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Abstract: In this paper we study pseudoultrametrics, which are a natural mixture of ultrametrics
and pseudometrics. They satisfy a stronger form of the triangle inequality than usual pseudometrics
and naturally arise in problems of classification and recognition. The text focuses on the natural
partial order on the set of all pseudoultrametrics on a fixed (not necessarily finite) set. In addition to
the “way below” relation induced by a partial order, we introduce its version which we call “weakly
way below”. It is shown that a pseudoultrametric should satisfy natural conditions closely related to
compactness, for the set of all pseudoultrametric weakly way below it to be non-trivial (to consist
not only of the zero pseudoultrametric). For non-triviality of the set of all pseudoultrametrics way
below a given one, the latter must be compact. On the other hand, each compact pseudoultrametric
is the least upper bound of the directed set of all pseudoultrametrics way below it, which are
compact as well. Thus it is proved that the set CPsU(X) of all compact pseudoultrametric on a set
X is a continuous poset. This shows that compactness is a crucial requirement for efficiency of
approximation in methods of classification by means of ultrapseudometrics.
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1. Introduction

Pseudoultrametrics [1] are a generalization of ultrametrics that relaxes the non-degene-
racy requirement (i.e., distinct points are not necessarily separated by a positive distance).
A (pseudo)ultrametric on a set can be regarded as a tree-like classification of its elements,
in which the numeral value is a measure of (dis-)similarity. This leads to applications to
taxonomy and phylogenetic tree construction [2]. Ultrametrics have proved to be useful in
the analysis of complex systems such as networks and social structures [3].

Let us consider a simple example of a pseudoultrametric which appears in a classi-
fication problem. Suppose that we need to classify a chemical substance, having at our
disposal some tests T1, T2, T3, . . . , which are applied to samples in this order and can give
identical results for different chemicals. Let X be the set of all substances we can encounter.
Then for all x, y ∈ X the number

d(x, y) =

{
0, if all tests Ti give identical results for x and y,
1
n , if Tn is the first test with different results for x and y,

can be used as the measure of possible (dis-)similarity between x and y: the later the dis-
tinction between x and y is revealed, the lower is d(x, y). If x = y, then d(x, y) = 0, but
the converse implication fails (we may simply lack a means to tell x from y- then x 6= y but
d(x, y) = 0).
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The above-defined function d is a pseudoultrametric on X that gradually classifies
the substances: X is first partitioned into balls of radii 1, i.e., two chemicals fall into the same
ball if they are indiscriminable by the test T1. Then these classes are subdivided into balls
of radii 1

2 , and each of the latter contains substances that produce identical results both
under T1 and T2, etc.

Roots of the theory of ultrametric spaces are in computer science. Hence it is natural
that ultrapseudometric spaces have applications in the study of abstract data types and
algorithms. As was pointed out by M. Krötzsch [4], “Domain theory and the theory of
metric spaces are the two central utilities in the study of denotational semantics in computer
science.” Intrinsic relations between ultrametrics and orders were revealed in the latter
work. In particular, it was shown that the space of formal balls in a generalized ultrametric
space is (under reasonable assumptions) a continuous poset, i.e., a partially ordered set
such that each of its elements is the least upper bound of the directed set of the elements
approximating it from below.

It turned out [5] that partial orders are closely related to topologies. In particular,
a “decent” ordering of a set determines quite natural and useful topologies, e.g., Scott
topology, upper/lower topology, Lawson topology, etc. For these topologies to have
nice properties, the original order has to satisfy certain requirements, mostly related to
approximation relations, and called “continuity” in domain theory.

These requirements are met by surprisingly many natural partial orders, e.g., on
the sets of closed subsets of fixed topological spaces [6], on the sets of inclusion hyper-
spaces [7], on the sets of capacities [8], etc. This has had fruitful implications on topological
and algebraic properties of these sets.

Therefore it is natural to apply the apparatus of domain theory to naturally (i.e.,
pointwise) ordered sets of metrics or metric-like structures. We arrived at the conclusion
that the most suitable class for this approach consists of pseudoultrametrics. Categories of
ultrametrics were studied [9], but order properties have not been yet investigated. We are
going to fill this gap.

The paper describes approximation relations on the set PsU of all pseudoultrametrics
on a set X, and on its subsets CPsU(X) and LCPsU(X), that consists of all compact
pseudoultrametrics and of all locally compact pseudoultrametrics respectively. The first
section, “Preliminaries”, contains basic definitions and notation. In the section “Posets of
pseudoultrametrics” we describe properties of the mentioned sets with pointwise orders.
A significant part of the section consists of counterexamples, which show disadvantages of
PsU(X) and LCPsU(X) (e.g., lack of meet continuity). The only “positive” result (which
later turns out to be crucial) here is Theorem 1 on meet continuity of CPsU(X).

The section “Approximation from below” contains most of the results of the paper.
We introduce an auxiliary relation, which we call “weakly way below”. First we show
that pseudoultrametric d on X is the least upper bound of the directed set of compact
pseudoultrametrics, which implies immediately that no non-compact pseudoultrametric
can be weakly way below any pseudoultrametric (Theorem 2). This radically reduces
the search. To show that a similar fact is valid “on the other side”, namely, no nonzero
pseudoultrametric is way below a non-compact pseudoultrametric (Theorem 3), we prove
a series of lemmas on the “weakly way below” relation. So we restrict our attention
to compact pseudoultrametrics, for which the relations “way below” and “weakly way
below” coincide (Theorem 4). Theorem 5 shows how to construct pseudoultrametrics way
below a given one recursively. Finally, it is proved (Theorem 6) that the poset CPsU(X) is
continuous in the above sense.

2. Preliminaries

Below, “poset” stands for a partially ordered set, i.e., a set with a reflexive antisym-
metric transitive binary relation.

Recall that a poset (D,6) is directed (resp. filtered) if for all d1, d2 ∈ D there is d ∈ D
such that d1, d2 6 d (resp. d1, d2 > d).
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Definition 1. An element x0 is said to be way below an element x1 (or approximates x1 from
below) in a poset (X,6) (denoted x0 � x1) if for every non-empty directed subset D ⊂ X such
that x1 6 sup D there is an element d ∈ D such that x0 6 d.

Definition 2. An element x0 is said to be way above an element x1 (or approximates x1 from
above) in a poset (X,6) (denoted x0 � x1) if for every non-empty filtered subset D ⊂ X such that
x1 > inf D there is an element d ∈ D such that x0 > d.

Obviously x0 � x1 or x0 � x1 imply respectively x0 6 x1 or x0 > x1 (see more in [5]).
A poset is called continuous (resp. dually continuous) if each element is the least upper

bound of the directed set of all elements approximating it from below (resp. the greatest
lower bound of the filtered set of all elements approximating it from above).

Example 1. Consider the set BC(R2) of all bounded closed non-empty subsets of the plane R2. It
is natural for subsets A ⊆ B to regard A as a lesser element of BC(R2) than B and write A 6 B.
Then BC(R2) is a poset. It is a routine exercise in metric topology to verify that the following
statements are equivalent:

1. A is contained in the interior of B.
2. For any filtered (with respect to inclusion) family {Fi | i ∈ I} of bounded closed non-empty

subsets of plane such that
⋂

i∈I Fi ⊆ A, there is Fi ⊆ B.

Thus B approximates A from above in BC(R2) if and only if A is contained in the interior of
B, i.e., B is a closed neighborhood of A.

As all closed neighborhoods of each A ∈ BC(R2) form a filtered family with the intersection
equal to A, the poset (BC(R2),⊆) is dually continuous.

This example shows why the term “approximates” is used: it is not possible to get
closer to A from outside by Fis without some Fi becoming “trapped” in B. Then B is
a “safe” approximation of A: even if the precise position of A can be measured with some
measurement errors only, for small enough errors we always are in B.

Now the reader can catch the essence of (dual) continuity of a poset: every element
can be “safely” approximated from below (resp. from above). Then any two directed sets
that approximate the same element from below are “intertwined” as follows: each element
of the first set precedes an element of the second one, and vice versa (analogously for
approximations from above). Thus all “safe” approximations are essentially “the same”.

Another important point about the latter example is that a subset A ⊂ R2 can be
regarded as a piece of information about the actual position of an invisible point on a plane.
Then it is natural to consider a subset A that is contained in B as a bigger portion of
information than B because it describes where the point is more specifically. Therefore in
computer science, when it comes to information theory, subsets are often ordered by reverse
inclusion: A 6 B if A ⊇ B. Then (BC(R2),⊇) is a continuous poset, and B is way below A
if and only if A is contained in the interior of B. See [10] for more sophisticated use of this
approach for image recognition.

In this paper we are not interested in the “way above” relation and restrict our attention
solely to “way below”. We adopt the following definition.

Definition 3. An element x0 is called weakly way below an element x1 in a poset (X,6) (denoted
x0 ≺≺ x1) if for every non-empty directed subset D ⊂ X such that x1 = sup D there is an element
d ∈ D such that x0 6 d.

Observe the equality sign that differs from the precedence sign in Definition 1. It
will be shown further that “weakly way below” is a strictly weaker property indeed than
“way below”.

We are going to apply the above apparatus to the set of all pseudometrics on a fixed set,
and to its subset that consists of all pseudoultrametrics. Ultrametrics (or non-Archimedean
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metrics [11]) have been studied since the beginning of XX century, cf. a review in [9]. They
have found numerous applications, e.g., in computer science.

Monotone families of (pseudo-)ultrametrics were studied in [1], but approximation
relations were out of the scope of the latter paper.

The following notion is a natural mixture of the notions of ultrametric and pseudo-
metric.

Definition 4. A mapping d : X× X → R that satisfies the conditions:

• d(x, y) > 0 for all x, y ∈ X (nonnegativeness);
• d(x, x) = 0 for all x ∈ X (identity);
• d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
• d(x, y) 6 max{d(y, z), d(z, x)} for all x, y, z ∈ X (triangle inequality),

is called a pseudoultrametric on the set X.

It is just a pseudometric such that the usual triangle inequality d(x, y) 6 d(y, z) +
d(z, x) holds in a stronger form.

A pair (X, d) of a set X and a pseudoultrametric d on it is called a pseudoultrametric
space. For any subset A in (X, d) the (finite or infinite) least upper bound
diam A = sup{d(x, y) | x, y ∈ A} is called the diameter of A with respect to d.

Just as for any (pseudo-)metric, the ball Br(x) and the closed ball B̄r(x) for r > 0 are
defined as follows:

Br(x) = {y ∈ X | d(x, y) < r}, B̄r(x) = {y ∈ X | d(x, y) 6 r}.

3. Posets of Pseudoultrametrics

Denote PsU as the set PsU(X) of all pseudoultrametrics on a set X. Its subsets
CPsU(X) and LCPsU(X) consist of all compact pseudoultrametrics and of all locally
compact pseudoultrametrics respectively, i.e., CPsU(X) is the set of all pseudoultrametrics
that make X a compact space. Similarly LCPsU(X) denotes the set of all pseudoultrametrics
on X such that each point of X is the centre of a compact closed ball (note that we do not
require the Hausdorff property, and the mentioned functions may not be ultrametrics) [12].

Example 2. Let X be an arbitrary set. The discrete metric defined with the formula

d(x, y) =

{
0, x = y,
1, x 6= y,

x, y ∈ X,

is an ultrametric and therefore a pseudoultrametric. Each ball in X if the radius is 1 is a singleton
(one-point set), hence is compact. Hence d ∈ LCPsU(X), but d /∈ CPsU(X) for infinite X because
any sequence of distinct points in (X, d) has no limit.

Example 3. Consider a finite partition A1, A2, . . . , An of a set X and define a function ρ : X ×
X → R with the formula

ρ(x, y) =

{
0, x, y ∈ Ai for some i ∈ {1, 2, . . . , n},
1, x ∈ Ai, y ∈ Aj for some i 6= j, i, j ∈ {1, 2, . . . , n},

x, y ∈ X.

Clearly ρ is a pseudoultrametric, but it fails to be an ultrametric if at least one Ai contains
more than one point. Each ball in (X, ρ) either is equal to X, if the radius is greater than 1, or
coincides with one of Ai otherwise. Thus ρ ∈ CPsU(X).

Remark 1. Recall that two balls of equal radii in a pseudoultrametric space (X, d) either coincide
or have empty intersection. Hence the balls of a fixed radius R form a partition of X, therefore are
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open and closed. This implies that X is complete if and only if for each point x ∈ X there is R > 0
such that for each decreasing sequence of balls

BR(x) ⊃ Br1(x1) ⊃ Br2(x2) ⊃ . . . with R > r1 > r2 > . . .↘ 0

the intersection is non-empty.
Likewise X is compact if and only if X is complete and for all r > 0 there is only a finite

number of distinct balls of radius r in X. The space (X, d) is locally compact if and only if it is
complete and for each point x ∈ X there is R > 0 such that for all 0 < r < R the ball BR(x) is
the union of a finite number of balls of radius r.

The partial orders on the set PsU(X) of all pseudoultrametrics on X and its subsets
CPsU(X) and LCPsU(X) are defined pointwise: a pseudoultrametric d1 precedes a pseu-
doultrametric d2 (written d1 6 d2 or d2 > d1) if d1(x, y) 6 d2(x, y) holds for all points
x, y ∈ X. The trivial pseudometric d ≡ 0 is the least element of PsU(X), CPsU(X), and of
LCPsU(X). We write d1 < d2 or d2 > d1 if d1 6 d2 and d1 6= d2 (this does not mean that
d1(x, y) < d2(x, y) for all x, y).

Observe that if d1 6 d2 for d1, d2 ∈ PsU(X), then the identity mapping 1X : (X, d2)→
(X, d1) is continuous. The continuous image of a compact space is compact. Hence if
d2 ∈ CPsU(X), then d1 ∈ CPsU(X), i.e., CPsU(X) ⊂ PsU(X) is a lower subset:

CPsU(X)↓ = {d′ ∈ PsU(X) | d′ 6 d for some d ∈ CPsU(X)} ⊂ CPsU(X).

The least upper bound of pseudoultrametrics d1, d2 in PsU(X) is the pointwise maxi-
mum d∗(x, y) = max{(d1(x, y), d2(x, y)} for all x, y ∈ X.

Example 4. There are compact pseudoultrametrics d1, d2 on a countable set X such that sup{d1, d2}
is not a locally compact pseudoultrametric. Let Y+ = {1, 1

2 , 1
3 , . . .} and Y = Y+ ∪ {−1, 0}. Define

ρ : Y×Y → R by the formula

ρ(u, v) =

{
0, u = v,
max{|u|, |v|}, u 6= v,

u, v ∈ Y.

Consider

X =
{
(0, 0)

}
∪
⋃

n∈N

{ 1
n

}
×
({

0
}
∪
{ 1

n
,

1
n + 1

,
1

n + 2
, . . .

})
with the compact ultrametric d1((u, v), (u′, v′)) = max{ρ(u, u′), ρ(v, v′)} and with the compact
pseudoultrametric

d2((u, v), (u′, v′)) =


1, (u, v), (u′, v′) are in distinct of the sets Y+ × {0}

and X \ (Y+ × {0}),
0 otherwise,

for (u, v), (u′, v′) ∈ X.
Then X with the pseudoultrametric d∗ = sup{d1, d2} is isometric to the set

X± =
{
(0, 0)

}
∪
⋃

n∈N
{ 1

n
} ×

{ 1
n

,
1

n + 1
,

1
n + 2

, . . .
}
∪Y+ × {−1}

with the pseudoultrametric d±((u, v), (u′, v′)) = max{ρ(u, u′), ρ(v, v′)}, which is not locally
compact.
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Thus neither of the sets CPsU(X) and LCPsU(X) is an upper subsemilattice in the lat-
tice PsU(X).

Remark 2. If all balls in X with respect to a pseudoultrametric d1 are open with respect to a (locally)
compact pseudoulrametric d2 (i.e., d1 is continuous with respect to d2), then the pseudoultrametric
sup{d1, d2} is obviously (locally) compact as well.

The formula

d∗(x, y) = inf
{

max{min{d1(tk, tk+1), d2(tk, tk+1)} | 0 6 k 6 n− 1}
∣∣ n ∈ N,

t0 = x, {t1, ..., tn−1} ⊂ X, tn = y
}

determines the infimum of d1, d2 in the set of all pseudoultrametrics. The identity mappings
1X : (X, d1) → (X, d∗) and 1X : (X, d1) → (X, d∗) are continuous, hence compactness of
either of d1 and d2 implies compactness of d∗.

Example 5. There exist locally compact pseudoultrametrics d1, d2 on a countable set X such that
the pseudoultrametric d∗ = inf{d1, d2} is not locally compact.

Put Y = {1, 1
2 , 1

3 , 1
4 , . . . } ∪ {0} and X = Y×N, and define d1, d2 as follows:

d1((x, n), (x′, n′)) =


0, (x, n) = (x′, n′),
max{x, x′}, n = n′, x 6= x′,
1 otherwise,

and

d2((x, n), (x′, n′)) =

{
0, (x, n) = (x′, n′) or x = x′ = 0,
1 otherwise,

for all (x, n), (x′, n′) ∈ X. Then

d∗((x, n), (x′, n′)) =

{
0, (x, n) = (x′, n′) or x = x′ = 0,
max{x, x′} otherwise,

and a point (0, 1) does not have a compact neighborhood in (X, d∗): for all ε > 0 there is k ∈ N
such that 1

k < ε, hence the ball Bε((0, 0)) contains a sequence ( 1
k , n)∞

n=1 without convergent
subsequences.

Thus CPsU(X) is a lower subsemilattice of the lattice PsU(X) of all pseudoultrametrics
on X, but LCPsU(X) is not.

Clearly none of the posets PsU(X), LCPsU(X), and CPsU(X) for |X| > 1 has a great-
est element, therefore they are not complete upper semilattices. Nevertheless, PsU(X) and
CPsU(X) are bounded complete upper semilattices, i.e., if (compact) pseudoultrametrics dα,
α ∈ A, satisfy dα 6 d for a (compact) pseudoultrametric d, then the pointwise supremum
of all dα is a (compact) pseudoultrametric that is the least upper bound of {dα | α ∈ A}.

Example 6. There are locally compact pseudoultrametrics ρ, d, and d1 6 d2 6 . . . on a countable
set X such that d = sup{d1, d2, . . .}, but inf{ρ, d} 6= sup

{
inf{ρ, d1}, inf{ρ, d2}, . . .

}
.
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Let X = {−1,− 1
2 ,− 1

3 , . . .} ∪ {0} ∪ {1, 1
2 , 1

3}, and

ρ(u, v) =

{
0, |u| = |v|,
1, |u| 6= |v|,

d(u, v) =


0, u = v = 0,
0, {u, v} ⊂ {− 1

2k−1 ,− 1
2k} or

{u, v} ⊂ { 1
2k , 1

2k+1} for some k ∈ N,
1 otherwise,

dn(u, v) =


0, |u|, |v| < 1

2n+1 ,
0, {u, v} ⊂ {− 1

2k−1 ,− 1
2k} or

{u, v} ⊂ { 1
2k , 1

2k+1} for some 1 6 k 6 n,
1 otherwise,

for all u, v ∈ X. It is straightforward to verify that inf{ρ, dn}(−1, 0) = 0 for all n ∈ N, but
inf{ρ, d}(−1, 0) = 1.

In other words, the posets PsU(X) and LCPsU(X) are not meet continuous.

Theorem 1. For each pseudoultrametric ρ and a directed set {dα | α ∈ A} of pseudoultrametrics
such that there is a compact pseudoultrametric d = sup{dα | α ∈ A} (on the same set X),
the equality

inf
{

ρ, d
}
= sup

{
inf{ρ, dα}

∣∣ α ∈ A
}

is valid.

Proof. Denote ρ′ = inf{ρ, d} and observe inf{ρ, dα} = inf{ρ, d, dα} = inf{ρ′, dα}, hence
ρ′ = sup

{
inf{ρ′, dα}

∣∣ α ∈ A
}
= d′ is the equality to be proved, given ρ′ 6 d = sup{dα |

α ∈ A}. Clearly ρ′ is compact, as well as d′ and all inf{ρ′, dα}, and the right side is less than
or equal to the left side.

Let there be x, y ∈ X such that ρ′(x, y) = ε > θ > d′(x, y). Then x ∈ B = Bε(x),
y ∈ C = X \ Bε(c) (balls are with respect to ρ′), and ρ′(u, v) > ε for all u ∈ B, v ∈ C.

For all α ∈ A we have inf{ρ′, dα} < θ. Each sequence of points “from x to y” has
to jump once from B to C. Hence by the formula for inf{ρ′, dα} there should be u ∈ B,
v ∈ C such that inf{ρ′(u, v), dα(u.v)} 6 θ. Taking into account ρ′(u, v) > ε > θ, we obtain
dα(u, v) 6 θ. Hence the closed set {z ∈ C | dα(z, B) 6 θ} is non-empty for all α. Observe
{z ∈ C | dα(z, B) 6 θ} ⊂ {z ∈ C | dβ(z, B) 6 θ} if dα > dβ. Therefore the family of compact
sets {z ∈ C | dα(z, B) 6 θ} for all α ∈ A is filtered. Therefore its intersection is non-empty,
and there is z ∈ C such that dα(z, B) 6 θ for all α ∈ A. This implies d(z, B) 6 θ, which is
contradictory to d(z, B) > ρ′(z, B) > ε > θ. Thus ρ′ = d′, and the proof is complete.

Therefore the poset PsU(X) is meet continuous, i.e., the equality

inf
{

ρ, sup{dα | α ∈ A}
}
= sup

{
inf{ρ, dα}

∣∣ α ∈ A
}

is valid provided all pseudoultrametrics and their suprema here are compact.
We do not discuss existence or properties of least upper bounds of bounded sets in

the poset LCPsU(X).
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4. Approximation from Below

Let d be a pseudoultrametric on X. Then for all ε > 0 all ε-balls in X with respect to d
are open and disjoint. Hence the sets A = Bε(x) and B = X \ Bε(x) =

⋃
y/∈Bε(x) Bε(y) are

open and disjoint as well. Clearly d(u, v) > ε for all u ∈ A, v ∈ B. Therefore the formula

dx
ε (u, v) =

{
ε, exactly one of u, v is in Bε(x),
0 otherwise,

u, v ∈ X,

defines a compact pseudoultrametric dx
ε 6 d on X. Moreover,

d(u, v) = sup{dx
ε (u, v) | x ∈ X, ε > 0}

for all u, v ∈ X. This implies that any pseudoultrametric d on X is the least upper bound of
the directed set of all compact pseudoultrametrics of the form

sup{dx1
ε1 , dx2

ε2 , . . . , dxn
εn }, n ∈ N, x1, x2, . . . , xn ∈ X, ε1, ε2, . . . , εn > 0.

This has an immediate consequence on the “way below” relations in the posets PsU(X)
and LCPsU(X).

Theorem 2. Let d, d0 be pseudoultrametrics on X, d0 /∈ CPsU(X). Then d0 is not weakly way
below d (hence is not way below d) neither in PsU(X) nor in LCPsU(X).

Recall that a pseudoultrametric d on a set X is compact if and only if:

• it attains its least upper bound ε = diam X = sup{d(u, v) | u, v ∈ X};
• X is the disjoint union of finitely many ε-balls Bε(x1), Bε(x2), . . . , Bε(xn);
• each ball Bε(xi) is compact with respect to d.

These properties imply that diam Bε(xi) < ε for all i = 1, 2, . . . , n.

We consider the “weakly way below” relation in PsU(X) in the five following lemmas.

Lemma 1. Let for a pseudoultrametric d on X a ball Bε(x) exist such that the values d(u, v) for
u, v ∈ Bε(x) do not attain their least upper bound ε0 = diam Bε(x). Then for any pseudoultra-
metric d0 ≺≺ d and all u, v ∈ Bε(x) the equality d0(u, v) = 0 holds.

Proof. Observe that Bε(x) is not compact with respect to d. Assume there are s, t ∈ Bε(x)
such that d0(s, t) = δ > 0, then Bε(x) is the union of the disjoint (or coinciding) balls
B0

δ(y) ∩ Bε(x) with respect to d0 for all y ∈ Bε(x).
The sets A = B0

δ(s) and B = X \ B0
δ(s) are closed and open in X with respect to d0,

hence A0 = A ∩ Bε(x) 3 s and B0 = B ∩ Bε(x) 3 t are closed and open in Bε(x) with
respect to d, and at least one of A0, B0, say B0, has a diameter ε0.

Consider a construction based on a pseudoultrametric d on a set Y. For arbitrary x ∈ Y
and θ > 0 denote

dx
6θ(u, v) =


d(u, v), u, v ∈ Bθ(x),
0, u, v /∈ Bθ(x),
d(u, x), u ∈ Bθ(x), v /∈ Bθ(x),
d(v, x), u /∈ Bθ(x), v ∈ Bθ(x),

u, v ∈ Y.

Observe that dx
6θ is a pseudoultrametric less than or equal to d.

Choose an increasing sequence

0 < θ1 < θ2 < . . . < θn < . . .↗ ε0,



Axioms 2023, 12, 438 9 of 14

and consider the sequence

ds
6θ1

6 ds
6θ2

6 . . . 6 ds
6θn

6 . . .

of pseudoultrametrics on Bε(x) ⊂ X. We extend each of these pseudoultrametrics to X by
putting ds

6θn
(u, v) = d(u, v), if either of u, v is not in Bε(x). Then it is straightforward to

verify that ds
6θn

(u, v)↗ d(u, v) as n→ ∞ for all u, v ∈ X.
On the other hand, the pseudoutrametric

dA,B
δ (u, v) =

{
0, u, v ∈ A or u, v ∈ B,
δ otherwise,

u, v ∈ X,

satisfies dA,B
δ 6 d0, hence dA,B

δ ≺≺ d. Therefore n ∈ N must exist such that ds
6θn

> dA,B
δ ,

which is impossible because there is y ∈ B0 such that d(s, y) > θn+1 > θn, hence
ds
6θn

(s, y) = d(s, s) = 0 6> dA,B
δ (s, y) = δ.

This contradiction completes the proof that d0(u, v) = 0 for all u, v ∈ Bε(x).

Lemma 2. Assume that for a pseudoultrametric d on X a ball Bε(x) exists such that the values
d(u, v) for u, v ∈ Bε(x) attain their least upper bound ε0 = diam Bε(x) > 0 and there are
infinitely many points x1, x2, x3, . . . ∈ Bε(x) such that d(xi, xj) = ε0 for i 6= j. Then for any
pseudoultrametric d0 ≺≺ d and all u, v ∈ Bε(x) the equality d0(u, v) = 0 holds.

Proof. By the assumption Bε(x) is the disjoint union of infinitely many balls Bε0(y), y ∈
Bε(x). Let d0 ≺≺ d, and s, t ∈ Bε(x) exist such that d0(s, t) = δ > 0.

Consider again the sets A = B0
δ(s) and B = X \ B0

δ(s) which are closed and open
in X with respect to d0, and the closed and open in Bε(x) with respect to d intersections
A0 = A ∩ Bε(x) 3 s and B0 = B ∩ Bε(x) 3 t. At least one of A0 and B0, say B0, intersects
infinitely many disjoint balls Bε0(x1), Bε0(x2), Bε0(x3), . . . . We may also assume s /∈ Bε0(xn)
for all n = 1, 2, 3, . . ..

For all n = 1, 2, 3, . . . denote Cn = Bε0(xn) ∪ Bε0(xn+1) ∪ Bε0(xn+2) ∪ . . .. Then the
sets C1 ⊃ C2 ⊃ C3 ⊃ . . . are closed and open, and their intersection is empty. Define
a pseudoultrametric dn for any n ∈ N with the formula

dn(u, v) =


d(u, v), u, v /∈ Cn,
0, u, v ∈ Cn,
d(u, s), u /∈ Cn, v ∈ Cn,
d(v, s), u ∈ Cn, v /∈ Cn,

u, v ∈ X,

(we glue all points of Cn with s). Clearly dn(u, v)↗ d(u, v) as n→ ∞.
Analogously to the previous lemma, we show that neither of dn is greater than or

equal to the pseudoultrametric

dA,B
δ (u, v) =

{
0, u, v ∈ A or u, v ∈ B,
δ otherwise,

u, v ∈ X,

which satisfies dA,B
δ 6 d0, hence dA,B

δ ≺≺ d should be valid. By the choice of xi we have
B0 ∩ Cn 6= ∅, therefore there is y ∈ B0 ∩ Cn. Then dn(s, y) = d(s, s) = 0 6> dA,B

δ (s, y) = δ,
which is a contradiction.

Slight modifications of the latter arguments yield the conclusion that:

Lemma 3. If either the values d(u, v) for u, v in the entire X do not attain their least upper
bound ε0 = diam X, or they attain ε0 and there are infinitely many points x1, x2, x3, . . . such that
d(xi, xj) = ε0 for all i 6= j, then d0 ≡ 0 is a unique pseudoultrametric weakly way below d.
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Lemma 4. Assume that a pseudoultrametric d on X attains its supremum ε = diam X > 0 and
there is a ball Bε(x) with the diameter equal to ε. Then d0 ≡ 0 is the unique pseudoultrametric
weakly way below d.

Observe that the above condition means that the values d(u, v) for u, v ∈ Bε(x) do not
attain their least upper bound that is equal to ε.

Proof. Let d0 ≺≺ d. It is proved already that d0(u, v) = 0 for all u, v ∈ Bε(x). Choose
0 < θ < ε and arbitrary y /∈ Bε(x), and define a pseudoultrametric dx,y

6θ similarly to how
dx
6θ was defined:

dx,y
6θ(u, v) =



min{d(u, v), θ}, u, v ∈ Bε(x),
min{d(u, v), θ}, u, v ∈ Bθ(x) ∪ Bε(y),
min{d(v, y), θ}, u ∈ Bε(x) \ Bθ(x), v ∈ Bε(y)
min{d(u, y), θ}, v ∈ Bε(x) \ Bθ(x), u ∈ Bε(y),
d(u, v) otherwise,

u, v ∈ X.

Choose an increasing sequence

0 < θ1 < θ2 < . . . < θn < . . .↗ ε,

and then the sequence
dx,y
6θ1

6 dx,y
6θ2

6 . . . 6 dx,y
6θn

6 . . .

converges to d. On the other hand, for each n = 1, 2, 3, . . . and u ∈ Bε(x) \ Bθn(x) we
have dx,y

6θn
(u, y) = 0. As d0 6 dx,y

6θn
for some n, d0(u, y) = 0 for all u ∈ Bε(x) \ Bθn(x).

For any other z /∈ Bε(x) there is also m such that d0(u, z) = 0 for all u ∈ Bε(x) \ Bθm(x).
Let k = max{n, m} and u ∈ Bε(x) \ Bθk (x), and take into account d0(x, u) = 0, then
d0(u, y) = d0(u, z) = 0 implies d0(x, y) = d0(x, z) = d0(y, z) = 0.

This completes the proof that d0 ≡ 0.

Lemma 5. Assume that a pseudoultrametric d on X attains its supremum ε = diam X > 0 and
X is the disjoint union of balls X1 = Bε(x1), X2 = Bε(x2), . . . , Xn = Bε(xn) with the diameters
less than ε.

Then a pseudoultrametric d0 6 d is weakly way below d if and only if:

(a) all d0(xi, xj) are less than ε;
(b) for all i = 1, 2, . . . , n the restriction d0i of d0 to the ball Xi is way below the restriction di of d

to Xi.

Proof. Necessity. If d0(xi, xj) = ε for some i, j, then the increasing sequence of pseudoultra-
metrics (1− 1

k )d, k = 1, 2, . . ., converges to d, but (1− 1
k )d(xi, xj) 6 (1− 1

k )ε < ε = d0(xi, xj)
for all k, hence d0 6� d. Thus (a) is necessary.

Consider a directed set {ρα | α ∈ A} of pseudoultrametrics on a ball Xi with the least
upper bound di. Extend each ρα to a pseudoultrametric ρ̄α on X by the formula

ρ̄α =

{
ρα(u, v), u, v ∈ Xi,
d(u, v), u /∈ Xi or v /∈ Xi,

u, v ∈ X.

Then the set {ρ̄α | α ∈ A} is directed and has the least upper bound d, therefore
d0 6 ρ̄α for some α ∈ A. Going back to restrictions on Xi, we obtain d0i 6 ρα, hence
d0i � di. Therefore (b) is necessary as well.

Sufficiency. Assume (a) and (b). Let {dα | α ∈ A} be a directed set of pseudoul-
trametrics such that the supremum of dα is equal to d. We show that for all 0 < θ < ε
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the inequality dα(xi, xj) > θ is valid for all i 6= j and some α ∈ A. Assuming the contrary
for some i 6= j, we obtain from dα 6 d for all α ∈ A that

dα(u, v) 6 d′(u, v) = min
{

d(u, v),

max{d(u, xi), θ, d(xj, v)},
max{d(v, xi), θ, d(xj, u)}

}
, u, v ∈ X.

Then d′ is a pseudoultrametric, dα < d′ (because d′(xi, xj) = θ < ε = d(xi, xj)), which
contradicts d being the supremum of all dα.

By the assumption we can choose θ so that max{diam0 X1, diam0 X1, . . . , diam0 Xn} <
θ < ε, θ > max{d0(xi, xj) | i 6= j}, then there is α0 ∈ A such that dα0(xi, xj) > θ for all i 6= j.

Analogously to the previous arguments, it can be shown that the restrictions dαi of all
dα to Xi have the least upper bound di in PsU(Xi). Thus di > di for all i, hence dαi > d0i for
some αi.

Now there is β ∈ A such that dβ is greater than or equal to all dα0 , dα1 , . . . , dαn . Clearly
dβ(u, v) > d0i(u, v) = d0(u, v) for all u, v ∈ Xi. If i 6= j, u ∈ Xi, v ∈ Xj, then dβ(xi, xj) > θ,
dβ(u, xi) 6 θ, dβ(xj, v) 6 θ, which implies dβ(u, v) > θ > d0(u, v). Thus dβ > d0, which
completes the proof that d0 � d.

Remark 3. It is straightforward to verify that, if in the five latter lemmas the pseudoultrametric d
is locally compact, then, by Remark 2, all the auxiliary pseudoultrametrics constructed in the proofs
are locally compact as well. Hence these lemmas are valid for the “weakly way below” relation not
only in PsU(X), but also in LCPsU(X).

Now we can obtain a corollary on what is “way below” a non-compact pseudoultrametric.

Theorem 3. If a pseudoultrametric (a locally compact pseudoultrametric) d is not compact, then
d0 ≡ 0 is the unique pseudoultrametric way below d in PsU(X) (resp. in LCPsU(X)).

Proof. By Remark 1 for d either there is a decreasing sequence of balls

BR(x) ⊃ Br1(x1) ⊃ Br2(x2) ⊃ . . . with R > r1 > r2 > . . .↘ 0

with the empty intersection, or for some r > 0 there are distinct balls Br(x1), Br(x2), . . . .
In the first case we denote A1 = BR(x) \ Br1(x1), A2 = Br1(x1) \ Br2(x2), . . . . In

the second case we simply put A1 = Br(x1), A2 = Br(x2), . . . . In both cases all sets
A1, A2, . . ., as well as A0 = X \ (A1 ∪ A2 ∪ . . .), are open and form a partition of X. Hence
the pseudoultrametric

ρ(u, v) =

{
0, u, v are in the same Ai,
max{i, j}, u ∈ Ai, v ∈ Aj, i 6= j,

u, v ∈ X,

is continuous with respect to d. Then d′ = sup{d, ρ} is a pseudoultrametric, and is
locally compact provided so is d. It satisfies conditions of Lemma 3, hence only the zero
pseudoultrametric is way below d′ in PsU(X) (resp. in LCPsU(X)). As d 6 d′ and d0 � d
implies d0 � d′, the proof is complete.

Remark 4. Together with the previous lemma this implies that the relations “way below” and
“weakly way below” for non-compact pseudoultrametrics are different.

Theorem 4. The relations “way below” and “weakly way below” on the poset CPsU(X) coincide.

Proof. We need only to prove d0≺≺ d =⇒ d0 � d in CPsU. Let {dα | α ∈ A} be a directed
set of pseudoultrametrics such that the supremum ρ of dα is compact and greater than or
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equal to d. By the virtue of Theorem 1 (i.e., meet continuity) the supremum of inf{d, dα} is
equal to inf{d, ρ} = d, therefore there is inf{d, dα} > d0, which implies dα > d0.

Theorem 5. Let d0, d1 ∈ CPsU(X), d0 6 d1. Then d0 � d1 if and only if the following holds:

(1) if d0(x, y) = d1(x, y) for some x, y ∈ X, then d1(x, y) = 0;
(2) there are k ∈ {0, 1, 2, . . .} and z1, . . . , zk ∈ X such that for all x ∈ X the equality d0(x, zi) is

valid for some 1 6 i 6 k.

Proof. Sufficiency. Assume (1) and (2). We can assume d0(zi, zj) > 0 for all i 6= j (otherwise
we can drop either zi or zj, etc., until the condition is satisfied). We prove the statement by
induction. If k = 0 or k = 1, then d0 ≡ 0, hence d0 � d1.

If the statement holds for k 6 n, n > 1, then for k = n + 1 there is ε = max{d0(zi, zj) |
1 6 i < j 6 n + 1} > 0, therefore X is a finite union of compact balls Bε(zi) with respect
to d0, which are pairwise either disjoint or equal. The restrictions of d0 and d1 to each ball
clearly satisfy 1) and 2), hence d0|Bε(zi)

� d1|Bε(zi)
. The conditions of Lemma 5 are satisfied,

which implies d0 ≺≺ d1 =⇒ d0 � d1.
Necessity. Let d0 � d1. To show (1), assume that there are x, y ∈ X such that

d0(x, y) = d1(x, y) > 0. Consider the set D =
{(

1− 1
n

)
d1 | n ∈ N

}
. Then D ⊂ CPsU(X)

is directed, and sup D = d1. For all n ∈ N we have d0(x, y) = d2(x, y) >
(

1− 1
n

)
d1(x, y),

hence no element of D dominates d1, which contradicts that d1 � d2. Thus 1) holds.
We show that d0 � d1 implies (2). For ε > 0 let

d(ε)(x, y) =
{

d1(x, y), if d1(x, y) > ε,
0, otherwise,

for x, y ∈ X. Obviously d(ε) is a pseudoultrametric, d(ε) 6 d1, and compactness of d1

implies that d(ε) is compact as well. Consider the set D =
{

d(ε) | ε > 0
}

. It is directed

and (sup D)(x, y) = sup
{

d(ε)(x, y) | ε > 0
}
= d1(x, y) for all x, y ∈ X, hence sup D = d1.

Taking into account d0 � d1, we can choose ε > 0 such that d0 6 d(ε). There is a finite
partition Bε(z1), Bε(z2), . . . , Bε(zm) of X into balls with respect to d(ε), and d(ε) does not
attain values in (0, ε), hence for each x ∈ Bε′(zi) we have d0(x, zi) 6 d(ε)(x, zi) = 0. This
completes the proof.

The latter theorem implies that for all d ∈ CPsU(X), ε > 0 and λ ∈ (0, 1) the
pseudoultrametric with the formula

dε
λ(x, y) =

{
λd(x, y), d(x, y) > ε,
0, d(x, y) < ε,

is way below d. The set
D = {dε

λ|λ ∈ [0; 1), ε > 0}

is directed, and
(sup D)(x, y) = lim

ε→0
λ→1

dε
λ(x, y) = d(x, y).

Thus the following theorem is obtained:

Theorem 6. For all d ∈ CPsU(X) there is a directed set of compact pseudoultrametrics way below
d such that sup D = d.

5. Conclusions and Future Research

We have proved that the poset CPsU(X) is continuous. It lacks directed completeness,
hence is not a domain, but each of its subsets of the form d↓ = {ρ ∈ CPsU(X) | ρ 6 d}
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for d ∈ CPsU(X) is a domain, namely a complete continuous lower semilattice. We will
describe its properties in a subsequent paper. This will allow the entire well-elaborated
apparatus of domain theory [5] to be applied to classification problems.

Morphisms between CPsU(X) and CPsU(Y), that preserve the structure to different
extents, will be described. In particular, tools of category theory will be used. We expect
fruitful applications of this theory to denotational semantics in computer science. For
example, an information system (maybe a neural net) can be studied such that its input
and/or output is a tree-like classification. Then this system behavior is stable (tolerant
to inaccuracies) if the respective mapping input→ output is continuous in order sense.
This means that, the closer an input information is to the “actual” state of things, the more
accurate is the output. The analysis of continuity and comparison of information precision
involves “way below” relations.

A “decent” order on a poset determines several classical topologies, namely, lower/upper,
Scott, and Lawson topologies [5,13]. The continuity of CPsU(X) (and hence of its lower
subsets) implies that these topologies have nice properties (e.g., are Hausdorff and/or
compact). These topologies and related metrics are also a topic of ongoing research.

The other conclusion of this work is that approximations of pseudoultrametrics (in
the sense of order theory) are efficient only for the compact case. This is not a big surprise be-
cause similar limitations appeared earlier in similar circumstances, e.g., for approximations
of possibility measures or non-additive measures. In practice compactness corresponds
to gradual classification such that the set of classes (clusters etc.) at any stage is finite. In
fact this happens in most cases, hence compact pseudoultrametrics are quite sufficient
for applications.
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