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Abstract: In this article, we present a Markov Bernoulli Lomax (MB-L) model, which is obtained by
a countable mixture of Markov Bernoulli and Lomax distributions, with decreasing and unimodal
hazard rate function (HRF). The new model contains Marshall- Olkin Lomax and Lomax distributions
as a special case. The mathematical properties, as behavior of probability density function (PDF),
HRF, rth moments, moment generating function (MGF) and minimum (maximum) Markov-Bernoulli
Geometric (MBG) stable are studied. Moreover, the estimates of the model parameters by maximum
likelihood are obtained. The maximum likelihood estimation (MLE), bias and mean squared error
(MSE) of MB-L parameters are inspected by simulation study. Finally, a MB-L distribution was fitted
to the randomly censored and COVID-19 (complete) data.

Keywords: countable mixture; Markov Bernoulli geometric model; Markov Bernoulli Lomax distri-
bution; censored data; model selections; P-P plot
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1. Introduction

The emergence of modern applications and many developments in various fields,
in addition to the limitations of some well-known distributions, lead us to create other
distributions that are more suitable for modern applications and free from restrictions.

Gharib et al. [1] used a countable mixture with a Markov Bernoulli geometric model
to introduced a new family, which its survival function (SF) is given by:

G(x, α, ρ) =
αF(x)

[
1− ρF(x)

]
1− [1− (1− ρ)α]F(x)

, (x ∈ R, α > 0, 0 ≤ ρ < 1) (1)

When ρ = 0, the SF G(x, α, ρ) in (1) reduces to the SF G(x, α) which is introduced by
Marshall and Olkin [2]. Moreover, if, ρ = 1− 1

α then G(x, α, ρ) in (1) reduces to:

G(x, α) = F(x)
[
αF(x) + F(x)

]
.(x ∈ R, α > 1) (2)

For ρ = 0 and α = 1 the SF G(x, α, ρ) reduces to F(x).
The SF of Lomax or (Pareto Type-II) distribution is:

F(x) = (1 + βx)−θ , x > 0, β, θ > 0.
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The probability density function (PDF) and hazard rate function (HRF) are:

f (x) = βθ(1 + βx)−θ−1,

hF(r) = βθ(1 + βx)−1.

Johnson et al. [3] used the Lomax model in practical and theoretical fields as, economics
and biological. Moreover, Harris [4], Bryson [5], Cordeiro et al. [6] and Bhagwati Devi [7]
are, respectively, used this model in reliability & life testing, income and wealth data, firm
size data and Entropy.

In the past few years, several authors have expanded the Lomax distribution due
to its importance in life time distributions as: generalized Lomax (Raj Kamal Maurya
et al. [8]), Poisson-Lomax (Mohammed et al. [9]), Marshall–Olkin Power Lomax (Muham-
mad Ahsanul Haq et al. [10]), the type II Topp Leone-Power Lomax (Sirinapa Aryuyuen
and Winai Bodhisuwan [11]), new weighted Lomax (Huda M. Alshanbari et al. [12]) and
reflected-shifted-truncated Lomax Distribution (Sanku Dey et al. [13]), there are other
generalizations of the Lomax distribution, and they different in terms of the form of the
PDF and the behavior of the HRF; see, Ghitany et al. [14], Lemonte and Cordeiro [15],
Cordeiro et al. [16], Al-Zahrani and Sagor [17,18], Tahir et al. [19], El-Bassiouny et al. [20],
Rady et al. [21] and Cooray et al. [22], Wael S. Abu El Azm et al. [23], Hassan Alsuhabi
et al. [24] and Adebisi A. Ogunde [25].

If we put F(x) = (1 + βx)−θ , x > 0, β, θ > 0, which is the SF of the Lomax distribution,
in (1), we have the MB-L (α, β, θ, ρ) model is:

G(x, α, β, θ, ρ) =
α(1 + βx)−θ

[
1− ρ(1 + βx)−θ

]
1− [1− (1− ρ)α](1 + βx)−θ

, x > 0, α, λ > 0, 0 ≤ ρ < 1 (3)

2. The PDF of the MB-L Model

From Equation (3), we have:

g(x) =
αβ(1 + xβ)−1−θθ

(
(1 + xβ)2θ −

(
−1 + α + 2(1 + xβ)θ

)
ρ + αρ2

)
(
−1 + α + (1 + xβ)θ − αρ

)2 , x > 0, α > 0, λ > 0, 0 ≤ ρ < 1 (4)

When α = 0, G(x, α, β, θ, ρ) and g(x), reduce to corresponding the MOEL distribution
Ghitany et al. [14].

Also, when ρ = 0, α = 0, the G(x, α, β, θ, ρ) and g(x), reduce to the Lomax distribution
Lomax [26]. Figures 1 and 2 give the graph MB-L PDF for values of, α, β, θ and ρ.
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Figure 2. Draw of increasing-decreasing MB-L PDF for values of 𝛼, 𝛽, 𝜃 and 𝜌. 

Figures 1 and 2 show different shapes of the PDF while it gives, a monotonic increas-
ing, decreasing, constant and unimodal shapes, so we can conclude that the MB-L model 
is a very flexible distribution in modeling various type of data. 

The next theorem gives the behavior of the MB-L PDF. 

Theorem 1. For the MB-L (𝛼, 𝛽, 𝜃, 𝜌 ) model, The PDF given by (4) is decreasing if 0 < 𝜃 <ఈ (ଵିఘ)(ଵାఈఘ)ଶାఈమ(ఘିଵ)ఘାఈ(ଵାఘ), independent of 𝛽 and is unimodal if 𝜃 > ఈమ(ఘିଵ)ଶାఈమ(ఘିଵ)ିఈ(ଵାఘ). 
Proof. We can rewrite Equation (4) as: 𝑔(𝑥, 𝛼, 𝛽, 𝜃, 𝜌) = 𝛼 𝛽 𝜃((1 + 𝑥 𝛽)ଶఏ − ൫−1 + 𝛼 + 2(1 + 𝑥 𝛽)ఏ൯𝜌 + 𝛼 𝜌ଶ) (1 + 𝑥𝛽)ఏାଵ(−1 + 𝛼 + (1 + 𝑥 𝛽)ఏ − 𝛼 𝜌)ଶ  

then, 

Figure 1. Draw of decreasing MB-L PDF for values of α, β, θ and ρ.
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Figures 1 and 2 show different shapes of the PDF while it gives, a monotonic increasing,
decreasing, constant and unimodal shapes, so we can conclude that the MB-L model is a
very flexible distribution in modeling various type of data.
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The next theorem gives the behavior of the MB-L PDF.

Theorem 1. For the MB-L (α, β, θ, ρ) model, The PDF given by (4) is decreasing if 0 < θ <
α(1−ρ)(1+αρ)

2+α2(ρ−1)ρ+α(1+ρ)
, independent of β and is unimodal if θ > α2(ρ−1)

2+α2(ρ−1)−α(1+ρ)
.

Proof. We can rewrite Equation (4) as:

g(x, α, β, θ, ρ) =
α β θ((1 + x β)2θ −

(
−1 + α + 2(1 + x β)θ

)
ρ + α ρ2)

(1 + x β)θ+1(−1 + α + (1 + x β)θ − α ρ)
2

then,

g̀(x) =
αβ2θ

(1 + xβ)2
(
−1 + α(1− ρ) + (1 + xβ)θ

)3 Φ(x), x > 0

where,

Φ(x) = αβ2θ(2θ((1 + xβ)θ − ρ)(−1 + α + (1 + xβ)θ − αρ)− 2θ((1 + xβ)2θ

−(−1 + α + 2(1 + xβ)θ)ρ + αρ2)− (1 + xβ)−θ(1 + θ)(−1
+α + (1 + xβ)θ − αρ)((1 + xβ)2θ − (−1 + α

+2(1 + xβ)θ)ρ + αρ2))

if Φ(0) = αβ2θ(ρ− 1)
(
2θ + α2(1 + θ)(1− ρ)ρ + α(−1 + θ(1 + ρ) + ρ)

)
≤ 0, then θ ≥

α(1−ρ)(1+αρ)
2+α2(ρ−1)ρ+α(1+ρ)

, g̀(x) < 0, then g(x) is decreasing.

if Φ(0) > 0, then θ < α(1−ρ)(1+αρ)
2+α2(ρ−1)ρ+α(1+ρ)

, lim
x→∞

g(x) = 0, and lim
x→0

g(x) =
βθ(1−(1+α)ρ+αρ2)

α(1−ρ)2

then g(x), first increases than decrease to zero and hence has a mode xmod given by:
Φ(xmod) = 0. Moreover, this mode is unique Dharmadhikari et al. [27]. �

Remark 1.

1. For ρ = 0, α = 1, g(x) is decreasing (unimodal) if θ ≤ 1 (θ > 1) which is the well-known
result for the Lomax distribution.
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2. For ρ = 0, g(x) is decreasing if θ < −α
2−α (i.e., α + (2− α)θ ≥ 0) and is unimodal if θ > −α

2−α
(i.e., α + (2− α)θ < 0) which is the well-known result for the MOEL distribution (Ghitany
et al. [14]).

The rth moment of MB-L model
For the MB-L (α, β, θ, ρ) model, the rth moment E(Xr), r ≥ 1, is:

E(Xr) = r
∞∫
0

xr−1G(x)dx

= r
∞∫
0

xr−1 α(1+βx)−θ
[
1−ρ(1+βx)−θ

]
1−[1−(1−ρ)α](1+βx)−θ dx

= r
βr+2θ

∞
∑

u=0
([1− (1− ρ)α])u

1∫
0

yu− 1
θ

(
y−

1
θ − 1

)r
(1− ρy)dy

= r
βr+2θ

∞
∑

u=0
([1− (1− ρ)α])u(−1)rθ Gamma[1 + r]

The MGF of MB-L model
We present the MGF M (t, α, β, θ, ρ) of the MB-L model. Using Equation (4), the

substitution u = (1 + βx) and Maclaurin expansion of ex for all x, we get the following:

M(t, α, β, θ, ρ) = E
(
etX)

=
∞∫
0

etx α β θ
(
(1 + x β)2θ −

(
− 1 + α + 2(1 + x β)θ

)
ρ + α ρ2

)
(1 + xβ)θ + 1

(
− 1 + α + (1 + x β)θ − α ρ

)2 dx

=
∞∫
1

e
t
β (u − 1) α θ

(
(u)2θ −

(
− 1 + α + 2(u)θ

)
ρ + α ρ2

)
(u)θ + 1

(
− 1 + α + (u)θ − α ρ

)2 du

= α θ e−
t
β

∞∫
1

e
tu
β

α θ
(
(u)2θ −

(
− 1 + α + 2(u)θ

)
ρ + α ρ2

)
(u)θ + 1

(
− 1 + α + (u)θ − α ρ

)2

= α θ e−
t
β

∞
∑

i = 0

∞
∑

j = 0

(α ρ)j
(

t
β

)(
α ρ

θ(j + 2) − i + 1
θ(j + 1) − i − 1

)
i!j! .

where 0 < α ρ < 1. For more details of MGF see BS [28] and YF and SY [29].
Now we have the following results:

Theorem 2. For the SF (3) of MB-L model, if Xi, i = 1, 2, . . . , n are independent identically
distributed (i.i.d), then UN = min(X1, X2, . . . , Xn), has the SF:

GUN(x, α, β, θ, ρ) =

 α
[
1− ρ (1 + βx)−θ

]
(1 + βx)θ − [1− (1− ρ) α]

n

.

Proof. We know that,

G(x, α, β, θ, ρ) =
α (1 + βx)−θ

[
1− ρ (1 + βx)−θ

]
1− [1− (1− ρ) α] (1 + βx)−θ

GUN(x, α, β, θ, ρ) = P(min(X1, X2, . . . , Xn) > x)

=
n
∏
i=1

G(x, α, β, θ, ρ) =

(
α
[
1 − ρ(1 + βx)−θ

]
(1 + βx)θ − [1 − (1 − ρ)α]

)n

. �
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Theorem 3. For the SF (3) of MB-L model, if Xi, i = 1, 2, . . . , N are i.i.d, N be a Markov Bernoulli
geometric distribution with parameters p, ρ such that:

P(N = n) =

{
p, n = 1

(1− p)a−1(1− a−1)n−2, n ≥ 2,

which is independent of Xi for all I = 1,2, . . . , N. Then, UN = min
1≤i≤N

Xi, is distributed MB-L if Xi

is distributed as Lomax distribution.

Proof. Suppose that,

G(x) = Pr(UN > x) = Pr(Xi > xi, i = 1, 2, . . . , N) =
∞
∑

n=1
Fn

(x)Pr(N = n)

= pF(x) + (1− p)a−1F2
(x)

∞
∑

n=2
Fn−2

(x)
(
1− a−1)n−2

= pF(x) + (1− p)a−1F2
(x) 1

[1 − (1 − a−1)F(x)]

=
F(x)[p − pF(x) + a−1F(x)]

[1 − (1 − a−1)F(x)]
, where a−1 = (1− ρ)p

hence,

G(x) =
p
[
1− ρ(1 + xβ)−θ

]
(1 + xβ)θ − (1− a−1)

Which is MB-L mdel with p = α. �

3. The HRF of the MB-L Model

From Equation (3) we have:

h(x) =
βθ
(
(1 + xβ)2θ −

(
−1 + α + 2(1 + xβ)θ

)
ρ + αρ2

)
(1 + xβ)

(
(1 + xβ)θ − ρ

)(
−1 + α + (1 + xβ)θ − αρ

) . (5)

For all θ, α > 0, 0 < ρ < 1, then,

lim
x→0

h(x) =
β θ(−1 + α ρ)

α(−1 + ρ)
, lim

x→∞
h(x) = 0.

Figures 3 and 4 show different shapes of the HRF while it gives, a monotonic increasing,
decreasing, constant and unimodal shapes, so we can conclude that the HRF is a very
flexible distribution in modeling various type of data.
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2. For 𝜌 = 0, h(x) is decreasing if 𝜃 ≥ ି ఈଵିఈ (i.e 𝛼 + (1 − 𝛼)𝜃 ≥ 0) and is unimodal if 𝜃 <ି ఈଵିఈ (i.e., 𝛼 + (1 − 𝛼)𝜃 < 0) which is the well-known result for the MOEL distribution. 

4. Estimation of MB-L Parameters and Asymptotic Confidence Intervals (CI) 
Here, the MLE for the MB-L Parameters are developed. Asymptotic confidence inter-

vals of ψ෡ = (𝛼ො, 𝛽መ, 𝜃෠,  𝜌ෝ )  are obtained using the inverse Fisher’s information matrix ele-
ments. Simulation studies are carried out to investigate the accuracy of the estimates of 
the model’s parameter. 

Suppose that (𝑡ଵ , 𝛿ଵ ), (𝑡ଶ , 𝛿ଶ ), …, (𝑡௡ , 𝛿௡ ) be a random sample from the MB-L 
(𝛼, 𝛽, 𝜃, 𝜌 ) model, where 𝛿௜ = 0  or 𝛿௜ = 1  if 𝑡௜  are censored or complete observations, 
respectively. 

The log-likelihood function for the MB-L (𝛼, 𝛽, 𝜃, 𝜌) model is: 

Figure 4. Draw of increasing-decreasing MB-L HRF for values of α, β, θ and ρ.

Now we will study the behavior of HRF according to the following theorem:

Theorem 4. For the MB-L (α, β, θ, ρ) model, The HRF (3) is decreasing (unimodal) if θ ≥
α(1−ρ)(αρ−1)

(1−α2ρ−α(1−ρ))

(
θ < α(1−ρ)(αρ−1)

(1−α2ρ−α(1−ρ))

)
independent of β.

Proof. From Equation (3) we have:

h̀(x) = − β2 θ (1 + xβ)θ

((1 + xβ)2
(
(1 + xβ)θ − ρ

)2(
−1 + α + (1 + xβ)θ − α ρ

)2
))
ψ(x) (6)

where, ψ(x) = −θ((1 + xβ)2θ − ρ)(−1 + ρ) − α2(1 + θ − ρ(1 + xβ)−θ)(−1 + ρ)2ρ

+(−(1 + xβ)−θ + 1)((1 + xβ)3θ+ ((1 + xβ)θ − 3(1 + xβ)2θ)ρ + (−1 + 2(1 + xβ)θ)ρ2)+

α1(−1 + ρ)(−(1 + xβ)2θ + 2(−1 + 2(1 + xβ)θ)ρ + (2(1 + xβ)−θ − 3)ρ2 + θ((1 + xβ)2θ

−2ρ + ρ2))
]

The proof is as in the Theorem 1. �

Remark 2.

1. For ρ = 0, α = 1, θ ≥ 1 (θ < 1) h(x) is decreasing (unimodal). It is the same result for the
Lomax distribution.

2. For ρ = 0, h(x) is decreasing if θ ≥ −α
1−α (i.e., α + (1− α)θ ≥ 0) and is unimodal if θ < −α

1−α
(i.e., α + (1− α)θ < 0) which is the well-known result for the MOEL distribution.

4. Estimation of MB-L Parameters and Asymptotic Confidence Intervals (CI)

Here, the MLE for the MB-L Parameters are developed. Asymptotic confidence
intervals of ψ̂ = (α̂, β̂, θ̂, ρ̂) are obtained using the inverse Fisher’s information matrix
elements. Simulation studies are carried out to investigate the accuracy of the estimates of
the model’s parameter.

Suppose that (t1, δ1), (t2, δ2), . . . , (tn, δn) be a random sample from the MB-L (α, β, θ, ρ)
model, where δi = 0 or δi = 1 if ti are censored or complete observations, respectively.

The log-likelihood function for the MB-L (α, β, θ, ρ) model is:

ln(ti, α, β, θ, ρ) =
n
∑

i=1

{
δi log

[
α β θ

(
(1+x β)2θ−

(
−1+α(1+ρ2)+2(1+x β)θ

)
ρ
)

(1+xβ)θ+1
(
−1+α(1−ρ)+(1+x β)θ

)2

]

+(1− δi) log

[
α(1+βx)−θ

[
1−ρ(1+βx)−θ

]
1−[1−(1−ρ)α](1+βx)−θ

]}
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The first derivative of ln(ti, α, β, θ, ρ) with respect to α, β, θ and ρ, respectively, are
given by

∂ln
∂α

= 0,
∂ln
∂β

= 0,
∂ln
∂θ

= 0,
∂ln
∂ρ

= 0.

The MLE ψ̂ = (α̂, β̂, θ̂, ρ̂) can be obtained numerically using these equations. For the
asymptotic CI, the normal approximation of the MLE can be used to construct asymptotic
CIs for the parameters ψwhen the sample size is large enough. A two-sided (1−α) 100%

CIs for ψ are (ψ̂± Zα/2

√
Var(ψ̂)), where Var(ψ̂) are the asymptotic variances of ψ̂.

To compare the MB-L model with MOEL and Lomax distributions, we used the
likelihood ratio test (LRT) as:

First: the null hypothesis H10 : α = 1, ρ = 0 (Lomax distribution). Under H10 the
likelihood ratio statistic: A1 = −2

[
ln (1, β̂, θ̂, 0)− ln (α̂, β̂, θ̂, ρ̂)

]
, it has a χ2 distribution

with 2 degrees of freedom
Second: the null hypothesis H20 : ρ = 0 (MOEL distribution). Under H20 the like-

lihood ratio statistic: A2 = −2
[
ln (α̂, β̂, θ̂, 0)− ln (α̂, β̂, θ̂, ρ̂)

]
, which has an asymptotic χ2

distribution with 1 degree of freedom.
Also, the model selection: Akiake information criterion (AIC) (Akiake [30]), Bayesian

information criterion (BIC) and Consistent Akaike Information Criteria (CAIC) defined as:

AIC = log likelihood− 2k,

BIC = loglikelihood− k
2

log(n),

CAIC = 2 log likelihood− 2kn
n− k− 1

.

where, k is the number of model parameters and n is the sample size. The model with
higher AIC, CAIC and BIC is the one that better fits the data.

5. Simulation

The calculation of the estimation is based on N = 10,000 simulated samples from the
MB-L model. The sample sizes are 50, 100, 200 and 300 and the parameter values are
ψ = (α, β, θ, ρ) = (0.7, 1.2, 0.05, 0.03) and (0.3, 0.3, 0.1, 0.2). The validity of the estimate of
ψ is studied by the following measures:

1. Bias of ψ(α, β, θ, ρ) is 1
N ∑N

i=1 (ψ̂−ψ)
2. Mean square error (MSE) of ψ(α, β, θ, ρ) is 1

N ∑N
i=1 (ψ̂−ψ)

2
.

3. Coverage probability (CP) of the N simulated confidence intervals.

When the n is large, the values of ψ̂ are close to the initial values of ψ see Table 1.

Table 1. The MLE, bias, MSE and CP values for the MB-L (α, β, θ, ρ) model.

n Parameter Initial MLE Bias MSE CP Initial MLE Bias MSE CP

50

α 0.7 0.7070 0.0070 0.0031 0.9891 0.3 0.3041 0.00411 0.0008 0.9782

β 1.2 1.1934 −0.0066 0.0009 0.9535 0.3 0.2981 −0.0019 0.0002 0.9643

θ 0.05 0.6390 0.5890 0.3483 0.9852 0.1 0.4327 0.3327 0.1114 0.9665

ρ 0.03 0.0337 0.0039 0.0007 0.9552 0.2 0.2331 0.0331 0.0207 0.9663

100

α 0.7 0.7008 0.0008 0.0009 0.9885 0.3 0.3047 0.0047 0.0004 0.9757

β 1.2 1.203 0.0031 0.0004 0.9535 0.3 0.2975 −0.0025 0.0001 0.9527

θ 0.05 0.6415 0.5914 0.3506 0.9764 0.1 0.4347 0.3347 0.1124 0.9791

ρ 0.03 0.0296 −0.0004 0.0003 0.9574 0.2 0.2268 0.0268 0.0097 0.9546
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Table 1. Cont.

n Parameter Initial MLE Bias MSE CP Initial MLE Bias MSE CP

200

α 0.7 0.7045 0.0045 0.0009 0.9999 0.3 0.3008 0.0008 0.0001 0.9887

β 1.2 1.1991 −0.0009 0.0002 0.9573 0.3 0.2997 −0.0003 0.00005 0.9592

θ 0.05 0.6368 0.5868 0.3447 0.9863 0.1 0.4376 0.3376 0.1142 0.9854

ρ 0.03 0.0322 0.0022 0.0003 0.9583 0.2 0.2052 0.0052 0.0038 0.9575

300

α 0.7 0.7048 0.0048 0.0006 0.9992 0.3 0.2997 −0.0003 0.0001 0.9985

β 1.2 1.1976 −0.0024 0.0001 0.9592 0.3 0.3002 0.0002 0.00003 0.9587

θ 0.05 0.6363 0.5863 0.3440 0.9845 0.1 0.4368 0.3368 0.11354 0.9863

ρ 0.03 0.0326 0.0026 0.0002 0.9547 0.2 0.2029 0.0029 0.0030 0.9638

6. Applications
6.1. Censored Data

Lee and Wang [31] P. 231 obtained the data which represent the 137-bladder cancer
patient. This data has completed at 0.08 to 79.05 months and censored at 0.87, 3.02, 4.33,
4.65, 4.70, 8.60, 10.86, 19.36, 24.80 months. Table 2 shows values of MLE, Log-likelihood,
AIC, BIC and CAIC of MB-L model with other models.

We note that, AIC, BIC and CAIC of MB-L model more than the corresponding of the
MOEL and Lomax distributions which means that MB-L model is better to fit for the given
data. Moreover, the approximate 95% two-sided CI of the parameters α, β, θ and ρ are given
respectively as [2.075, 3.88], [1.275, 4.838], [0.147, 0.342] and [0.006,0.179].

Table 2. MLE, standrd error (S.E), log-likelihood, AIC, BIC for MB-L, MOEL and Lomax models from
the 137- censored data.

Model Parameter MLE S.E Log-Likelihood AIC BIC CAIC

MB-L

α 2.9782 0.433

−417.228 −426.229 −428.069 −424.467
θ 3.0578 0.231
ρ 0.2449 0.031
β 0.0927 0.005

MOEL
α 2.959 0.087

−419.842 −426.287 −428.127 −426.590θ 4.115 0.012
β 0.058 0.004

Lomax
θ 3.733 0.036 −422.348 −430.347 −432.188 −430.651
β 0.0325 0.006

For the given censored data, under H10 thus XL1 = −2[−422.348 + 417.228] = 10.24,
then XL1 > χ2

2,0.05 = 5.991. Also, under H20 thus X6L2 = −2[−419.842 + 417.228)] = 5.228,
then XL2 > χ2

1,0.05 = 3.84. So, the LRT rejects the null hypothesis that the Lomax and MOEL
models is proper for the specific data.

Now, suppose that ti and δi, i = 1, 2, . . . , n are, respectively, the ordered survival times
and corresponding censoring indicators. The product-limit estimator or Kaplan-Meier
estimator (KME) (Kaplan-Meier [32]) of a SF is:

Gn(t) = ∏
t:ti≤t

i=1,...,n

{
1− δi

n− i + 1

}
, t > 0.

Figures 5–7 show the probability-probability (P-P) plot of the KME versus the fitted
Lomax, MOEL and MB-L SFs for 137 censored data.
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Applying the data from Huda M. Alshanbari et al. [33], which shows the two 
complete data of COVID-19 which represent a mortality rate. 
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From the previous figures, we notice that the drawn points for the fitted MB-L SF are
close to the 45◦ line, indicating good fit as comparing with the fitted MB-L, MOEL and
Lomax SFs.

Since α = 2.9782, θ = 3.0578, ρ = 0.2449 and β = 0.0927, then the estimated hazard
rate function ((a) MB-L model, (b) Lomax distribution) is as shown in the Figure 8.
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6.2. COVID-19 Data

Applying the data from Huda M. Alshanbari et al. [33], which shows the two complete
data of COVID-19 which represent a mortality rate.

First: COVID-19 data obtained through 37 days, from 27 June to 2 August 2021 (Saudi
Arabia). The data and its measures show in Tables 3 and 4.
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Table 3. 37- COVID-19 data.

37 COVID-19 Data

0.0195 0.0213 0.0214 0.0217 0.0231 0.0233 0.0235 0.0235
0.0238 0.0239 0.0245 0.0260 0.0264 0.0268 0.0270 0.0271
0.0275 0.0278 0.0278 0.0282 0.0282 0.0285 0.0287 0.0294
0.0296 0.0300 0.0301 0.0309 0.0310 0.0313 0.0314 0.0315
0.0324 0.0325 0.0328 0.0332 0.0358

Table 4. MLE, S.E, log-likelihood, AIC, CAIC and BIC for MB-L, MOEL and Lomax models from
COVID-19 data (Saudi Arabia).

Model Parameter MLE S.E Log-Likelihood AIC BIC CAIC

MBEL

α 0.0103 0.033

81.646 73.646 74.425 72.396
θ 4.1120 0.131
ρ 0.4039 0.012
β 0.0555 0.006

MOEL
α 0.1043 0.092

79.529 73.529 74.113 72.802θ 0.4901 0.211
β 9.267 0.005

Lomax
θ 0.8213 0.321

75.905 71.905 72.294 71.552
β 86.039 0.432

From this table, AIC, BIC and CAIC of MB-L model more than the corresponding of
the MOEL and Lomax distributions which means that MB-L model is better to fit for the
given data. Moreover, the approximate 95% two-sided CI of the parameters α, β, θ and ρ
are given respectively as [0.0049, 0.0038], [0.068, 0.563], [0.868, 7.358] and [0.068, 0.307].

For the given 37 COVID-19 data, under H10 thus XL1 = −2[75.905− 81.646] = 11.482,
then XL1 > χ2

2,0.05 = 5.991. Also, under H20 thus XL2 = −2[79.529− 81.646] = 4.234, then
XL2 > χ2

1,0.05 = 3.84. So, the LRT rejects the null hypothesis that the Lomax and MOEL
models is proper for the specific data. The estimated hazard rate function ((a) MB-L model,
(b) Lomax distribution) is as shown in the Figure 9.
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Second: COVID-19 data obtained during 172 days from the first of 1 March to 20
August 2020 (Italy). The data and its measures show in Tables 5 and 6.
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Table 5. 172- COVID-19 data.

172 COVID-19 Data

0.0107 0.0490 0.0601 0.0460 0.0533 0.0630 0.0297 0.0885
0.0540 0.1720 0.0847 0.0713 0.0989 0.0495 0.1025 0.1079
0.0984 0.1124 0.0807 0.1044 0.1212 0.1167 0.1255 0.1416
0.1315 0.1073 0.1629 0.1485 0.1453 0.2000 0.2070 0.1520
0.1628 0.1666 0.1417 0.1221 0.1767 0.1987 0.1408 0.1456
0.1443 0.1319 0.1053 0.1789 0.2032 0.2167 0.1387 0.1646
0.1375 0.1421 0.2012 0.1957 0.1297 0.1754 0.1390 0.1761
0.1119 0.1915 0.1827 0.1548 0.1522 0.1369 0.2495 0.1253
0.1597 0.2195 0.2555 0.1956 0.1831 0.1791 0.2057 0.2406
0.1227 0.2196 0.2641 0.3067 0.1749 0.2148 0.2195 0.1993
0.2421 0.2430 0.1994 0.1779 0.0942 0.3067 0.1965 0.2003
0.1180 0.1686 0.2668 0.2113 0.3371 0.1730 0.2212 0.4972
0.1641 0.2667 0.2690 0.2321 0.2792 0.3515 0.1398 0.3436
0.2254 0.1302 0.0864 0.1619 0.1311 0.1994 0.3176 0.1856
0.1071 0.1041 0.1593 0.0537 0.1149 0.1176 0.0457 0.1264
0.0476 0.1620 0.1154 0.1493 0.0673 0.0894 0.0365 0.0385
0.2190 0.0777 0.0561 0.0435 0.0372 0.0385 0.0769 0.1491
0.0802 0.0870 0.0476 0.0562 0.0138 0.0684 0.1172 0.0321
0.0327 0.0198 0.0182 0.0197 0.0298 0.0545 0.0208 0.0079
0.0237 0.0169 0.0336 0.0755 0.0263 0.0260 0.0150 0.0054
0.0375 0.0043 0.0154 0.0146 0.0210 0.0115 0.0052 0.2512
0.0084 0.0125 0.0125 0.0109 0.0071

Table 6. MLE, log-likelihood, AIC, CAIC and BIC for MB-L, MOEL and Lomax models from the
COVID-19 data (Italy).

Model Parameter MLE S.E Log-Likelihood AIC BIC CAIC

MB-L

α 0.3877 0.221

154.215 146.215 143.920 145.976
θ 7.5606 0.431
ρ 0.1028 0.023
β 0.4824 0.321

MOEL
α 0.0013 0.006

134.216 128.216 126.495 128.073θ 1.0021 0.453
β 0.0136 0.051

Lomax
θ 0.4751 0.254

73.756 69.756 68.608 69.6845
β 71.702 0.534

From Table 6, AIC, BIC and CAIC of MB-L model more than the corresponding of the
MOEL and Lomax models which means that MB-L Distribution is better to fit for the given
data. In addition to, the approximate 95% two-sided CI of the parameters α, β, θ and ρ are
given respectively as [0.219, 0.993], [0.188, 0.776], [3.203, 11.916] and [0.111, 0.316].

For the given 172 COVID-19 data, under H10 thus XL1 = −2[73.756− 154.215] = 160.918,
then XL1 > χ2

2,0.05 = 5.991. Also, under H20 thus XL2 = −2[134.216− 154.215] = 39.998,
then XL1 > χ2

1,0.05 = 3.84. So, the LRT rejects the null hypothesis that the Lomax and MOEL
models is proper for the specific data. The estimated hazard rate function ((a) MB-L model,
(b) Lomax distribution) is as shown in the Figure 10.
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Figure 10. The estimated hazard rate function of MB-L model based on COVID-19 data (Italy). 

7. Conclusions 
In this paper, we introduced a four-parameter continuous distribution that general-

izes MOEL and Lomax distributions. The new model is referred to as MB-L distribution, 
the derived properties including PDF, HRF, moments, MGF and minimum (maximum) 
MBG stable. The MLE procedure is straightforward. The active fitting of MB-L distribu-
tion is shown on bladder cancer and COVID-19 applications. We note that the value of the 
selected model choices is higher for MB-L distribution than for the MOEL and Lomax 
distributions. Furthermore, the relationship between the empirical and fitted SFs for MB-
L distribution is higher compared to MOEL and Lomax distributions. All previous results 
indicate the advantage of MB-L distribution for bladder cancer and COVID-19 data. 
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Figure 10. The estimated hazard rate function of MB-L model based on COVID-19 data (Italy).

7. Conclusions

In this paper, we introduced a four-parameter continuous distribution that generalizes
MOEL and Lomax distributions. The new model is referred to as MB-L distribution, the
derived properties including PDF, HRF, moments, MGF and minimum (maximum) MBG
stable. The MLE procedure is straightforward. The active fitting of MB-L distribution is
shown on bladder cancer and COVID-19 applications. We note that the value of the selected
model choices is higher for MB-L distribution than for the MOEL and Lomax distributions.
Furthermore, the relationship between the empirical and fitted SFs for MB-L distribution
is higher compared to MOEL and Lomax distributions. All previous results indicate the
advantage of MB-L distribution for bladder cancer and COVID-19 data.
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