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1. Introduction

Denote by A function collections that have the style:
f(z)=z+ Z a,z", zeD, 1)
n=2

holomorphicinD = {z : |z| < 1} in the complex plane C.

Further, present by S the sub-set of A including of univalent functions in D fullfiling
(1). Taking account the Koebe % theorem (see [1]), each f € S has an inverse f~! with
the properties f!(f(z)) = z, forz € D and f(f ' (w)) = w, with |w| < ro(f), where
ro(f) > 1. If f is of the style (1), then

fFHw) = w— ayw?* + (2&1% - a3)w3 - (Sa% — 5apa3 +a4>w4 +, w] < r(f). (2)
When f and f~! are univalent functions, f € A is bi-univalent in D. The set of
bi-univalent functions can be expressed by X.. The work on bi-univalent functions have

been brightened by Srivastava et al. [2] in recent years. The following functions can be
examplified for functions in the set of bi-univalent.

1iz’ —log(1l—z) and 110g(1+z).

2 1—z

Although Koebe function is not an element of bi-univalent set of functions, the X is not
null set.

Later, such studies continued by Ali et al. [3], Bulut et al. [4], Srivastava et al. [5] and
others (see, for example, [6-18]). However, non decisive predictions of the |a;| and |a3]
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coefficients in given by (1) were declared in different studies. Generalized inequalities on
Taylor-Maclaurin coefficients

|an| (neN; n=3)

for f € X has not been totally solved yet for several subfamilies of the X.

|az — ua3| of the Fekete-Szegd function for f € S is well-known in the Geometric
Function Theory.

Its origin lies in the refutation of the Littlewood-Paley conjecture by Fekete-Szegdo [19].
In that case, the coefficients of odd (single-valued) univalent functions are bounded by unity.

Functions have received much attention since then, especially in the investigation of
many subclasses of the single-valued function family.

This topic has become very interesting for Geometric Function Theorists (see for
example [20-25]).

The generator function for Laguerre polynomial L;) () is the polynomial answer ¢(7)
of the differential equation ([26])

"+ (1+v—1)¢ +n¢p =0,

where v > —1 and 7 is non-negative integers.
The generating function of generator function for Laguerre polynomial L;) (T) is ex-
pressed as below:

Hy(t,z) = i Ly(7)z" = (©)]
n=0

(1—2z)"! ’

where T € R and z € D. The generator function for Laguerre polynomial can also be
expressed given below:

2n+1+9—-1 n+y
Y _ v Y
Ln+1(T) = o Li(t) — n+1Ln_1(T) (n>1),
with the initial terms
2
T +1 +2
Li(t)=1, L{(t)=14+y—-1 and LZ(T):7—(7+2)T+ % 4)

Simply, when 7 = 0 the generator function for Laguerre polynomial leads to the simply
Laguerre polynomial, L9 (7) = L, (7).

Let f and g be holomorphic in D, it is clear that f is subordinate to g, if there occurs
a holomorphic function w in D such that w(0) = 0, and |w(z)| < 1, for z € D so that
f(z) = g(w(z)). This subordination is indicated by f < g. Moreover, if ¢ is univalent
in D, then we have the balance (see [27]), given by f(z) < g(z) <= f(D) C g(D)and
£(0) = £(0).

The (p, q)-derivative operator or (p, q)-difference operator (0 < q < p < 1), for a
function f is stated by

Dpaf(e) = L. e =D (o)

and
Dypqf(0) = £'(0).

More information on the subject of (p, g)-calculus are founded in [28-33].
For f € A, we conclude that
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where the (p, g)-bracket number or twin-basic [1], 5 is showed by

n—2 n—3_2

p'—q" 2 1
— 4+ +pg" 9" (p#a),

nlpq = =p" T+ +
(1]p.q p—q P pra+p

which is a native generator number for g, namely is, we get (see [34,35])

. 1—4q"
1 = = .
pgll[ [n]pq = [nlq 1—g

Obviously, the impression [1], 5 is symmetric, namely,

1] pq = 1] q.p-

Wanas and Cotirld [36] presented W!” 9 . A —s Aknownas (p — q)-Wanas operator

wppg

showed by

00 0 ) 4
Wegpaf (@) =2+ 1 ([T”(Z’Z’ﬁ H;’Z) m =2t} Ty —T” il g,

where

and

Remark 1. The operator W

=1 T

00, = 5 (0) 07w+, o p) = () 0T )

v €RBeER] witha+p>0n—-1eNoreNIeN,0<g<p<landzeD.

wB,p4 is a generalized form of several operators given in previous

researches for some values of parameters which are mentioned below.

1.

10.

Forp=c=B=10=—v,R(v) >1land a € C\ Z;, the operator Wg’gp , decreases to

the g-Srivastava Attiya operator Jg . [37].

Forp=0c=p=1,0= —1anda > —1, the operator WZ,’g,p,q decreases to the q-Bernardi
operator [38].

Forp =0 =a = = 1and 0 = —1, the operator Wa/}pq
operator [38].

Fora = 0and p = o = B = 1, the operator W’ g pg decreases to the g-Siligean operator [39].

Forq — 17 and p = o = 1, the operator ng - decreases to the operator Ig’ﬁ was
presented and studied by Swamy [40].

Forq—1 ,p=0c=p=1,0=—v,R(v) >1lands € C\Zo,theopemtorwogw
decreases to the operator | was presented by Srivastava and Attiya [41]. The operator J! is
well-known as Srivastava-Attiya operator by researchers.

Forq— 17, p=0 = =1and a > —1, the operator ngpq decreases to the operator

decreases to the g-Libera

19 was presented by Cho and Srivastava [42].

Forq — 17, p =0 = a = B = 1, the operator ngp decreases to the operator 19 was
presented by Uralegaddi and Somanatha [43].

Forq — 17, p=0c=a=p=1,0= —¢and ¢ > 0, the operator ng, pa decreases to
the operator I¢ was presented by Jung et al. [44]. The operator I¢ is the Jung-Kim-Srivastava
integral operator.

Forq—1",p=0c=p=1,0=—1and a > —1, the operator Wo‘zg,p,q decreases to the
Bernardi operator [45].
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11. Forq —17,a=0,p=0 =B =1and § = —1, the operator WD‘Z’g,p,q decreases to the
Alexander operator [46].

12. Forq — 17, p=0c=1a =1—pandt > 0O, the operator Wg’g,p,q decreases to the
operator Dg was presented by Al-Oboudi [19].

13. Forq —17,p=0=1,a =0and B =1, the operator Wg’gpq decreases to the operator
S% was presented by Silidgean [47].

2. Main Results

Firstly, We start to present the classes Wx(#,d,A,0,0,a,B,p,q;h) and Kx(¢,p, 0,0,
«, B, p,q; h) given below:

Definition 1. Suppose that 0 <y <1,0 <A <1,0 < < 1and h is analytic in D, h(0) = 1.
f € Xis in the class Wx.(11,6,A,0,0,a, B, p, q; h) if it provides the subordinations:

o,0 ™\ T o,0 ! o0 " A
Z<Wﬂt,ﬁ,p,qf(z)) (1 - 5)Z<W"‘r,3/P/‘7f(Z)) + 5 1 + Z(Wa'ﬁ'p'qf(Z)) < h(z>
0,0 7,0 /
Woc,ﬁ,p,qf(z) Wac,ﬁ,p,qf(z) (W;’g,p,qf(Z)>
and
o "\ P ! 76 1 "\ 14
w(wﬂlﬁrnf/f (w)) 1- 5)w(wﬂrﬁmrqf (w)) +5l14+ ( aﬁ/rwf (w)> < h(w)
7,0 _ 7,0 _ - B ! ’
th,ﬁ,p/qf 1(w) th,ﬂ,p/qf 1(w) (Wa/'g,p/qf 1 (ZU)>

where f~1 is given by (2).

Definition 2. Suppose that 0 < ¢ < 1,0 < p < 1and his analyticinID, h(0) = 1. f € Lisin
the class Kx.(&,0,0,0,, B, p,q; h) if it provides the subordinations:

Z(Wg”g,p/qf(z)y

(1 - g) 0 0 7
(1= p)WEh (@) +pz(WIE, £(2))

(Wehsaf @) +2(WeE,0f @)
(el ) (125

=< h(z)
and /
0
w(Wepaf (@)
!
(1= PYWES , of 1) + o (WIEF 1 (w))
0,6 -1 ! o,0 -1 "
<W”"/3'P"1f (w) ) * w<wﬂé,ﬁ/r’,qf (w)) < h(w)
/ 1" ’
(ing,p/qf_l(w» + Pw(wi’g,p,qf‘l(m)

where f~1 is given by (2).

(1-2¢)

+¢

Theorem 1. Supposethat 0 <5 <1,0<A<1and0 < <1 If f € X of the style (1) be an
element of class Wy (17,8,A,0,0,a, B, p,q; 1), with h(z) = 1+ e1z + epz? + - - -, then

as] < (7 +A@G+D))[¥a2(0,0, B)lpgler] i

100, B)15, 0
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and ) s
- e e g el e 2B+ @)ey
|as] gmm{max{'A AT 2A },max{‘A 1A A , (5)
where
Q — (7’/+/\(‘5+1))[‘F2(‘710‘05) ?7,1/7
[¥1(0xB8)15,4 !
_2(p4A(20+1) [¥3(oa,B)]Y,
A= [¥1(00,B)10 4 = ©)
=) +A+1) 25+ (A1) (6+1)) —2(7+A(35+1))][¥2 (0,0, 8) 12,
¢ = LAY A ‘

Proof. Assume that f € Wx(1,9,A,0,0,a, B, p,q;e1;e2). Then there consists two holomor-
phic functions ¢, ¢ : D — D showed by

¢(z) =rz+n+nl+.- (z€D) )

and
P(w) = syw +spw* +s3w0° + -+ (weD), 8)

with ¢(0) = (0) =0, |¢(2)| < 1, [¢(w)| < 1,z,w € D so that

AN/ / 1" A
Z(W;T,'g’p,qf(z)) 15 Z(Wi'g,p,qf(z)) sl z(Wg,’g,p,qf(zD
Wepaf ) Wegpaf ) (Wes @)
=1+ eg(z) + e (z) + ©)

and

Wyl @)

/ / " A
(w(wvzg/wf_l(w)) )W (1 —«S)W(W"(‘T’g”’"?f_l(w)) +5(1 + w(Wyg S @) )]

Woh 1 (w) (wgwﬁumy

IX,:B,P,L]
=1+e1p(w) +extp?(w) + - - - . (10)

Unification of (7), (8), (9) and (10), yield

A/ ’ " A
(Wil @) ) |y 2 Ml @) [ 2(MEpf @)
o,0 B o,0 /
Wlx,ﬁ,p,qf(z) th,ﬁ,p,qf(z) <W0L67,,/2,P,qf(z))
=1+erz+ |:€1I’2 + 627’%:| 22 + (11)

and

(w(w2§,p,qf-1<w>>’)" {(1 @) (1 . w(Wiﬁ,p,qf%w)")r

,0 _ .0 _ /
Weppaf (@) Weppal (@) (WZ Gl ! (w))
=1+4+e5w+ [elsz + ezsﬂ w? - (12)
Itis clear that if |¢(z)| < 1 and | (w)| < 1,z,w € D, we obtain

ri| <1 and |[sj| <1(j €N).



Axioms 2023, 12, 430

6 of 13

Taking into account (11) and (12), after simplifying, we find that

(7 + A +1)[¥2(0, 0, B))5,
[¥1(o,, B)] 4

ap = ejry, (13)

2(’7 + A(Z(S + 1)) [TS(Ur &, ‘B)]%q
17,0, )T
=D A+ + (A= DE+D) 207 + A+ D)2 0PI

2[¥1(0, 0 BT, “

=eqrp —|—€21’%, (14)

as

AS+ 1) [P (0, a, B)]E

and

2(’7 + A(Z(S + 1))[?3(0’,&,‘3)]9,
e — (263 - 55)
N [ — 1) + A0 +1) (25 + (A =1)(6+1)) —2(5 +A(36 + 1))][¥2(0, &, B)]3, 2
2[T1 (U/ &, ﬁ)]%?q
=15y + ezs%. (16)

If we implement notation (6), then (13) and (14) becomes

Qay, =eir;, Aaz+ (pa% =e1rp + ezr%. (17)
This gives
A e @er\ o
—_ = —_— = —= y 18
e1a3 72 + (61 Qz)rl (18)

and on using the given certain result ([48], p. 10):
[r2 = prg] < max{1, |ul} (19)

forevery u € C, we get

o las| < max{l, Z—zf % } (20)
In the same way, (15) and (16) becomes
—Qay =eys1, A(2a3 —a3) + @a3 = e1so + ezs%. (21)
This gives
— 2013 =5y + (Z — W)s{ (22)

Applying (19), we obtain

e (ZA (P>€1
< ma 1 e - S—
|a3| - X{ ! e1 02

€1

}. (23)

If we take the generating function L} (7) given by (3) common generalized Laguerre
polynomials as h(z), then from the equalities given(4), we get e; = 1+ 7 — T and

Inequality (5) follows from (20) and (23). O

ey = %2 —(v+2)T+ w We obtain following corollary from Theorem 1.
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Corollary 1. If f € X given by style (1) is in the family Ws.(1,6,A,0,0,a, B, p,q; Hy(T,2)),

then

] < (7 + A +1)[¥alo,a B)lpgl+ 7 =71 [1+9 -1

2] = =
[¥1(o 0, B9 O
and
2 (r+1)(y+2) 2
. l+y—1| |z -(r+2)7+ "= o(l+7r-7)
< _
las| < mm{max{‘ A , A O2A ,
R T - (r+2r+ I oA L g)(1 4y 1)
A ’ A O2A ’

forally,A,é6s0that0 <5 <1,0<A<1and0 < <1, where ), A, ¢ are given by (6) and
H, (7, z) is given by (3).

Theorem 2. Suppose that 0 < & < 1and 0 < p < 1. If f € X of the style (1) be an element of the
class Kx.(&,p,0,0,a,B,p,q; ), with h(z) = 1+ e1z + exz> + - - -, then

az| <
2] ¥1(0,a B,
and
2
. e (%) Xel €1 (%)
< b I A b I
|as| _mm{max{‘q} e Yo },max{ A
where
Yy = (G+1)(1-p)[¥2(c,ap)]f
[¥1(owB)]f, !
o — 2(25+1)(1-p)[¥3(0,a,B)10 4
[¥1(o0B8)19, !

_ @)D oap),
[Tl (‘7'/“//5) %7%

C+1)A-p)[¥alo,w B)lpglerl e

Y

(2@ + x)e2
Y2p

)

(25)

Proof. Assume that f € Kx (&, p,0,0,a,B,p,q;e1;e2). Then there consists two holomorphic

functions ¢, ¢ : D — D such that

i

- WEIC)

(Weppaf @) +2(We5,0f2)”

(1- p)wﬂi’g,pqu(z) + pz(wgﬁmqu(z)>/ ( <ngg,mf(z)>/ N pz<wglglan(z)>//

|

=1+e1p(z) + 624,2(2) S (26)
and
(1-20) w(WZ'g’p,qf—l(wD’ e (Wg,’g,p,qf_l (w))/ + w(w;g,p,qf—l (w)) g
- p>w"(‘7'£""‘7fil(w) + pw(wﬂiﬁp,qﬁl(w))/ (Wi'g,p,qffl(w)), + Pw(wz%,p,qf*l(w»”
= 1—|—€1lp(w)—|—621/)2(w)_|_... , )
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where ¢ and ¢ given by the style (7) and (8). Unification of (26) and (27), serve

o0 ! o0 ! o0 "
(1-¢) Z<Wﬂmf3mf (Z)> + (Wa,ﬁ,an (Z)) +Z(Wﬂérﬁ,p,qf (Z)>
! ! "
(- p)WZ,'g,pqu(z) +pz(WZI'g,pqu(z)> <W0(Z'g,mf(z)) +pz<WD‘Z'g,pqu(z)>
=14eriz+ [elrz + ezrﬂ 22 + - (28)
and

w<wotcr/'§,prqf_l(w)>/ +é (Wg{’g’p’qf_l(w))/ - w(wu(cf,’ﬁemf_l (w)) ’
(1= W o 1) (W3R @)\ (W0 1)) o (W3R S )

=1+e57w+ {elsz+ezsﬂ w? - (29)

1-9¢)

Itis clear that if |¢(z)| < 1 and | (w)| < 1,z,w € D, we obtain
7] <1 and [sj| <1(j€N).
Taking into account (28) and (29), after simplifying, we find that

(€ +1)(1—p)[¥2(o 0 B))5 4
[¥1(0,a, B)]} g

226+ 1)(1 - p)[¥3(0, 2, B, (28 +1) (0 — 1) [¥2(0, &, B))2
[¥1(o, a,lB;}gq s + [¥1 (0, a,ﬁ)z]%eq pqa% =eiry + 627’% (31)

(€ +1)(1—p)[¥a(o, B)l5,

a; = e1r, (30)

— ap = €151 (32)
100, )15,
and
220 +1)(1—p)[¥3(o, 2 B)log 7, » (28 +1)(* = 1) [Ya(o, 0, By
3 (2&2 — a3> + 20 ap
[Tl((f, X, .B)]p,q [\Ijl(ar &, ;B)}p,q
=e15 + 625%. (33)
If we implement notation (25), then (30) and (31) becomes
Yay = eyry,  Daz+ xaz = e1ry + exr7. (34)
This gives
P e Xer\ o
Bt (51 - Y2>rlr (35)
and on using the given certain result ([48], p. 10):
|2 — pr}| < max{1, |u[} (36)

for every y € C, we get

b
e Y2

laz| < maX{l, iz X

} . (37)

—Yay = ey51, ®(2a3 —az) + xa3 = ejsy + eos3. (38)

In the same way, (32) and (33) becomes
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This gives
e 2P+ x)er) 2
o a3 = sy + (61 ) 51 (39)
Applying (36), we obtain
e 29+ x)eg
— < 1,|=—-——=";. 40
o lag| < max{ v2 (40)

Inequality (24) follows from (37) and (40). O

If we take the generating function L} (7) given by (3) common generalized Laguerre
polynomials as h(z), then from the equalities given(4), we gete; = 1+ —7Tand e; =

%2 —(v+2)t+ w We obtain following corollary from Theorem 2.

Corollary 2. If f € X of the style (1) be an element of the class Kx. (¢, p,0,6,a, B, p,q; Hy(T,2)),
then
E+)A—p)[Fa(ea )l +r—7 _[147-1]

laz| < [‘Ijl(o'/“/,B)}g,q ¥

and

lag] < min{max{

1+y—71
max{‘ o

%2 —(y+2)t+ 7(7“)2(%2) x1+v— 7)2

o Y2P

1+y—71
)

7

!

T (y+2)r+ NI 0g 4 (14— 1)

o Y2P

7

I

forall ¢,ps0that0 < ¢ <1and0 < p <1, where Y, ®, x are introduced by (25) and H,(7,z) is
given by (3).

We investigate the “Fekete-Szego Inequalities” for the families Ws. (17,6, A, 0,6, a, B, p, q; h)
and Kx (¢, p,0,6,a,B,p,q; 1) in next theorems.

Theorem 3. If f € X of the style (1) be an element of family Ws.(17,6,A,0,6,a,B,p, q; 1), then

&, (EA—g)e }m {1, }}

€1 @)
forall C,n,A,6suchthat e R,0<n <1,0<A<1and0 < <1, where ), A, ¢ are given
by (6) and eq, ey, ap and a3 as defined in Theorem 1.

le1 ]

‘HB*QI%‘ < min{max{l, e _ 20+ ¢ —CA)ey

€1 02

1
A

Proof. We implement the impressions from the Theorem 1’s proof. From (17) and from

(18), we get
2 e e, (CA—gler) »
az — {ay = A(rz—i- (le+()2 ]
by using the certain result |r, — ur3| < max{1, ||}, we get
In the same way, from (21) and from (22), we get

e (&g
a3 — a5 = —61(524- (62 _ (2A+€9§A)€1>5%>

las — ga3| < Amax{l,

e (
€1 + 02
A €1 02
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and on using [s, — ps?| < max{1, |u|}, we get

o1 & (28+9—A)e
_ <
las = g3 < 77 maxq 1, e 2

}

O

2
2

Corollary 3. If f € X of the style (1) be an element of Wx.(1,6,A,0,0,a,B,p,q; Hy(7,2)), then
B By NN O ) L S S (4Gt D[ Rl Bk
- A ’ 1+y—71 02

max{ 1, } },
foreach {,n,A, 6 suchthat e R,0<y <1,0< A <1and0 <6 <1, where (), A, ¢ are given
by (6) and H, (7, z) is presented by (3).

— (v +2)r+ I oA Lo A1y 1)
1+y—-71 02

Theorem 4. If f € X of the style (1) is in the family Kx.(¢,p,0,0,a, B, p, q; h), then

@0} s, 1,

YZ
forall C,¢,psuchthat { € R,0<¢ <1and0 < p <1, whereY, D, x are given by (25) and ey,
ey, ay and as as defined in Theorem 2.

e (2P+x—(P)e
e1 Y?

’u3 — §a2’ < lea] mln{max{l,

e
-+
€1

Proof. We implement the impressions from the Theorem 2’s proof. From (34) and from
(35), we get
2 _ e e (CP—xer) 2
az — (ay = q)<7’2+ <€1+Y2 "

by using the certain result |r, — ur?| < max{1, ||}, we get
In the same way, from (38) and from (39), we get

e1 e 20+x—70P)y
ag—ga§:—®<s2+<el ( Y2 ) s7

and on using [s, — ps?| < max{1, |u|}, we get

(CP — x)er

2 le1] €2
laz — Za5| < cI)max{l, o + )

e 20+ x—(Pe
€1 Y2

las — a3| < |2|max{1,
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Corollary 4. If f € X of the style (1) be an element of Kx(¢,p,0,0,a, B, p,q; Hy(T,2)), then

‘ﬂs —'gﬂ%’
2 1 2
B N N (O O L e s (4 B T R Ak
- P ’ 1+y—-1 Y2 ’

2 (y+2)r+ I 0p 4y )14y — 1)

1+y—-1 Y2

mox{ 3

foreach ¢,¢,psuchthat € R,0<¢ <1and0 < p <1, whereY,®, x are given by (25) and
H, (7, z) is presented by (3).

3. Conclusions

The main aim of this study was to constitute a new classes W, (11,0, A,0,0,a, B, p,q; h)
and Ky (&, p,0,60,a,B,p,q;h) of bi-univalent functions described through (p — q)-Wanas
operator and also utilization of the generator function for Laguerre polynomial L} (), pre-
sented by the equalities in (4) and the producing function H, (7, z) given by (3). The initial
Taylor-Maclaurin coefficient estimates for functions of these freshly presented bi-univalent
function classes Wk (1,6,A,0,60,a,B,p,9;h) and Kx (¢, p,0,6,a, B, p,q; h) were produced
and the well-known Fekete-Szegt inequalities were examined.
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