greater ‘spurious’ long-memory parameter would be generated in such case. Additionally,
the biases of d were relatively larger when the true value of d was smaller.

As demonstrated above, the MRS-V-FIEGARCH model can properly control for
the effect of smoothing probability and should generate more reliable estimates of the
long-memory parameter. In Table 12, it can be seen that the estimates of d were all
significant, with considerably smaller biases, compared with those of the FIEGARCH
model. The results of RMSE further confirm that the MRS-V-FIEGARCH model overall
outperformed the FIEGARCH counterpart in almost all cases. In relation to the transition
probabilities, the biases and SEs obtained with the MRS-V-FIEGARCH model were all
quite small. Hence, this suggests that the MRS-V-FIEGARCH model can correctly identify
the underlying volatility states.

In conclusion, with a Monte Carlo study, we demonstrated that the proposed MRS-
FIEGARCH framework can distinguish between the pure FIEGARCH and pure MRS-
EGARCH DGPs. More specifically, if the estimated d is significantly different from 0
in the FIEGARCH model and is insignificant in the MRS-FIEGARCH model, we can
conclude that long memory is purely caused by regime switching. If the estimated d
in the MRS-FIEGARCH model is significant, it suggests that at least the detected long
memory is not ‘spurious’. That is, long memory is not purely caused by regime switching.
In addition, when the true DGP contains both long memory and regime switching, the
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MRS-FIEGARCH framework is capable of estimating the true transition probabilities and
long-memory persistence.

Table 12. Summary of simulated MRS-V-FIEGARCH(1,d,1) data.

p11 p22 d Biasd SEd RMSEd Frac. Rej. Biasp11 SEp11 RMSEp11 Biasp22 SEp22 RMSEp22

Panel A: FIEGARCH model
0.99 0.999 0.25 0.0524 0.0894 0.1036 1.0000

0.30 0.0595 0.0864 0.1049 1.0000
0.40 0.0385 0.0871 0.0952 1.0000

0.999 0.99 0.25 0.1097 0.0635 0.1267 1.0000
0.30 0.0958 0.0706 0.1190 1.0000
0.40 0.0713 0.0668 0.0977 1.0000

0.99 0.99 0.25 0.1231 0.0878 0.1512 1.0000
0.30 0.1263 0.0771 0.1480 1.0000
0.40 0.0924 0.0848 0.1254 1.0000

0.999 0.999 0.25 0.1045 0.0818 0.1327 1.0000
0.30 0.0862 0.0720 0.1123 1.0000
0.40 0.0359 0.0716 0.0801 1.0000

Panel B: MRS-V-FIEGARCH model
0.99 0.999 0.25 0.0243 0.0891 0.0923 1.0000 −0.0173 0.0344 0.0385 −0.0055 0.0177 0.0186

0.30 0.0213 0.0835 0.0862 1.0000 −0.0224 0.0362 0.0426 −0.0064 0.0175 0.0186
0.40 0.0286 0.0947 0.0989 1.0000 −0.0191 0.0340 0.0390 −0.0082 0.0187 0.0204

0.999 0.99 0.25 0.0281 0.1016 0.1054 1.0000 −0.0011 0.0030 0.0033 −0.0086 0.0226 0.0242
0.30 0.0345 0.0834 0.0902 1.0000 −0.0017 0.0048 0.0051 −0.0084 0.0254 0.0268
0.40 0.0408 0.0840 0.0934 1.0000 −0.0038 0.0117 0.0123 −0.0127 0.0275 0.0303

0.99 0.99 0.25 0.0399 0.1035 0.1109 1.0000 −0.0053 0.0219 0.0225 −0.0054 0.0221 0.0228
0.30 0.0432 0.0873 0.0975 1.0000 −0.0029 0.0179 0.0181 −0.0040 0.0217 0.0221
0.40 0.0412 0.0994 0.1076 1.0000 −0.0029 0.0164 0.0167 −0.0064 0.0227 0.0236

0.999 0.999 0.25 0.0284 0.0853 0.0899 1.0000 −0.0029 0.0126 0.0129 −0.0020 0.0102 0.0104
0.30 0.0424 0.0751 0.0863 1.0000 −0.0020 0.0061 0.0064 −0.0022 0.0096 0.0099
0.40 0.0254 0.0827 0.0865 1.0000 −0.0026 0.0104 0.0107 −0.0012 0.0052 0.0053

This table presents the summary of simulated MRS-V-FIEGARCH(1,d,1) data fitted by FIEGARCH(1,d,1) and
MRS-V-FIEGARCH(1,d,1) models. In both regimes, φ1 (φ2) and β1 (β2) were set to 0.20 (0.30) and 0.30 (0.20),
respectively. ω1 and ω2 were set to 0.1 and 1, respectively. For explanations of other variables, please see
Tables 1–3.

6. Empirical Results

To empirically compare our MRS-V-FIEGARCH framework with the FIEGARCH and
MRS-EGARCH models, we fitted them to the daily NASDAQ Composite Index (NASDAQ).
The daily closing prices of NASDAQ over the period from 1 January 2001 to 31 December
2022 were obtained from the Thomson Reuters Tick History (TRTH) database, which
contains microsecond-time-stamped tick data dating back to January 1996 (the empirical
dataset covers data starting from the 21st century for illustration purposes; consistent
results can hold if data are sourced from 1996). The database covers 35 million over-the-
counter (OTC) and exchange-traded instruments worldwide, which are provided by the
Securities Industry Research Centre of Australasia (SIRCA). The corresponding return in
the percentage series is defined as the logarithm of the daily closing price differences times
100, that is, rt = 100× log(St/St−1), where rt is the return and St is the daily closing price.

The return series of NASDAQ is plotted in Figure 1a. It can be seen that the volatility of
return was relatively greater between 2001 and 2003 and that it then decreased. From 2008
to 2010, the return became much more volatile again. After 2010, the volatility tended to be
smaller, with some turbulence around the end of 2010 and the start of 2022. In addition,
using the sample measures, we obtained that the mean and standard errors of the NASDAQ
return were 0.0009 and 0.5309, respectively. The skewness was 0.2223, indicating that the
NASDAQ return was slightly positively skewed. The kurtosis was 14.1575, suggesting
a non-Gaussian distribution. Thus, we performed the Kolmogorov–Smirnov and Jarque–
Bera normality tests (not presented), where the null hypotheses indicating normality
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were rejected in both cases. We then fitted the NASDAQ data into the FIEGARCH, MRS-
EGARCH and MRS-V-FIEGARCH models, all with Student’s t-distribution.
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Figure 1. Return and smoothing probability of calm state of NASDAQ index.

The estimates are presented in Table 13. The estimated d with the FIEGARCH
model was 0.5374—slightly greater than 0.5—potentially suggesting an overestimated
long-memory persistence. v was estimated to be significant and around 3, indicating a
significant non-Gaussian distribution. Turning to the MRS-EGARCH model, the estimates
of p11 and p22 were significant and greater than 0.99. This suggests a significant regime-
switching process, with a small frequency to switch between states. In addition, β1 was
around 0.13, while β2 was 0.98. This indicates that the volatility persistence in the calm
state was much smaller than in the turbulent state. In addition, the estimate of v was
close to 3. In terms of model performance evaluations, the logarithm of likelihood, Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) all suggest that the
MRS-EGARCH model outperformed the FIEGARCH model.

As demonstrated in Section 5.3, the MRS-V-FIEGARCH model can properly control
for the effect of smoothing probability and should generate more reliable estimates of d.
In Table 13, the estimated d with the MRS-V-FIEGARCH model was 0.3029. As it was not
close to 0, the long memory is expected to exist for the NASDAQ return volatility. Further,
it confirms our argument that after controlling for the regime-switching effect, the long-
memory persistence should be smaller. In terms of p11 and p22, the MRS-V-FIEGARCH
model generated estimates similar to those of the MRS-EGARCH model. The estimated
smoothing probability P(st = 1|ΩT) with the MRS-V-FIEGARCH model is plotted in
Figure 1b. The patterns of P(st = 1|ΩT) are consistent with our observation mentioned
above: between 2001 and 2003, the NASDAQ return lay in the turbulent state; between
2004 and 2008, it mostly lay in the calm state; from 2008 to 2010, the return series tended
to switch back to the turbulent state and stayed there; after 2010, although the calm state
was dominant, the turbulent state was observed in 2016 and was persistent after 2020.
This is generally consistent with the real macro-economic situation: between 2001 and
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2003, the macro-economy suffered the effects of Information Technology (IT) bubble cracks,
and the Global Financial Crisis (GFC) affected the macro-economy from 2008 to 2010. In
addition, 2016 Brexit, COVID-19 and the 2020 US presidential election contributed to the
turbulence after 2010. In addition, the estimated v was similar to those of the FIEGARCH
and MRS-EGARCH models and was close to 3. Finally, the logarithm of likelihood, AIC
and BIC all show that the MRS-V-FIEGARCH model outperformed both the FIEGARCH
and MRS-EGARCH models. Specifically, the MRS-V-FIEGARCH model had the largest
likelihood and the smallest AIC and BIC across all competing models.

Table 13. Summary of daily NASDAQ index.

FIEGARCH MRS-EGARCH MRS-V-FIEGARCH

φ 0.3487 α1 0.0642 φ1 0.5273
(0.0339) (0.0159) (0.0200)

β 0.8264 β1 0.1320 β1 0.7792
(0.0190) (0.0229) (0.0043)

α2 0.0179 φ2 0.3851
(0.0019) (0.0185)

β2 0.9816 β2 0.6670
(0.0019) (0.0052)

p11 0.9960 p11 0.9981
(0.0011) (0.0003)

p22 0.9981 p22 0.9962
(0.0005) (0.0004)

v 3.1496 v 3.0240 v 2.9471
(0.0516) (0.0519) (0.0264)

d 0.5374 d 0.3029
(0.0523) (0.0119)

log.lik −11456 log.lik −11353 log.lik −11344
AIC 22924 AIC 22728 AIC 22711
BIC 22972 BIC 22817 BIC 22808

This table presents the summary of daily NASDAQ index data fitted by the FIEGARCH(1,d,1), MRS-EGARCH(1,1)
and MRS-V-FIEGARCH(1,d,1) models. The data range from 1 January 2001, to 31 December 2022. log.lik is the
logarithm of likelihood. AIC and BIC are Akaike Information Criterion and Bayesian Information Criterion.
Values in brackets are the corresponding standard errors.

In conclusion, using the empirical results of the daily return of NASDAQ, we demonstrated
that the MRS-FIEGARCH framework is capable of estimating the true transition probabilities
and identifying the volatility states. Compared with the FIEGARCH model, it can generate
smaller and potentially better estimates of long-memory persistence. In terms of model
evaluations, the MRS-FIEGARCH framework performs better than both the FIEGARCH
and MRS-EGARCH models. Thus, the MRS-FIEGARCH framework outperforms both
the FIEGARCH and MRS-EGARCH models. As long memory and heteroskedasticity are
important features of financial time series, the proposed MRS-FIEGARCH frameworks
could be a widely useful tool for modeling volatility in other contexts.

7. Conclusions

Diebold and Inoue [3] argue that regime switching and long memory are easily
confused with each other and should be studied as interchangeable concepts. However,
a recent study by Shi [37] argues that if the cause of this confusion is properly controlled,
they can be distinguished based on the first moment of time series. Following this idea, we
propose an effective method to distinguish between long memory and regime switching
based on the second moment of financial return series. The FIEGARCH and MRS-EGARCH
models are used to estimate the long memory and regime switching of the conditional
volatility of financial return series, respectively. Using a Monte Carlo study, we firstly
demonstrated that when the true distribution of innovations is non-Gaussian, the QMLE
of FIEGARCH is consistent but not efficient and the QMLE of MRS-EGARCH is neither
consistent nor efficient. As financial returns are rarely Gaussian, it is suggested that a
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non-Gaussian distribution of innovations should always be used when a EGARCH-type
model is employed.

Second, the confusion between the FIEGARCH and MRS-EGARCH DGPs was shown
using simulations. The regular residual diagnostics and portmanteau statistics were
produced and compared. However, none of them could distinguish between these two
DGPs. Following the proof and idea provided by Shi [37], we then controlled for the effect
of the smoothing probability in separate stages, which led to the 2S-FIEGARCH framework.
Using a Monte Carlo study, it was demonstrated that the 2S-FIEGARCH framework can
distinguish between the FIEGARCH and MRS-EGARCH DGPs.

Instead of separately controlling for the smoothing probability, we incorporated it in the
FIEGARCH process by proposing the MRS-FIEGARCH framework. Another Monte Carlo
study demonstrated that the MRS-FIEGARCH framework can also effectively distinguish
between the pure FIEGARCH and pure MRS-EGARCH DGPs. More specifically, if the
estimated d in the MRS-FIEGARCH model is significant, we can safely conclude that the
long memory is not caused only by regime switching and that it does exist. In addition,
when the true DGP contains both long memory and regime switching, the MRS-FIEGARCH
framework is capable of identifying the volatility states and providing more reliable long-
memory persistence.

An empirical study of the daily return of the NASDAQ Composite Index was conducted
to compare the model performance of the FIEGARCH, MRS-EGARCH and MRS-FIEGARCH
frameworks. According to the estimates, it was demonstrated that the MRS-FIEGARCH
framework could identify the volatility states, the structure of which was consistent with
the macro-economic situation. Compared with the FIEGARCH model, it could generate
smaller and potentially more reliable estimates of long-memory persistence. In terms of
model evaluations, the MRS-FIEGARCH framework outperformed both the FIEGARCH
and MRS-EGARCH models. As a result, the MRS-FIEGARCH framework could be a widely
useful tool for modeling the long-memory characteristic of volatility in other contexts.

For instance, our findings could be extended to enhance the accuracy of dynamic
hedging strategies and derivative pricing models, as asset volatility is a key input in these
strategies and models [51–53]. As noted by Hyung et al. [52], the FIEGARCH specification
dominates various short- and long-memory volatility models in terms of its out-of-sample
forecasting performance in forecast horizons of 10 days and beyond. The long-memory
characteristic has important implications for volatility forecasting and option pricing.
Option pricing in a stochastic volatility setting requires a risk premium for the unhedgeable
volatility risk. Fractionally integrated series lead to volatility forecasts larger than those
obtained with short-memory models, which immediately translates into higher option
prices. This could be an explanation for the better pricing performance of the FIEGARCH
model [8]. Stentoft [53] further notes that incorporating FIEGARCH features in option
pricing models may help to explain some empirically well-documented systematic pricing
errors. In addition, out-of-sample performance shows that FIEGARCH effects are important
when pricing options on individual stocks and that they lead to improvements over the
constant volatility model.

Apart from the proposed model, other methodologies, such as the STAR model, can
also incorporate the long-memory process [66]. More recently, with the advance of machine
learning methodologies, multi-layer perceptron neural networks have been developed to
accommodate regime switching and long memory in volatility modeling. Examples of
those models with applications in financial data can be found in Bildirici and Ersin [67],
Bildirici and Ersin [68], and Bildirici and Ersin [69], among others. A systematic comparison
of the proposed MRS-FIEGACH and those frameworks remains for the future.
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Abbreviations

GARCH Generalized AutoRegressive Conditional Heteroskedasticity
FIEGARCH Fractionally Integrated Exponential GARCH
MRS-EGARCH Markov Regime-Switching EGARCH
2S-FIEGARCH Two-state FIEGARCH with state-invariant long memory parameter
2S-V-FIEGARCH Two-state FIEGARCH with state-variant long-memory parameter
MRS-FIEGARCH MRS FIEGARCH with state-invariant long-memory parameter
MRS-V-FIEGARCH MRS FIEGARCH with state-variant long-memory parameter
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