Article

Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator

Likai Liu ${ }^{1, *}$, Jie Zhai ${ }^{2}$ and Jin-Lin Liu ${ }^{2, *}$

1 Information Technology Department, Nanjing Vocational College of Information Technology,
Nanjing 210023, China
2 Department of Mathematics, Yangzhou University, Yangzhou 225002, China; mx120200305@stu.yzu.edu.cn

* Correspondence: liulk@njcit.cn (L.L.); jlliu@yzu.edu.cn (J.-L.L.)

Abstract

A new subclass of bi-univalent functions associated with the Hohlov operator is introduced. Certain properties such as the coefficient bounds, Fekete-Szegö inequality and the second Hankel determinant for functions in the subclass are obtained. In particular, several known results are generalized.

Keywords: analytic function; bi-univalent functions; subordination; Fekete-Szegö inequality; Hankel determinant; Hohlov operator

MSC: 30C45; 05A30

1. Introduction

Let A denote the class of analytic functions in $U=\{z \in C:|z|<1\}$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in U) \tag{1}
\end{equation*}
$$

Furthermore, let $S \subset A$ denote the class of functions that are univalent in U.
Let f and g be two analytic functions in U. We say that the function f is subordinate to the function g and is written as follows:

$$
f(z) \prec g(z) \quad(z \in U)
$$

if there is a Schwarz function w such that

$$
f(z)=g(w(z))
$$

Further, if the function g is univalent in U, then it follows that

$$
f(z) \prec g(z)(z \in U) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Denoted by P is the class of analytic functions φ having the form:

$$
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right)
$$

and $\operatorname{Re} \varphi(z)>0(z \in U)$.
For functions $f \in A$ and $u \in A$ given by

$$
u(z)=z+\sum_{n=2}^{\infty} u_{n} z^{n} \quad(z \in U)
$$

the Hadamard product (or convolution) of f and u is defined by

$$
(f * u)(z)=z+\sum_{n=2}^{\infty} a_{n} u_{n} z^{n}=(u * f)(z) \quad(z \in U) .
$$

For $a, b, c \in C$ and $c \neq 0,-1,-2,-3 \cdots$, the Gauss hypergeometric function ${ }_{2} F_{1}(a, b ; c ; z)$ is defined as:

$$
\begin{align*}
{ }_{2} F_{1}(a, b ; c ; z) & =\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \\
& =1+\sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}} \frac{z^{n-1}}{(n-1)!} \quad(z \in U), \tag{2}
\end{align*}
$$

where $(\alpha)_{n}$ is the Pochhammer symbol, written in terms of the Gamma function Γ, by

$$
(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}= \begin{cases}1 & (n=0) \\ \alpha(\alpha+1)(\alpha+2) \cdots(\alpha+n-1) & (n=1,2,3, \cdots)\end{cases}
$$

For positive real values a, b, c, using the Hadamard product and Gauss hypergeometric function, Hohlov (see [1,2]) proposed and studied a linear operator $J_{a, b ; c} f: A \rightarrow A$ defined by

$$
\begin{align*}
J_{a, b ; c} f(z) & =z_{2} F_{1}(a, b ; c ; z) * f(z) \\
& =z+\sum_{n=2}^{\infty} \psi_{n} a_{n} z^{n} \quad(z \in U) \tag{3}
\end{align*}
$$

where

$$
\psi_{n}=\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}
$$

It is well known that every univalent function $f \in S$ has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(|\omega|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{align*}
g(\omega) & :=f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)+\cdots \\
& =\omega+\sum_{n=2}^{\infty} b_{n} \omega^{n} \tag{4}
\end{align*}
$$

We say that a function $f \in A$ is bi-univalent in U if both f and f^{-1} are univalent in U and denote a class of normalized analytic and bi-univalent functions by $\Sigma(\subset S)$. Some elements of functions in Σ are presented below:

$$
f_{1}(z)=\frac{z}{1-z}, f_{2}(z)=-\log (1-z) \text { and } f_{3}(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and their corresponding inverses given by:

$$
f_{1}^{-1}(\omega)=\frac{\omega}{1+\omega}, f_{2}^{-1}(\omega)=\frac{e^{\omega}-1}{e^{\omega}} \text { and } f_{3}^{-1}(\omega)=\frac{e^{2 \omega}-1}{e^{2 \omega}+1}
$$

Certain subclasses $S_{\Sigma}^{*}(\alpha)$ and $C_{\Sigma}(\alpha)$ of Σ introduced by Brannan and Taha [3] are similar to the subclasses $S^{*}(\alpha)$ and $C(\alpha)$ of starlike and convex functions of order $\alpha(0 \leq \alpha<1)$, respectively. In [3], Brannan and Taha obtained the non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of $S_{\Sigma}^{*}(\alpha)$ and $C_{\Sigma}(\alpha)$. Recently, many scholars have defined various subclasses of bi-univalent functions (see [4-12]) and investigated the non-sharp estimates of the first two coefficients of the Taylor-Maclaurin series expansion.

The Hankel determinant is one of the important tools in the study of the theory of univalent functions. Noonan and Thomas [13] defined the q-th Hankel determinant of $f \in A$ as:

$$
H_{q}(n)=\left|\begin{array}{lccr}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1, n \geq 0, q \geq 1\right) .
$$

The Hankel determinants

$$
H_{2}(1)=\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right|=a_{3}-a_{2}^{2}
$$

and

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2}
$$

are called the Fekete-Szegö functional and the second Hankel determinant functional, respectively. Further, Fekete and Szegö [14] considered the generalized functional $a_{3}-\mu a_{2}^{2}$, where μ is a real number. Recently, several authors (see [15-19]) proved the upper bounds for the Hankel determinant for functions in various subclasses of the bi-univalent functions. On the other hand, Zaprawa [20] extended the study of the Fekete-Szegö inequality to several classes of bi-univalent functions. Deniz et al. [21] discussed the upper bounds of $H_{2}(2)$.

Now we introduce a new subclass of bi-univalent functions associated with the Hohlov operator.

Definition 1. For $0 \leq \lambda \leq 1$ and $J_{a, b ; c}$ given by (3), a function $f \in \Sigma$ given by (1) is said to be in the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$ if it satisfies the following subordination conditions:

$$
\lambda\left\{1+\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime \prime}}{\left(J_{a, b ; c} f(z)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime}}{J_{a, b ; c} f(z)}\right\} \prec \varphi(z) \quad(z \in U)
$$

and

$$
\lambda\left\{1+\frac{\omega\left(J_{a, b ; c} g(\omega)\right)^{\prime \prime}}{\left(J_{a, b ; c} g(\omega)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{\omega\left(J_{a, b ; c} g(\omega)\right)^{\prime}}{J_{a, b ; c} g(\omega)}\right\} \prec \varphi(\omega) \quad(\omega \in U)
$$

where $\varphi \in P$ and the function g is the inverse of f given by (4).
Remark 1. For $a=c$ and $b=1$ in the above definition, we have $M_{\Sigma}^{a, 1 ; a}(\lambda, \varphi)=M_{\Sigma}(\lambda, \varphi)$, introduced and studied by Ali et al. [22].

To prove our main results, the following lemmas are needed.
Lemma 1 ([23]). Let a function $v(z)=v_{1} z+v_{2} z^{2}+v_{3} z^{3}+\cdots$ be analytic in $U, v(0)=0$ and $|v(z)|<1$, then $\left|v_{n}\right| \leq 1(n \in N)$.

Lemma 2 ([24]). Let $u(z)=\sum_{n=1}^{\infty} u_{n} z^{n}(z \in U)$ be a Schwarz function, then

$$
u_{2}=x\left(1-u_{1}^{2}\right)
$$

and

$$
u_{3}=\left(1-u_{1}^{2}\right)\left(1-|x|^{2}\right) s-u_{1}\left(1-u_{1}^{2}\right) x^{2}
$$

for some complex number x and s satisfying $|x| \leq 1$ and $|s| \leq 1$.
In this paper, we investigate some properties such as the coefficient bounds, FeketeSzegö inequality and the second Hankel determinant for functions in the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$. In particular, several previous results are generalized.

2. Main Results

In this section, we find estimates for the general Taylor-Maclaurin coefficients of the functions in the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$.

Theorem 1. Let $0 \leq \lambda \leq 1$ and the function $f \in \Sigma$ given by (1) belong to the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\begin{array}{l}
\frac{B_{1}}{(1+\lambda) \psi_{2}} \\
\frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[2(1+2 \lambda) \psi_{3}-(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|}}
\end{array}\right.
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\begin{array}{l}
\frac{B_{1}}{2(1+2 \lambda) \psi_{3}}+\frac{B_{1}^{2}}{(1+\lambda)^{2} \psi_{2}^{2}} \\
\frac{B_{1}}{2(1+2 \lambda) \psi_{3}}+\frac{B_{1}^{3}}{\left|\left[2(1+2 \lambda) \psi_{3}-(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|}
\end{array}\right.
$$

Proof. Let $f \in \Sigma$ given by (1) belong to the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$. There exist two Schwarz functions:

$$
u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots
$$

and

$$
v(\omega)=v_{1} \omega+v_{2} \omega^{2}+v_{3} \omega^{3}+\cdots
$$

such that

$$
\begin{equation*}
\lambda\left\{1+\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime \prime}}{\left(J_{a, b ; c} f(z)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime}}{J_{a, b ; c} f(z)}\right\}=\varphi(u(z)) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left\{1+\frac{\omega\left(J_{a, b ; c} g(\omega)\right)^{\prime \prime}}{\left(J_{a, b ; c} g(\omega)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{\omega\left(J_{a, b ; c} g(\omega)\right)^{\prime}}{J_{a, b ; c} g(\omega)}\right\}=\varphi(v(\omega)) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(u(z))=1+B_{1} u_{1} z+\left(B_{1} u_{2}+B_{2} u_{1}^{2}\right) z^{2}+\left(B_{1} u_{3}+2 B_{2} u_{1} u_{2}+B_{3} u_{1}^{3}\right) z^{3}+\cdots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(v(\omega))=1+B_{1} v_{1} \omega+\left(B_{1} v_{2}+B_{2} v_{1}^{2}\right) \omega^{2}+\left(B_{1} v_{3}+2 B_{2} v_{1} v_{2}+B_{3} v_{1}^{3}\right) \omega^{3}+\cdots \tag{8}
\end{equation*}
$$

Since f and $g=f^{-1}$ have the Taylor series expansion (1) and (4), respectively, we obtain

$$
\begin{align*}
& \lambda\left\{1+\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime \prime}}{\left(J_{a, b ; c} f(z)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{z\left(J_{a, b ; c} f(z)\right)^{\prime}}{J_{a, b ; c} f(z)}\right\} \\
& =1+(1+\lambda) \psi_{2} a_{2} z+\left[2(1+2 \lambda) \psi_{3} a_{3}-(1+3 \lambda) \psi_{2}^{2} a_{2}^{2}\right] z^{2} \\
& +\left[3(1+3 \lambda) \psi_{4} a_{4}-3(1+5 \lambda) \psi_{2} \psi_{3} a_{2} a_{3}+(1+7 \lambda) \psi_{2}^{3} a_{2}^{3}\right] z^{3}+\cdots \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
& \lambda\left\{1+\frac{\omega\left(J_{a, b ;} g(\omega)\right)^{\prime \prime}}{\left(J_{a, b ;} g(\omega)\right)^{\prime}}\right\}+(1-\lambda)\left\{\frac{\omega\left(J_{a, b ; c} g(\omega)\right)^{\prime}}{J_{a, b ; c} g(\omega)}\right\} \\
& =1+(1+\lambda) \psi_{2} b_{2} \omega+\left[2(1+2 \lambda) \psi_{3} b_{3}-(1+3 \lambda) \psi_{2}^{2} b_{2}^{2}\right] \omega^{2} \\
& +\left[3(1+3 \lambda) \psi_{4} b_{4}-3(1+5 \lambda) \psi_{2} \psi_{3} b_{2} b_{3}+(1+7 \lambda) \psi_{2}^{3} b_{2}^{3}\right] \omega^{3}+\cdots . \tag{10}
\end{align*}
$$

Now, from (5), (7) and (9), we obtain

$$
\begin{equation*}
(1+\lambda) \psi_{2} a_{2}=B_{1} u_{1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+2 \lambda) \psi_{3} a_{3}-(1+3 \lambda) \psi_{2}^{2} a_{2}^{2}=B_{1} u_{2}+B_{2} u_{1}^{2} \tag{12}
\end{equation*}
$$

Similarly, from (6), (8) and (10), we obtain

$$
\begin{equation*}
-(1+\lambda) \psi_{2} a_{2}=B_{1} v_{1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+2 \lambda) \psi_{3}\left(2 a_{2}^{2}-a_{3}\right)-(1+3 \lambda) \psi_{2}^{2} a_{2}^{2}=B_{1} v_{2}+B_{2} v_{1}^{2} . \tag{14}
\end{equation*}
$$

It follows from (11) and (13) that

$$
\begin{equation*}
a_{2}=\frac{B_{1} u_{1}}{(1+\lambda) \psi_{2}}=\frac{-B_{1} v_{1}}{(1+\lambda) \psi_{2}} . \tag{15}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
u_{1}=-v_{1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+\lambda)^{2} \psi_{2}^{2} a_{2}^{2}=B_{1}^{2}\left(u_{1}^{2}+v_{1}^{2}\right) \tag{17}
\end{equation*}
$$

From (15) and Lemma 1, we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1}}{(1+\lambda) \psi_{2}} \tag{18}
\end{equation*}
$$

Adding (12) to (14), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(u_{2}+v_{2}\right)}{\left[4(1+2 \lambda) \psi_{3}-2(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-2(1+\lambda)^{2} B_{2}} . \tag{19}
\end{equation*}
$$

Therefore, by using Lemma 1, we have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{B_{1}^{3}}{\left|\left[2(1+2 \lambda) \psi_{3}-(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|} \tag{20}
\end{equation*}
$$

It follows that

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[2(1+2 \lambda) \psi_{3}-(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|}}
$$

Subtracting (14) from (12) and with some calculations, we obtain

$$
\begin{equation*}
a_{3}=\frac{B_{1}\left(u_{2}-v_{2}\right)}{4(1+2 \lambda) \psi_{3}}+a_{2}^{2} \tag{21}
\end{equation*}
$$

By using Lemma 1, we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}}{2(1+2 \lambda) \psi_{3}}+\left|a_{2}\right|^{2} \tag{22}
\end{equation*}
$$

Putting (18) into (22), we have

$$
\left|a_{3}\right| \leq \frac{B_{1}}{2(1+2 \lambda) \psi_{3}}+\frac{B_{1}^{2}}{(1+\lambda)^{2} \psi_{2}^{2}}
$$

Similarly, putting (20) into (22), we obtain

$$
\left|a_{3}\right| \leq \frac{B_{1}}{2(1+2 \lambda) \psi_{3}}+\frac{B_{1}^{3}}{\left|\left[2(1+2 \lambda) \psi_{3}-(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-(1+\lambda)^{2} B_{2}\right|}
$$

This completes the proof of Theorem 1.
For $a=c$ and $b=1$ in Theorem 1, we obtain a result of the class $M_{\Sigma}(\lambda, \varphi)$, considered by Ali et al. [22].

Corollary 1. Let $0 \leq \lambda \leq 1$ and the function $f \in \Sigma$ given by (1) belong to the class $M_{\Sigma}(\lambda, \varphi)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\begin{array}{l}
\frac{B_{1}}{1+\lambda} \quad B_{1} \sqrt{B_{1}} \\
\sqrt{(1+\lambda)\left|B_{1}^{2}-(1+\lambda) B_{2}\right|}
\end{array}\right.
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\begin{array}{l}
\frac{B_{1}}{2(1+2 \lambda)}+\frac{B_{1}^{2}}{(1+\lambda)^{2}} \\
\frac{B_{1}}{2(1+2 \lambda)}+\frac{B_{1}^{3}}{(1+\lambda)\left|B_{1}^{2}-(1+\lambda) B_{2}\right|}
\end{array}\right.
$$

Theorem 2. Let $0 \leq \lambda \leq 1, \sigma \in C$ and the function $f \in \Sigma$ given by (1) belong to the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$. Then

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \lambda) \psi_{3}} & \left(0 \leq|h(\sigma)| \leq \frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right) \\ 2|h(\sigma)| & \left(|h(\sigma)|>\frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right),\end{cases}
$$

where

$$
\begin{equation*}
h(\sigma)=\frac{(1-\sigma) B_{1}^{3}}{\left[4(1+2 \lambda) \psi_{3}-2(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-2(1+\lambda)^{2} B_{2}} \tag{23}
\end{equation*}
$$

Proof. From (21), we get

$$
\begin{equation*}
a_{3}-\sigma a_{2}^{2}=\frac{B_{1}\left(u_{2}-v_{2}\right)}{4(1+2 \lambda) \psi_{3}}+(1-\sigma) a_{2}^{2} \tag{24}
\end{equation*}
$$

Putting (19) into (24), we have

$$
\begin{align*}
a_{3}-\sigma a_{2}^{2} & =\frac{B_{1}\left(u_{2}-v_{2}\right)}{4(1+2 \lambda) \psi_{3}}+\frac{B_{1}^{3}(1-\sigma)\left(u_{2}+v_{2}\right)}{\left[4(1+2 \lambda) \psi_{3}-2(1+3 \lambda) \psi_{2}^{2}\right] B_{1}^{2}-2(1+\lambda)^{2} B_{2}} \\
& =\left(h(\sigma)+\frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right) u_{2}+\left(h(\sigma)-\frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right) v_{2} \tag{25}
\end{align*}
$$

where $h(\sigma)$ is given by (23).

From (25) and Lemma 1, we derive

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \lambda) \psi_{3}} & \left(0 \leq|h(\sigma)| \leq \frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right) \\ 2|h(\sigma)| & \left(|h(\sigma)|>\frac{B_{1}}{4(1+2 \lambda) \psi_{3}}\right) .\end{cases}
$$

This completes the proof of Theorem 2.
For $a=c$ and $b=1$ in Theorem 2, we obtain a result of the class $M_{\Sigma}(\lambda, \varphi)$, introduced by Ali et al. [22].

Corollary 2. Let $0 \leq \lambda \leq 1, \sigma \in C$ and the function $f \in \Sigma$ given by (1) be in the class $M_{\Sigma}(\lambda, \varphi)$. Then

$$
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \begin{cases}\frac{B_{1}}{2(1+2 \lambda)} & \left(0 \leq|h(\sigma)| \leq \frac{B_{1}}{4(1+2 \lambda)}\right) \\ 2|h(\sigma)| & \left(|h(\sigma)|>\frac{B_{1}}{4(1+2 \lambda)}\right),\end{cases}
$$

where

$$
h(\sigma)=\frac{(1-\sigma) B_{1}^{3}}{2(1+\lambda)\left(B_{1}^{2}-(1+\lambda) B_{2}\right)}
$$

Theorem 3. Let $0 \leq \lambda \leq 1$ and the function $f \in \Sigma$ given by (1) belong to the class $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1} \begin{cases}Q_{3} & \left(Q_{2} \leq 0, Q_{1} \leq-Q_{2}\right) \\ Q_{1}+Q_{2}+Q_{3} & \left(Q_{2}>0, Q_{1}>-\frac{Q_{2}}{2}\right) \text { or }\left(Q_{2} \leq 0, Q_{1}>-Q_{2}\right) \\ \frac{4 Q_{1} Q_{3}-Q_{2}^{2}}{4 Q_{1}} & \left(Q_{2}>0, Q_{1} \leq-\frac{Q_{2}}{2}\right)\end{cases}
$$

where

$$
\begin{aligned}
& Q_{1}=\left|\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right| \\
& \quad-\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}-\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}}, \\
& Q_{2}=\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}+\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}-\frac{B_{1}}{2(1+2 \lambda)^{2} \psi_{3}^{2}} \\
& \text { and } \\
& Q_{3}=\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}} .
\end{aligned}
$$

Proof. From (5), (7) and (9), we have

$$
\begin{align*}
& 3(1+3 \lambda) \psi_{4} a_{4}-3(1+5 \lambda) \psi_{2} \psi_{3} a_{2} a_{3}+(1+7 \lambda) \psi_{2}^{3} a_{2}^{3} \\
& =B_{1} u_{3}+2 B_{2} u_{1} u_{2}+B_{3} u_{1}^{3} \tag{26}
\end{align*}
$$

Similarly, from (6), (8) and (10), we obtain

$$
\begin{align*}
& -3(1+3 \lambda) \psi_{4}\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)+3(1+5 \lambda) \psi_{2} \psi_{3} a_{2}\left(2 a_{2}^{2}-a_{3}\right)-(1+7 \lambda) \psi_{2}^{3} a_{2}^{3} \\
& =B_{1} v_{3}+2 B_{2} v_{1} v_{2}+B_{3} v_{1}^{3} \tag{27}
\end{align*}
$$

Subtracting (27) from (26) and with some calculations, we have

$$
\begin{align*}
a_{4} & =\frac{B_{1}\left(u_{3}-v_{3}\right)}{6(1+3 \lambda) \psi_{4}}+\frac{B_{2} u_{1}\left(u_{2}+v_{2}\right)}{3(1+3 \lambda) \psi_{4}}+\frac{B_{3} u_{1}^{3}}{3(1+3 \lambda) \psi_{4}} \\
& +\frac{5}{2} a_{2} a_{3}+\frac{\left[6(1+5 \lambda) \psi_{2} \psi_{3}-15(1+3 \lambda) \psi_{4}-2(1+7 \lambda) \psi_{2}^{3}\right]}{6(1+3 \lambda) \psi_{4}} a_{2}^{3} . \tag{28}
\end{align*}
$$

From (15) and (21), we obtain

$$
\begin{align*}
a_{4} & =\frac{B_{1}\left(u_{3}-v_{3}\right)}{6(1+3 \lambda) \psi_{4}}+\frac{B_{2} u_{1}\left(u_{2}+v_{2}\right)}{3(1+3 \lambda) \psi_{4}}+\frac{B_{3} u_{1}^{3}}{3(1+3 \lambda) \psi_{4}} \\
& +\frac{5 B_{1}^{2} u_{1}\left(u_{2}-v_{2}\right)}{8(1+\lambda)(1+2 \lambda) \psi_{2} \psi_{3}}+\frac{\left[3(1+5 \lambda) \psi_{3}-(1+7 \lambda) \psi_{2}^{2}\right] B_{1}^{3} u_{1}^{3}}{3(1+\lambda)^{3}(1+3 \lambda) \psi_{2}^{2} \psi_{4}} . \tag{29}
\end{align*}
$$

Thus, we obtain

$$
\begin{align*}
a_{2} a_{4}-a_{3}^{2} & =\left\{\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{4}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right. \\
& \left.+\frac{B_{1} B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}\right\} u_{1}^{4} \\
& +\frac{B_{1}^{3} u_{1}^{2}\left(u_{2}-v_{2}\right)}{8(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}+\frac{B_{1} B_{2} u_{1}^{2}\left(u_{2}+v_{2}\right)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& +\frac{B_{1}^{2} u_{1}\left(u_{3}-v_{3}\right)}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}-\frac{B_{1}^{2}\left(u_{2}-v_{2}\right)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}} . \tag{30}
\end{align*}
$$

By using Lemma 2, we derive

$$
\begin{gathered}
u_{2}=x\left(1-u_{1}^{2}\right), \quad v_{2}=y\left(1-v_{1}^{2}\right), \\
u_{3}=\left(1-u_{1}^{2}\right)\left(1-|x|^{2}\right) s-u_{1}\left(1-u_{1}^{2}\right) x^{2}
\end{gathered}
$$

and

$$
v_{3}=\left(1-v_{1}^{2}\right)\left(1-|y|^{2}\right) h-v_{1}\left(1-v_{1}^{2}\right) y^{2},
$$

where $|x| \leq 1,|y| \leq 1,|s| \leq 1$ and $|h| \leq 1$. With some calculations, we obtain

$$
\begin{gather*}
u_{2}+v_{2}=\left(1-u_{1}^{2}\right)(x+y), u_{2}-v_{2}=\left(1-u_{1}^{2}\right)(x-y) \tag{31}\\
u_{3}-v_{3}=\left(1-u_{1}^{2}\right)\left[\left(1-|x|^{2}\right) s-\left(1-|y|^{2}\right) h\right\rfloor-u_{1}\left(1-u_{1}^{2}\right)\left(x^{2}+y^{2}\right) . \tag{32}
\end{gather*}
$$

By substituting the relations (31) and (32) into (30), we have

$$
\begin{aligned}
a_{2} a_{4}-a_{3}^{2} & =\left\{\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{4}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right. \\
& \left.+\frac{B_{1} B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}\right\} u_{1}^{4} \\
& +\frac{B_{1}^{3} u_{1}^{2}\left(1-u_{1}^{2}\right)(x-y)}{8(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}+\frac{B_{1} B_{2} u_{1}^{2}\left(1-u_{1}^{2}\right)(x+y)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& +\frac{B_{1}^{2} u_{1}\left(1-u_{1}^{2}\right)\left\{\left[\left(1-|x|^{2}\right) s-\left(1-|y|^{2}\right) h\right]-u_{1}\left(x^{2}+y^{2}\right)\right\}}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& -\frac{B_{1}^{2}\left(1-u_{1}^{2}\right)^{2}(x-y)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =\left\lvert\,\left\{\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{4}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right.\right. \\
& \left.+\frac{B_{1} B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}\right\} u_{1}^{4} \\
& +\frac{B_{1}^{2} u_{1}\left(1-u_{1}^{2}\right)\left[\left(1-|x|^{2}\right) s-\left(1-|y|^{2}\right) h\right]}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& +\frac{B_{1}^{3} u_{1}^{2}\left(1-u_{1}^{2}\right)(x-y)}{8(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}+\frac{B_{1} B_{2} u_{1}^{2}\left(1-u_{1}^{2}\right)(x+y)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& \left.-\frac{B_{1}^{2} u_{1}^{2}\left(1-u_{1}^{2}\right)\left(x^{2}+y^{2}\right)}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}-\frac{B_{1}^{2}\left(1-u_{1}^{2}\right)^{2}(x-y)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}} \right\rvert\, .
\end{aligned}
$$

According to Lemmas 1 and 2, we assume without restriction that $u=u_{1} \in[0,1]$. By applying the triangular inequality, we obtain

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq B_{1}\left\{\left\lvert\, \frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right.\right. \\
& +\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \left\lvert\, u^{4}+\frac{\left.B_{1}^{2} u^{2}\left(1-u^{2}\right)(|x|+|y|)\right)}{8(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}\right. \\
& +\frac{\left|B_{2}\right| u^{2}\left(1-u^{2}\right)(|x|+|y|)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{B_{1}\left(u^{2}-u\right)\left(1-u^{2}\right)\left(|x|^{2}+|y|^{2}\right)}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \\
& \left.+\frac{B_{1} u\left(1-u^{2}\right)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{B_{1}\left(1-u^{2}\right)^{2}(|x|+|y|)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}}\right\} .
\end{aligned}
$$

Now, letting $\eta=|x| \leq 1$ and $\gamma=|y| \leq 1$, we have

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1}\left[T_{1}+(\eta+\gamma) T_{2}+\left(\eta^{2}+\gamma^{2}\right) T_{3}+(\eta+\gamma)^{2} T_{4}\right]=B_{1} F(\eta, \gamma)
$$

where

$$
\left.\begin{array}{rl}
T_{1}=T_{1}(u)= & \left\{\begin{array}{|l}
\mid\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3} \\
3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}
\end{array}\right. \\
& \left.\quad+\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \left\lvert\, u^{4}+\frac{B_{1} u\left(1-u^{2}\right)}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}\right.\right\} \geq 0, \\
T_{2}= & T_{2}(u)= \\
& \frac{u^{2}\left(1-u^{2}\right)}{(1+\lambda) \psi_{2}}\left[\frac{B_{1}^{2}}{8(1+\lambda)(1+2 \lambda) \psi_{2} \psi_{3}}+\frac{\left|B_{2}\right|}{3(1+3 \lambda) \psi_{4}}\right] \geq 0,
\end{array}\right\} \begin{aligned}
& T_{3}=T_{3}(u)= \\
& \frac{B_{1}\left(u^{2}-u\right)\left(1-u^{2}\right)}{6(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \leq 0
\end{aligned}
$$

and

$$
T_{4}=T_{4}(u)=\frac{B_{1}\left(1-u^{2}\right)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}} \geq 0
$$

Next, we need to maximize the function $F(\eta, \gamma)$ in the closed square

$$
\Delta=\{(\eta, \gamma): \eta \in[0,1], \gamma \in[0,1]\}
$$

for $u \in[0,1]$. Since $F(\eta, \gamma)$ is the maximum with regard to u, we must investigate it according to $u=0, u=1$ and $u \in(0,1)$.

For $u=0$,

$$
F(\eta, \gamma)=\frac{B_{1}(\eta+\gamma)^{2}}{16(1+2 \lambda)^{2} \psi_{3}^{2}}
$$

we can easily obtain

$$
\max \{F(\eta, \gamma):(\eta, \gamma) \in[0,1] \times[0,1]\}=F(1,1)=\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}}
$$

For $u=1$,

$$
F(\eta, \gamma)=\left|\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right|,
$$

we have

$$
\begin{aligned}
& \max \{F(\eta, \gamma):(\eta, \gamma) \in[0,1] \times[0,1]\} \\
& =\left|\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right| .
\end{aligned}
$$

For $0<u<1$, by letting $\eta+\gamma=\varsigma$ and $\eta \cdot \gamma=\xi$, we obtain

$$
F(\eta, \gamma)=T_{1}+T_{2} \varsigma+\left(T_{3}+T_{4}\right) \varsigma^{2}-2 T_{3} \xi=J(\varsigma, \xi)
$$

where $\varsigma \in[0,2]$ and $\xi \in[0,1]$. Then we need to maximize the function:

$$
J(\varsigma, \xi) \in \Lambda=\{(\varsigma, \xi): \varsigma \in[0,2], \xi \in[0,1]\}
$$

By differentiating $J(\varsigma, \xi)$, we let

$$
\left\{\begin{array}{l}
\frac{\partial J}{\partial \zeta}=T_{2}+2\left(T_{3}+T_{4}\right) \zeta=0 \\
\frac{\partial J}{\partial \xi}=-2 T_{3}=0
\end{array}\right.
$$

The above results show that $J(\varsigma, \xi)$ does not have a critical point in Λ. Therefore, the function $F(\eta, \gamma)$ does not have a critical point in Δ. As a result, the function $F(\eta, \gamma)$ cannot have a local maximum value in the interior of the square Δ. Next, we find the maximum of $F(\eta, \gamma)$ on the boundary of the square Δ.

For $\eta=0$ and $0 \leq \gamma \leq 1$ (or $\gamma=0$ and $0 \leq \eta \leq 1$), we have

$$
F(0, \gamma)=H(\gamma)=T_{1}+\gamma T_{2}+\gamma^{2}\left(T_{3}+T_{4}\right) .
$$

In order to investigate the maximum of $H(\gamma)$, the situation of $H(\gamma)$ as increasing or decreasing is discussed below. By deriving the function $H(\gamma)$, we have

$$
H^{\prime}(\gamma)=T_{2}+2 \gamma\left(T_{3}+T_{4}\right)
$$

(i) Let $T_{3}+T_{4} \geq 0$, then $H^{\prime}(\gamma)>0$, such that $H(\gamma)$ is an increasing function. Thus, the maximum of $H(\gamma)$ occurs at $\gamma=1$ and

$$
\max \{H(\gamma): \gamma \in[0,1]\}=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

(ii) Let $T_{3}+T_{4}<0$. We need to consider the critical point $\gamma=\frac{T_{2}}{-2\left(T_{3}+T_{4}\right)}=\frac{T_{2}}{2 \theta}$, where $\theta=-\left(T_{3}+T_{4}\right)>0$. Now the following two cases arise:

Case 1. Suppose that $\gamma=\frac{T_{2}}{2 \theta}>1$. Then $\theta<\frac{T_{2}}{2} \leq T_{2}$ and $T_{2}+T_{3}+T_{4} \geq 0$. We have

$$
H(0)=T_{1} \leq T_{1}+T_{2}+T_{3}+T_{4}=H(1)
$$

Case 2. Suppose that $\gamma=\frac{T_{2}}{2 \theta} \leq 1$. Since $\frac{T_{2}}{2} \geq 0$ and $\frac{T_{2}^{2}}{4 \theta} \leq \frac{T_{2}}{2} \leq T_{2}$, we obtain

$$
H(0)=T_{1} \leq T_{1}+\frac{T_{2}^{2}}{4 \theta}=H\left(\frac{T_{2}}{2 \theta}\right) \leq T_{1}+T_{2}
$$

and

$$
H(1)=T_{1}+T_{2}+T_{3}+T_{4} \leq T_{1}+T_{2} .
$$

Therefore, the maximum of $H(\gamma)$ occurs when $T_{3}+T_{4} \geq 0$:

$$
\max \{H(\gamma): \gamma \in[0,1]\}=H(1)=T_{1}+T_{2}+T_{3}+T_{4}
$$

For $\eta=1$ and $0 \leq \gamma \leq 1$ (or $\gamma=1$ and $0 \leq \eta \leq 1$), we have

$$
F(1, \gamma)=D(\gamma)=T_{1}+T_{2}+T_{3}+T_{4}+\gamma\left(T_{2}+2 T_{4}\right)+\gamma^{2}\left(T_{3}+T_{4}\right)
$$

In order to investigate the maximum of $D(\gamma)$, the scenario of when $D(\gamma)$ in increasing or decreasing is discussed. By deriving the function $D(\gamma)$, we have

$$
D^{\prime}(\gamma)=T_{2}+2 T_{4}+2 \gamma\left(T_{3}+T_{4}\right)
$$

(iii) Let $T_{3}+T_{4} \geq 0$ then $D^{\prime}(\gamma)>0$. This shows that $D(\gamma)$ is an increasing function. Thus, the maximum of $D(\gamma)$ occurs at $\gamma=1$:

$$
\max \{D(\gamma): \gamma \in[0,1]\}=D(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

(iv) Let $T_{3}+T_{4}<0$. We need to consider the critical point $\gamma=\frac{T_{2}+2 T_{4}}{-2\left(T_{3}+T_{4}\right)}=\frac{T_{2}+2 T_{4}}{2 \theta}$, where $\theta=-\left(T_{3}+T_{4}\right)>0$. The following two cases arise:

Case 3. Suppose that $\gamma=\frac{T_{2}+2 T_{4}}{2 \theta}>1$. Then $\theta<\frac{T_{2}+2 T_{4}}{2} \leq T_{2}+2 T_{4}$ and $T_{2}+T_{3}+$ $3 T_{4} \geq 0$. We have

$$
D(0)=T_{1}+T_{2}+T_{3}+T_{4} \leq T_{1}+T_{2}+T_{3}+T_{4}+\left(T_{2}+T_{3}+3 T_{4}\right)=D(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Case 4. Suppose that $\gamma=\frac{T_{2}+2 T_{4}}{2 \theta} \leq 1$. Since $\frac{T_{2}+T_{4}}{2} \geq 0$ and $\frac{\left(T_{2}+2 T_{4}\right)^{2}}{4 \theta} \leq \frac{T_{2}+2 T_{4}}{2} \leq$ $T_{2}+2 T_{4}$, we obtain

$$
\begin{aligned}
D(0) & =T_{1}+T_{2}+T_{3}+T_{4} \leq D\left(\frac{T_{2}+2 T_{4}}{2 \theta}\right) \\
& \leq T_{1}+T_{2}+T_{3}+T_{4}+T_{2}+2 T_{4} \\
& =T_{1}+2 T_{2}+T_{3}+3 T_{4}
\end{aligned}
$$

and

$$
D(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} \leq T_{1}+2 T_{2}+T_{3}+3 T_{4}
$$

Therefore, the maximum of $D(\gamma)$ occurs when $T_{3}+T_{4} \geq 0$:

$$
\max \{D(\gamma): \gamma \in[0,1]\}=D(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Since $H(1) \leq D(1)$ for $u \in(0,1)$, we have

$$
\begin{equation*}
\max \{F(\eta, \gamma):(\eta, \gamma) \in[0,1] \times[0,1]\}=F(1,1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} \tag{33}
\end{equation*}
$$

Let $K:[0,1] \rightarrow R$,

$$
\begin{aligned}
K(u) & =B_{1} \max \{F(\eta, \gamma):(\eta, \gamma) \in[0,1] \times[0,1]\} \\
& =B_{1} F(1,1)=B_{1}\left(T_{1}+2 T_{2}+2 T_{3}+4 T_{4}\right) .
\end{aligned}
$$

Now, inserting T_{1}, T_{2}, T_{3} and T_{4} into the function K, we obtain

$$
\begin{align*}
K(u) & =B_{1}\left\{\left[\left\lvert\, \frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right.\right.\right. \\
& +\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}} \left\lvert\,-\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}\right. \\
& \left.-\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}}\right] u^{4} \\
& +\left[\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}-\frac{B_{1}}{2(1+2 \lambda)^{2} \psi_{3}^{2}}\right. \\
& \left.\left.+\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}\right] u^{2}+\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}}\right\} . \tag{34}
\end{align*}
$$

Letting $u^{2}=t$, we have

$$
K(t)=B_{1}\left(Q_{1} t^{2}+Q_{2} t+Q_{3}\right) \quad(t \in[0,1]),
$$

where

$$
\begin{aligned}
& Q_{1}=\left|\frac{B_{3}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{\left[3(1+5 \lambda) \psi_{2} \psi_{3}-(1+7 \lambda) \psi_{2}^{3}-3(1+3 \lambda) \psi_{4}\right] B_{1}^{3}}{3(1+\lambda)^{4}(1+3 \lambda) \psi_{2}^{4} \psi_{4}}\right| \\
& \quad-\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}-\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}+\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}}, \\
& Q_{2}=\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda) \psi_{2}^{2} \psi_{3}}+\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda) \psi_{2} \psi_{4}}-\frac{B_{1}}{2(1+2 \lambda)^{2} \psi_{3}^{2}} \\
& \text { and } \\
& Q_{3}=\frac{B_{1}}{4(1+2 \lambda)^{2} \psi_{3}^{2}} . \\
& \text { Since }
\end{aligned}
$$

$$
\begin{aligned}
& \max _{0 \leq t \leq 1}\left(Q_{1} t^{2}+Q_{2} t+Q_{3}\right) \\
& = \begin{cases}Q_{3} & \left(Q_{2} \leq 0, Q_{1} \leq-Q_{2}\right) \\
Q_{1}+Q_{2}+Q_{3} & \left(Q_{2}>0, Q_{1}>-\frac{Q_{2}}{2}\right) \text { or }\left(Q_{2} \leq 0, Q_{1}>-Q_{2}\right) \\
\frac{4 Q_{1} Q_{3}-Q_{2}^{2}}{4 Q_{1}} & \left(Q_{2}>0, Q_{1} \leq-\frac{Q_{2}}{2}\right),\end{cases}
\end{aligned}
$$

it shows that

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1} \begin{cases}Q_{3} & \left(Q_{2} \leq 0, Q_{1} \leq-Q_{2}\right) \\ Q_{1}+Q_{2}+Q_{3} & \left(Q_{2}>0, Q_{1}>-\frac{Q_{2}}{2}\right) \text { or }\left(Q_{2} \leq 0, Q_{1}>-Q_{2}\right) \\ \frac{4 Q_{1} Q_{3}-Q_{2}^{2}}{4 Q_{1}} & \left(Q_{2}>0, Q_{1} \leq-\frac{Q_{2}}{2}\right)\end{cases}
$$

This completes the proof of Theorem 3.

For $a=c$ and $b=1$ in Theorem 3, we derive a result of the class $M_{\Sigma}(\lambda, \varphi)$, studied by Ali et al. [22].

Corollary 3. Let $0 \leq \lambda \leq 1$ and the function $f \in \Sigma$ given by (1) be in the class $M_{\Sigma}(\lambda, \varphi)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq B_{1} \begin{cases}Q_{3} & \left(Q_{2} \leq 0, Q_{1} \leq-Q_{2}\right) \\ Q_{1}+Q_{2}+Q_{3} & \left(Q_{2}>0, Q_{1}>-\frac{Q_{2}}{2}\right) \text { or }\left(Q_{2} \leq 0, Q_{1}>-Q_{2}\right) \\ \frac{4 Q_{1} Q_{3}-Q_{2}^{2}}{4 Q_{1}} & \left(Q_{2}>0, Q_{1} \leq-\frac{Q_{2}}{2}\right)\end{cases}
$$

where

$$
\begin{aligned}
& Q_{1}=\left|\frac{B_{3}}{3(1+\lambda)(1+3 \lambda)}-\frac{B_{1}^{3}}{3(1+\lambda)^{3}(1+3 \lambda)}\right|-\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda)} \\
& \quad-\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda)}+\frac{B_{1}}{4(1+2 \lambda)^{2}} \\
& Q_{2}=\frac{B_{1}^{2}}{4(1+\lambda)^{2}(1+2 \lambda)}+\frac{2\left|B_{2}\right|+B_{1}}{3(1+\lambda)(1+3 \lambda)}-\frac{B_{1}}{2(1+2 \lambda)^{2}} \\
& \text { and } \\
& Q_{3}=\frac{B_{1}}{4(1+2 \lambda)^{2}} .
\end{aligned}
$$

3. Conclusions

In the study of bi-univalent functions, estimates on the first two Taylor-Maclaurin coefficients are usually considered. In this paper, we introduce a new subclass of bi-univalent functions associated with the Hohlov operator. Some properties such as the coefficient bounds, Fekete-Szegö inequality and the second Hankel determinant for functions in $M_{\Sigma}^{a, b ; c}(\lambda, \varphi)$ are derived. In particular, several previous results are generalized.

Author Contributions: All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to express sincere thanks to the referees for careful reading and providing suggestions which helped to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hohlov, Y.E. Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions. Doki. Akad. Nauk Ukrain. SSR Ser. A 1984, 7, 25-27.
2. Hohlov, Y.E. Convolution operators that preserve univalent functions. Ukrain. Mat. Zh. 1985, 37, 220-226.
3. Brannan, D.A.; Taha, T.S. On some classes of bi-unvalent functions. Math. Anal. Appl. 1988, 53-60. [CrossRef]
4. Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of bi-univalent functions defined by Frasin differential operator. Mathematics 2020, 8, 783. [CrossRef]
5. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2020, 6, 1024-1039. [CrossRef]
6. Murugusundaramoorthy, G.; Cotr̂lǎ, L.I. Bi-univalent functions of complex order defined by Hohlov operator associated with Legendrae polynomial. AIMS Math. 2022, 7, 8733-8750. [CrossRef]
7. Srivastava, H.M.; Motamednezhad, A.; Adegan, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [CrossRef]
8. Shaba, T.G. Subclasses of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turk. J. Ineq. 2020, 4, 50-58.
9. Zhai, J.; Srivastava, R.; Liu, J.-L. Faber polynomial coefficient estimates of bi-close-to-convex functions associated with generalized hypergeometric functions. Mathematics 2022, 10, 3073. [CrossRef]
10. Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [CrossRef]
11. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642-10651. [CrossRef]
12. Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacă, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [CrossRef]
13. Noonan, J.W.; Thomas, D.K. On the Second Hankel Determinant of a really mean p-valent functions. Trans. Am. Math. Soc. 1976, 223,337-346.
14. Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 2, 85-89. [CrossRef]
15. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. The Fekete-Szegö coefficient functional for transforms of analytic functions. Bull. Iranian Math. Soc. 2009, 35, 119-142.
16. Altinkaya, S.; Yalcin, S. Fekete-Szegö inequalities for classes of bi-univalent functions defined by subordination. Adv. Math. Sci. J. 2014, 3, 63-71.
17. Deekonda, V.K.; Thoutreedy, R. An upper bound to the second Hankel determinant for functions in Mocanu class. Vietnam J. Math. 2015, 43, 541-549. [CrossRef]
18. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619-625.
19. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Ineq. Appl. 2013, 281, 1-17. [CrossRef]
20. Zaprawa, P. On the Fekete-Szegö problems for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169-178. [CrossRef]
21. Deniz, E.; Caglar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl. Math. Comput. 2015, 271, 301-307. [CrossRef]
22. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Subramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344-351. [CrossRef]
23. Duren, P.L. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
24. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

