
Citation: Wen, Y.; Chaolu, T. Study of

Burgers–Huxley Equation Using

Neural Network Method. Axioms

2023, 12, 429.

https://doi.org/10.3390/

axioms12050429

Academic Editor: Azhar Ali Zafar

and Nehad Ali Shah

Received: 15 March 2023

Revised: 20 April 2023

Accepted: 25 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Study of Burgers–Huxley Equation Using Neural
Network Method
Ying Wen 1,*,† and Temuer Chaolu 2,†

1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2 College of Sciences and Arts, Shanghai Maritime University, Shanghai 201306, China;

tmchaolu@shmtu.edu.cn
* Correspondence: 201840310002@stu.shmtu.edu.cn
† These authors contributed equally to this work.

Abstract: The study of non-linear partial differential equations is a complex task requiring sophis-
ticated methods and techniques. In this context, we propose a neural network approach based on
Lie series in Lie groups of differential equations (symmetry) for solving Burgers–Huxley nonlinear
partial differential equations, considering initial or boundary value terms in the loss functions. The
proposed technique yields closed analytic solutions that possess excellent generalization properties.
Our approach differs from existing deep neural networks in that it employs only shallow neural
networks. This choice significantly reduces the parameter cost while retaining the dynamic behavior
and accuracy of the solution. A thorough comparison with its exact solution was carried out to
validate the practicality and effectiveness of our proposed method, using vivid graphics and detailed
analysis to present the results.

Keywords: Burgers–Huxley equation; optimization; neural network method; Lie groups; Lie series

1. Introduction

Partial differential equations (PDEs) are ubiquitous and fundamental to understanding
and modeling the complexities of natural phenomena. From mathematics to physics to
economics and beyond, PDEs play a critical role in virtually all fields of engineering and
science [1–3]. Through their mathematical representation of physical phenomena, PDEs
provide a powerful means of gaining insight into complex systems, enabling researchers
and engineers to predict behavior and uncover hidden relationships. However, solving
PDEs can be a daunting and challenging task. The complexity of these equations often
requires sophisticated numerical methods that must balance accuracy and efficiency while
solving high-dimensional PDEs. Despite these challenges, PDEs remain a cornerstone of
modern science, enabling researchers to unlock discoveries and technological advancements
across disciplines.

As numerical and computational techniques continue to rapidly develop, the study
of PDEs has become increasingly vital. In recent years, advances in numerical methods
and high-performance computing techniques have made it possible to solve complex PDEs
more accurately and efficiently than ever before. These new tools can precisely solve specific
problems across a broader range of equations while simultaneously computing data faster,
reducing the time and cost of solving pending problems. Moreover, these new techniques
have allowed researchers to gain deeper insights into the physical meaning behind PDEs,
enabling them to revisit natural phenomena from fresh perspectives and explore those
that prove challenging to explain by traditional methods. This has led to groundbreaking
research discoveries and innovations in various fields of science and engineering.

Machine learning methods [4,5], particularly in the area of artificial neural networks
(ANNs) [6,7], have piqued considerable interest in recent years due to their potential to
solve differential equations. ANNs are well-known for their exceptional approximation

Axioms 2023, 12, 429. https://doi.org/10.3390/axioms12050429 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12050429
https://doi.org/10.3390/axioms12050429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5304-6027
https://doi.org/10.3390/axioms12050429
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12050429?type=check_update&version=1


Axioms 2023, 12, 429 2 of 16

capabilities and have emerged as a promising alternative to traditional algorithms [8].
These methods have a significantly smaller memory footprint and generate numerical
solutions that are both closed and continuous over the integration domain without requiring
interpolation. ANNs have been applied to differential equations, including ordinary
differential equations (ODEs) [9,10], PDEs [11,12], and stochastic differential equations
(SDEs) [13,14], making them a valuable tool for researchers and engineers alike. Neural
networks have become a powerful and versatile tool for solving differential equations due
to their ability to learn intricate mappings from input–output data, further cementing their
role as a critical component in the machine learning fields.

In recent years, the application of neural networks in solving differential equations
has gained significant attention in the scientific community. One prominent model is the
neural ordinary differential equations, which approximates the derivative of an unknown
solution using neural networks, parameterizing the derivatives of the hidden states of
the network with the help of the differential equation, thus creating a new type of neural
network [15]. Another approach is the deep Galerkin method [16], which uses neural
networks to approximate the solution of the differential equation in a bid to minimize error.
Gorikhovskii et al. [17] introduced a practical approach for solving ODEs using neural
networks in the TensorFlow machine-learning framework. In addition, Huang et al. [18]
introduce an additive self-attention mechanism to the numerical solution of differential
equations based on the dynamical system perspective of the residual neural network.

By utilizing neural network functions to approximate the solutions, neural networks
have also been used to solve PDEs. The physics-informed neural network (PINN) method
uses the underlying physics of the problem to incorporate constraints into the solution of the
neural network, resulting in successful applications to various PDEs such as the Burgers and
Poisson equations [19]. Compared to traditional numerical methods, PINNs offer several
advantages, including higher accuracy and more efficient computation. Berg et al. [20]
introduced a new deep learning-based approach to solve PDEs on complex geometries.
They use a feed-forward neural network and an unconstrained gradient-based optimization
method to predict PDE solutions. Furthermore, Another exciting development in the
field of neural networks and PDEs is the use of convolutional neural networks (CNNs).
Ruthotto et al. [21] used a CNN to learn to solve elliptic PDEs and incorporated a residual
block structure to improve network performance. Quan et al. [22] presented an innovative
approach to addressing the challenge of solving diffusion PDEs, by introducing a novel
learning method built on the foundation of the extreme learning machine algorithm. By
leveraging this advanced technique, the parameters of the neural network are precisely
calculated by solving a linear system of equations. Furthermore, the loss function is
ingeniously constructed from three crucial components: the PDE, initial conditions, and
boundary conditions. Tang et al. [23] demonstrate through numerical cases that the
proposed depth adaptive sampling (DAS-PINNs) method can be used for solving PDEs.
Overall, the advancements made in the domain of neural networks have revolutionized
how we approach solving complex PDEs in unimaginable ways. These developments
suggest that neural networks are a promising tool for solving complex PDEs and that there
is great potential for further research and innovation in this area.

This paper proposes a novel approach for solving the Burgers–Huxley equation ,
which uses a neural network based on the Lie series in the Lie groups of differential
equations, adding initial or boundary value terms to the loss function to approximate the
solution of the equation by minimization. Slavova et al. [24] constructed a cellular neural
network model to study the Burgers–Huxley equation. Shagun et al. [25] employed a
feed-forward neural network to solve the Burgers-Huxley equation and investigated the
impact of the number of training points on the accuracy of the solution. Kumar et al. [26]
proposed a deep learning algorithm based on the deep Galerkin method for solving the
Burgers–Huxley equation, which outperformed traditional numerical methods. These
studies demonstrate the potential of neural networks in solving differential equations.
Nonetheless, it is simple to ignore the underlying nature of these equations, in other words,



Axioms 2023, 12, 429 3 of 16

to fail to capture the nonlinear nature of the equations, which is essential to comprehend
the behavior of complex systems. To address this issue, the aim of our proposed method
is to approximate the solution of the differential equations by combining the Lie series
in Lie groups of differential equations and the power of neural networks. Our proposed
method accurately simulates the physical behavior of complicated systems, and the first
part of the constructed solution has well captured the nonlinear nature of the equation
while reducing the parameter cost of the subsequent neural network and by minimizing
the loss function, making the solution converge quickly by introducing initial or boundary
value terms required for exact approximation. This work demonstrates the effectiveness
of combining neural networks with Lie series to solve differential equations and provides
insights into the physical behavior of complex dynamical systems.

The essay is set up as follows. The basic framework and fundamental theory of
neural network algorithms based on Lie series in Lie groups of differential equations are
introduced in Section 2. The specific steps for the Lie-series-based neural network method
to solve the Burgers–Huxley equation are described in Section 3. The method is also applied
to the Burgers–Fisher equation and the Huxley equation. Summary and outlook are presented
in Section 4.

2. Basic Idea of a Lie-Series-Based Neural Network Algorithm
2.1. Differential Forms and Lie Series Solution

With respect to the Lie group transformation of the parameter ε,

u∗ = T(ε; u) ∈ G, u∗(0) = u (1)

where G is a Lie group, and ε is a group parameter.
By employing Taylor expansion about neighborhood of ε = 0,

u∗ = T(ε; u) = u +
∂T(ε; u)

∂ε

∣∣∣∣
ε=0

ε + O
(

ε2
)

. (2)

Then, u∗ = u + εζ is known as the infinitesimal transformation. D = ζ(u)∂u is called
the infinitesimal operator, where ζ(u) = ∂T(ε;u)

∂ε

∣∣∣
ε=0

.
The following differential equation is given

u′ = F(ξ, u), u(0) = u0 (3)

F(ξ, u) is a differentiable function , and if (2) is a symmetry of (3), then it has a Lie
series solution to the initial value problem (3) and can be written as [27]

u = eξDu|ξ=0 (4)

2.2. Algorithm of a Lie-Series-Based Neural Network

The idea of Lie groups is based on the study of continuous symmetry, which at first
may seem abstract and complex. However, in the realm of solving differential equations,
Lie group methods are a unique approach that goes beyond traditional mathematical
techniques. Lie series in the Lie transform groups of differential equations can be used
to construct approximate solutions of PDEs and to study their symmetries and other
properties. Lie series provide a powerful framework for studying the behavior of differ-
ential equations and have many important applications in various fields of science and
engineering.

From [28], it is known that

D = D1 + D2 (5)

The solution of (3) can be written as u = eξDu|ξ=0 = eξ(D1+D2)u|ξ=0.



Axioms 2023, 12, 429 4 of 16

Theorem 1. ū(ξ; u) = eξD1 u|ξ=0, ξ ∈ Rn, is the decomposition part of D. The solution of
problem (3) belonging to D expanded as follows:

u = ū(ξ; u) +
∫ ξ

0
D2

(
e(ξ−τ)Du

)
|u→ū(τ;u)dτ (6)

The proof is given below and is detailed in the literature [28].

Proof.

u = eξDu = eξ(D1+D2)u =
∞

∑
v=0

ξv

v!
Dv

1u +
∞

∑
v=1

ξv

v!
Dv−1

1 D2u

+
∞

∑
v=2

ξv

v!
Dv−2

1 D2Du + . . . +
∞

∑
v=α

ξv

v!
Dv−α

1 D2Dα−1u + . . .
(7)

It is known that

ξv

v!
=
∫ ξ

0

(ξ − τ)α−1

(α− 1)!
τv−α

(v− α)!
dτ, (v ≥ α ≥ 1, integers)

Equation (7) is rewritten as

u = ū +
∫ ξ

0

∞

∑
v=0

τv

v!
Dv

1 D2udτ +
∫ ξ

0
(ξ − τ)

∞

∑
v=0

τv

v!
Dv

1 D2Dudτ + . . .

+
∫ ξ

0

(ξ − τ)α−1

(α− 1)!

∞

∑
v=0

τv

v!
Dv

1 D2Dα−1udτ + . . .

From the form of the series solution [27], it follows that

∞

∑
v=0

τv

v!
Dv

1

(
D2Dα−1u

)
=
(

D2Dα−1u
)

u→ū(τ;u)

Hence,

u = ū +
∞

∑
α=1

∫ ξ

0

(ξ − τ)α−1

(α− 1)!

(
D2Dα−1u

)
u→ū(τ;u)

dτ

after commuting the signs of the series and the integral which is allowed within the circle
of absolute convergence, the formula

u = ū +
∫ ξ

0

(
D2

∞

∑
α=0

(ξ − τ)α

α!
Dαu

)
u→ū(τ;u)

dτ (8)

is obtained, which may also be written as follows:

eξDu = eξD1 u +
∫ ξ

0

(
D2e(ξ−τ)Du

)
u→ū(τ;u)

dτ (9)

The complexities inherent in the integration of the second component, as elucidated by
Equation (6), necessitates a sophisticated approach to computation. To tackle this daunting
challenge head-on, as elaborated in the reference [29] of our previous work, the functional
form of the neural network is utilized to simplify this part and ensure the accuracy of our
results.

From [29], û = eξDu|ξ=0 = ū + ξN(θ; ξ). The determination of ū from the equation
ū′ = D1ū is inspired by the idea of the Lie series solution of the first-order ODE, where
the initial value of ū(0) = u(0) = u0 is kept constant throughout the process, ensuring the



Axioms 2023, 12, 429 5 of 16

reliability and truthfulness of our results. N(θ; ξ) is a single output neural network with a
single input of ξ, the parameter θ consists of the weight W and the bias b. The Algorithm 1
is described in detail below, as shown in Figure 1.

,W bInitialize

xInput

( ; , )N W bx

( ),W b( ),,

or

maxit

e<

>

Calculation error

Output

Calculate û

Y

N

Done

Figure 1. Flow chart of Lie-series-based neural network algorithm.

Algorithm 1: A Lie-series-based neural network algorithm for problem (3)
Require Determine the operator D according to (3), and solve it with the

decomposed part D1 to obtain ū.
Begin

1. Consider a uniformly spaced distribution of discrete points within the initial
condition ξ`(` = 1, 2, . . . , λ).

2. Determining the structure of a neural network. (The number of hidden
layers and the number of neurons, the selection of the activation function σ.)

3. Initialization of the neural networks parameters W, b.
4. Get û = ū + ξN(θ; ξ) and substitute back into (3).
5. Minimize the loss function L(θ).
6. Update the parameter θ so that û approximates the solution u of problem (3).

End

In general, the loss function L(θ) is defined as follows:

L(θ) = LF +LI

=
1
λ

λ

∑
`=1

n

∑
i=1

∥∥∥∥∥ ∂

∂ξ
ûi(ξ, θ)

∣∣∣∣
ξ=ξ`

− Fi(û1, û2, . . . , ûi)

∥∥∥∥∥
2

2

+
1
2

p

∑
l=1

n

∑
i=1

∥∥∥( ûi(ξ, θ)|ξ=ξl
− K(ξ)|ξ=ξl

)∥∥∥2

2

(10)



Axioms 2023, 12, 429 6 of 16

as additional terms with K(ξl), l = 1, 2, . . . , p as initial value or boundary conditions. The
LF part of the loss function is derived by substituting the network solution û into the mean
squared error generated on both sides of the problem (3). In addition, the mean squared
error generated by the network solution û under the initial or boundary value terms are also
used to derive the LI component of our loss function. By constructing the components of
LF and LI , we can satisfy both the differential equations and the initial values or boundary
conditions of the problem under study.

The above algorithm also applies to the system of differential equations dui
dξ = Fi(u1, u2,

. . . , un), ui(0) = αi ∈ R1, i = 1, 2, . . . , n, where D = ∑n
i=1 Fi(ui)

∂
∂ui

. For higher-order ODEs
or PDEs, the above form can also be transformed with the help of some transformations or
calculations.

2.3. The General Structure of the Neural Network

As depicted in Figure 2, our study delves into the complexities of multilayer percep-
trons and their unique characteristics, with a particular emphasis on those with a single
input unit, m hidden layers of H neurons, a neural network with activation function σ in
the hidden layer, and a linear output unit. We present a detailed analysis of this neural
network architecture. Specifically, for a given input vector ξ`(` = 1, 2, . . . , λ), the output
of the network N = ∑H

i=1 Wm+1σ(Zm
i ) + bm+1, Zm

i = ∑H
j=1 wm

ji σ(Zm−1
j ) + bm

i , where wm
ji is

the weight of the jth neuron in layer m− 1 to the ith neuron in layer m, and bm
i is the bias of

the ith neuron in layer m. It can be seen that Z1
1 = w1

11ξ` + b1
1. In this paper, the activation

function σ is chosen tanh(Z) = eZ−e−Z

eZ+e−Z .

Inputs

Hidden Layer

Output

...

...

...

x N

1

11w

1

13

w

1
W

2
W

1m
W

+

1

1
H

w

1
12w

1

1b 1

m
b

1

1

m
b

+1

2( )Zs

1

3( )Zs

1

1( )Zs

1( )
H

Zs

1( )m
Zs

2( )m
Zs

3( )m
Zs

( )m

H
Zs

Figure 2. Neural network structure.

3. Lie-Series-Based Neural Network Algorithm for Solving Burgers Huxley Equation

The generalized Burgers–Huxley equation [30] is a nonlinear PDE that describes the
propagation of electrical impulses in excitable media, such as nerve and muscle cells. It is a
widely used mathematical framework for modeling intricate dynamical phenomena and
has been instrumental in advancing research across multiple domains including physics,
biology, economics, and ecology. The equation takes the form

∂u
∂t

+ αuδ ∂u
∂x
− ∂2u

∂x2 = βu
(

1− uδ
)(

ηuδ − λ
)

(11)

where α, β, λ, η are constants and δ is a positive constant.



Axioms 2023, 12, 429 7 of 16

When α = −1, β = 1, λ = 1, η = 1, δ = 1, the Burgers–Huxley equation is as follows:

∂u
∂t

=
∂2u
∂x2 + u

∂u
∂x

+ u(1− u)(u− 1), u(0, x) =
1
2

(
1− tanh

x
4

)
(12)

The exact solution of (12) is u(t, x) = 1
2
(
1− tanh

( x
4 + 3t

8
))

. Using the traveling wave
transform ξ = x − ct, problem (12) is transformed into an ODE, u′′ + cu′ + uu′ + u(1−
u)(u− 1) = 0. Naturally, it is transformed into the form of the following system of ODEs

u′1 = u2, u′2 =
3
2

u2 − u1u2 − u1(1− u1)(u1 − 1) (13)

with c = − 3
2 , u1(ξ) = u and initial values u1(0) = 1

2 , u2(0) = − 1
8 .

In this study, we address the problem of solving the Burgers–Huxley equation us-
ing a Lie-series-based neural network algorithm. The operator D = u2∂u1 + ( 3

2 u2 −
u1u2 − u1(1 − u1)(u1 − 1))∂u2 of (13) is chosen as D1 = u2∂u1 +

3
2 u2∂u2 , and the solu-

tion of the corresponding initial value problem is ū1(ξ) =
1

12

(
7− cosh

(
3ξ
2

)
− sinh

(
3ξ
2

))
,

ū2(ξ) = − 1
8 cosh

(
3ξ
2

)
− 1

8 sinh
(

3ξ
2

)
. The solution of this part has been able to capture

the nonlinear nature of the equation within a certain range, as shown in Figure 3. To
minimize the loss function L(θ), we employ two structurally identical neural networks
and boundary value terms, each with 30 neurons in a single hidden layer, and the in-
put ξ`(` = 1, 2, . . . , 100) is 100 training points spaced equally in the interval [−5, 3],
making û1(ξ) as close as possible to the exact solution u(ξ) of the equation. The gen-
eralization ability of the neural network was confirmed in 120 test points at equidistant
intervals of ξ` ∈ [−5, 3.3]. The Lie-series-based neural network algorithm solves the
Burgers–Huxley equation model as shown in Figure 4. Furthermore, we demonstrate
the ability of neural networks to fit the training and test sets in Figure 5. By plotting the
loss function L(θ) = LF + LI against the number of iterations in Figure 6, where LF =
1
λ ∑λ

`=1

((
û′1(ξ`)− û2(ξ`)

)2
+
(
û′2(ξ`)− 3

2 û2(ξ`) + û1(ξ`)û2(ξ`) + û1(ξ`)(1− û1(ξ`))

(û1(ξ`)− 1))2
)

, and LI = 1
2 (û1(−5)− u(−5))2 + 1

2 (û2(−5)− u′(−5))2, λ = 100. Some

1100 iterations later, L(θ) = 3.042× 10−8.

1

u

-3 -2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

ξ

V
a
lu
e
s

Figure 3. Comparison of the ū1(ξ) solution of the Burgers–Huxley equation with the exact
solution u(ξ).

We compare the solution û(t, x) containing the neural network training and the exact
solution u(t, x) in the interval t ∈ [0, 1], x ∈ [−5, 2] in the upper panel of Figure 7. Addition-
ally, the lower panel displays the behavior of the solution at t = 0.3, 0.5, 0.8, demonstrating



Axioms 2023, 12, 429 8 of 16

the solitary wave solution of the Burgers–Huxley equation. The contour plots for solution
û1(t, x) and the exact solution u(t, x) are shown in Figure 8, further illustrating the accuracy
of our proposed algorithm.

x

x

s

1N

2N

1 1u Nx+
s

s

s

s

s

2 2u Nx+

1̂u

2û

x

¶

¶

x

¶

¶

1 2
2 2 1 2 1 1 1

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, (1 )( 1)

u u
u cu u u u u u

x x

¶ ¶
- + + + - -

¶ ¶

II

FF

II

...
...

*q

( , )NN x q ODEs

Min

1 1
ˆ ( ) ( )

l l
u ux x-

( )q

( ) ( )2 2
ˆ

l l
u ux x-

Figure 4. Schematic diagram of a Lie series-based neural network algorithm for solving Burgers–
Huxley equation.

−5 −4 −3 −2 −1 0 1 2 3
ξ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu
es

Neural solution - ̂u1
̂xact solution - u

−4 −2 0 2
ξ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lu
es

Neural solution - ̂û
Exact solution - u

Figure 5. (Left) Comparison of solution û1(ξ) with the exact solution u(ξ) = 1
2

(
1− tanh

(
ξ
4

))
of (13) in the training set. (Right) Comparison of solution û1(ξ) with the exact solution

u(ξ) = 1
2

(
1− tanh

(
ξ
4

))
of (13) in the test set.

0 200 400 600 800 1000
Training Iterations

10−6

10−4

10−2

100

102

Lo
g 
Lo
ss

BFGS

Figure 6. Curves of Loss function versus number of iterations for Burgers–Huxley equation.



Axioms 2023, 12, 429 9 of 16

-7 -6 -5 -4 -3 -2 -1 0 1 2

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.3

-7 -6 -5 -4 -3 -2 -1 0 1 2

0.2

0.4

0.6

0.8

x

u
(t
,x
)

t=0.5

-7 -6 -5 -4 -3 -2 -1 0 1 2

0.2

0.4

0.6

0.8

x

u
(t
,x
)

t=0.8

Figure 7. (Top) The true solution u(t, x) = 1
2

(
1− tanh

(
x
4 + 3t

8

))
of the Burgers–Huxley equation is

on the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

0.0 0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

1

t

x

u(t,x)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

1

t

x

u

1(t,x)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8. Contour plot of the Burgers–Huxley equation with respect to the solution û1(t, x) and the
exact solution u(t, x).

To verify the validity and generality of our proposed equation, the method was applied
to two classical equations, the Burgers–Fisher, and the Huxley equations. For this purpose,
we performed a thorough analysis and obtained strong results that proved the validity of
our method. Specifically, when α = −1, β = 1, λ = −1, η = 0, δ = 1, the Burgers–Fisher
equation is as follows:

∂u
∂t

=
∂2u
∂x2 + u

∂u
∂x

+ u(1− u), u(0, x) =
1
2

(
1 + tanh

x
4

)
(14)

The exact solution of (14) is u(t, x) = 1
2
(
1 + tanh

( x
4 + 5t

8
))

. Similarly, using the travel-
ing wave transform ξ = x− ct, problem (14) is transformed into an ODE, u′′ + cu′ + uu′ +



Axioms 2023, 12, 429 10 of 16

u(1− u) = 0, with initial value u(0) = 1
2 , u′(0) = 1

8 . Transformation of ODEs into the form
of a system of differential equations,

u′1 = u2, u′2 =
5
2

u2 − u1u2 − u1(1− u1) (15)

where u1(ξ) = u, c = − 5
2 , and initial values u1(0) = 1

2 , u2(0) = 1
8 . The operator

D = u2∂u1 + ( 5
2 u2 − u1u2 − u1(1− u1))∂u2 of (15), D1 is chosen as u2∂u1 +

5
2 u2∂u2 − u1∂u2 ,

the predicted solution û1(ξ`) = − 1
12 eξ`/2(−7 + e3ξ`/2) + ξ`N1, û2(ξ`) = 1

24 (7eξ`/2) −
1
6 e2ξ` + ξ`N2, where the structure of the neural network is a single hidden layer containing
30 neurons with inputs ξ` ∈ [−5, 2] of equidistant intervals of 100 training points and test
points are 120 points of the interval [−5, 2.2], and the training results are shown in Figure 9.
As shown in Figure 10, our method achieves an impressive performance with the loss
function L(θ) reaches 8.861× 10−8 in about 700 iterations. This exceptional result again
illustrates that the solution of the D1 part of our proposed method captures the nonlinear
nature of the solution, thereby reducing the computational cost associated with additional
parameters which are evident from Figure 11. In addition, we provide a three-dimensional
representation of the dynamics of the predicted solution û(t, x) with the exact solution
u(t, x) in the interval t ∈ [0, 1] and x ∈ [−5, 2], as shown in Figure 12.

−5 −4 −3 −2 −1 0 1 2
ξ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lu
es

Neural solution - ̂u1
̂xact solution - u

−5 −4 −3 −2 −1 0 1 2
ξ

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Va

lu
es

Neural solution - ̂u1
̂xact solution - u

Figure 9. (Left) Comparison of solution û1(ξ) with the exact solution u(ξ) = 1
2

(
1 + tanh

(
ξ
4

))
of (15)

in the training set. (Right) Comparison of û1(ξ) with the exact solution u(ξ) = 1
2

(
1 + tanh

(
ξ
4

))
of (15) in the test set.

0 100 200 300 400 500 600 700
Training Iterations

10−6

10−4

10−2

100

102

Lo
g 
Lo
ss

BFGS

Figure 10. Curves of loss function versus number of iterations for Burgers–Fisher equation.



Axioms 2023, 12, 429 11 of 16

1

u

-5 -4 -3 -2 -1 0 1 2

-3

-2

-1

0

1

ξ

V
a
lu
e
s

Figure 11. Comparison of the ū1(ξ) solution of the Burgers–Fisher equation with the exact
solution u(ξ).

-5 -4 -3 -2 -1 0 1 2

0.2

0.4

0.6

0.8

x

u
(t
,x
)

t=0.3

-5 -4 -3 -2 -1 0 1

0.2

0.4

0.6

0.8

x

u
(t
,x
)

t=0.5

-5 -4 -3 -2 -1 0

0.2

0.4

0.6

0.8

x

u
(t
,x
)

t=0.8

Figure 12. (Top) The true solution u(t, x) = 1
2

(
1 + tanh

(
x
4 + 5t

8

))
of the Burgers–Fisher equation is

on the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

We investigate the Huxley equation under the conditions where α = 0, β = 1, λ = 1,
η = 1, δ = 1. The equations are as follows:

∂u
∂t

=
∂2u
∂x2 + u(1− u)(u− 1), u(0, x) =

1
2

(
1 + tanh

x
2
√

2

)
(16)

The exact solution of (16) is u(t, x) = 1
2

(
1 + tanh

(√
2x
4 −

t
4

))
. Similarly, using the

traveling wave transform ξ = x− ct, problem (16) is transformed into an ODE, u′′ + cu′ +
u(1− u)(u− 1) = 0. It is transformed into the following differential equation form



Axioms 2023, 12, 429 12 of 16

u′1 = u2, u′2 = −
√

2
2

u2 − u1(1− u1)(u1 − 1) (17)

where initial values u1(0) = 1
2 , u2(0) = 1

4
√

2
, and c =

√
2

2 , it is clear that u1(ξ) = u(ξ),

u2(ξ) = u′(ξ). In the case of D1 = u2∂u1 −
√

2
2 u2∂u2 , the system of differential equations

ū′1 = ū2, ū′2 = −
√

2
2 ū2,the initial values are ū1(0) = 1

2 and ū2(0) = 1
4
√

2
, this time ū1(ξ) =

3
4 −

1
4 e−ξ/

√
2, ū2(ξ) =

1
4
√

2
e−ξ/

√
2.

For predicting the solution û1(ξ) and û2(ξ), the same neural network with two single
hidden layers containing 30 neurons with the same structure is trained by optimization
technique Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimizes the Loss function L(θ).
The input ξ` is the interval [−2, 7] equidistantly spaced by 100 points. The test set is the
150 points in the interval [−2, 7.5]. As shown in Figure 13, our proposed method produced
excellent predictions for both the trained predicted and exact solutions. The variation of
the loss function throughout the process is depicted in Figure 14, and it can be observed
that the loss function decreased remarkably during training. Figure 15 shows the dynamics
of û1(t, x) with the exact solution u(t, x), when ξ = x− ct is substituted into û1(ξ) and the
predicted solution û1(t, x) compared with the exact solution u(t, x) at t = 0.3, 0.5, 0.8. The
contour plot in Figure 16 provides a more visualization of the network solution û1(t, x)
compared to the exact solution u(t, x).

−2 0 2 4 6
ξ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu
es

Neural solution - ̂u1
̂xact solution - u

−2 0 2 4 6
ξ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Va

lu
es

Neural solution - ̂u1
̂xact solution - u

Figure 13. (Left) Comparison of solution û1(ξ) with the exact solution u(ξ) = 1
2

(
1 + tanh

(√
2ξ
4

))
of (17) in the training set. (Right) Comparison of solution û1(ξ) with the exact solution

u(ξ) = 1
2

(
1 + tanh

(√
2ξ
4

))
of (17) in the test set.

0 100 200 300 400 500
Training Iterations

10−6

10−4

10−2

100

102

Lo
g 
Lo
ss

BFGS

Figure 14. Curves of loss function versus number of iterations for Huxley equation.



Axioms 2023, 12, 429 13 of 16

-2 -1 0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.3

-2 -1 0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.5

-2 -1 0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

x

u
(t
,x
)

t=0.8

Figure 15. (Top) The true solution u(t, x) = 1
2

(
1 + tanh

(√
2x
4 −

t
4

))
of the Huxley equation is on

the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

3

4

t

x

u(t,x)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

3

4

t

x

u

1(t,x)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 16. Contour plot of the Huxley equation with respect to the solution û1(t, x) and the exact
solution u(t, x).

4. Discussion and Conclusions

The exponential growth of information data has resulted in limited data becoming
a significant issue in various fields, especially in data-driven applications. Addressing
this challenge has become a critical area of research in recent times. To contribute towards
finding solutions to this problem, this paper proposes a novel method for resolving the
Burgers-Huxley equation using a neural network based on Lie series in Lie groups of
differential equations, which is an emerging field with great potential in solving complex
problems. To the best of our knowledge, this study represents the first time the Burgers-
Huxley equation has been solved using a Lie-series-based neural network algorithm. In
physics, engineering, and biology, the Burgers–Huxley equation is a well-known mathe-
matical model that is frequently utilized. Our novel approach offers a unique perspective
on solving this equation by adding boundary or initial value items to the loss function,



Axioms 2023, 12, 429 14 of 16

which leads to more accurate predictions and a better understanding of the underlying
system. This research opens up new avenues for further exploration of the Lie-series-based
neural network algorithm, specifically regarding its applications to other complex models
beyond the Burgers–Huxley equation.

In this study, we present a novel method for obtaining a differentiable closed analytical
form to provide an effective foundation for further research. The proposed approach is
straightforward to use and evaluate. To verify the effectiveness of the suggested method,
we applied it to two classic models of the Burgers–Fisher and Huxley equations that have
well-known exact solutions. The proposed algorithm exhibits remarkable potential in cap-
turing the nonlinear nature of equations and accelerating the computation process of neural
networks. The performance of our method is demonstrated in Figures 3 and 11, which
show how the proposed algorithm can capture the nonlinear behavior of the equations
more effectively and speed up the computation of subsequent neural networks. To further
evaluate the effectiveness of the proposed technique, we plotted the relationship between
the loss function and the number of iterations in Figures 6, 10 and 14. Our results indicate
that under the influence of the Lie series in Lie groups of differential equations, our algo-
rithm can converge quickly and achieve more precise solutions with fewer data. Moreover,
the accuracy of the obtained solutions is significant, and the generalization ability of the
neural network is demonstrated by its ability to maintain high accuracy even outside the
training domain, as shown in Figures 5, 9 and 13. We compared the performance of each
neural network using small parameters (60 weight parameters and 31 bias parameters)
with the exact solution to the problem. Our results highlight that the addition of the Lie
series in Lie groups of differential equations algorithm remarkably enhances the ability of
the neural network to solve a given equation.

Undoubtedly, the proposed method has several limitations that need to be carefully
considered. Firstly, the method requires the transformation of PDEs into ODEs before
applying the suggested algorithm. Although the results obtained after this transformation
are preliminary, they provide useful insights for researchers. Additionally, an inverse
transformation must be employed to produce the final solution û(t, x), taking into account
the range of values for various variables. The choice of the operator D1 may also influence
the outcomes. Secondly, the current study only addresses nonlinear diffusion issues of the
type F(u) = αuδux + uxx + βu

(
1− uδ

)(
ηuδ − λ

)
, and the suitability of the technique was

assessed via the computation of the loss function. Therefore, the applicability of the method
to other types of non-linear PDEs is yet to be investigated, and it might require further
adjustments to accommodate such problems. Despite some inherent challenges, our work
offers a promising strategy for solving complex mathematical models using neural network
algorithms based on Lie series. The computational performance of the proposed algorithm
is noteworthy, achieving high solution accuracy at a relatively low time and parameter cost.
In light of these findings, it is worth considering the prospect of applying this algorithm to
financial modeling, where accurate predictions can have a significant impact.

Moving forward, there is ample scope for extending and improving the proposed
algorithm further. Future research could explore how to optimize the performance of
the algorithm by addressing its limitations and weaknesses for nonlinear PDE problems.
For example, choosing a different neural network framework, CNN or recurrent neural
network, etc., may improve the efficiency and accuracy of the method. Additionally,
expanding the method’s applicability beyond nonlinear diffusion issues may also yield
valuable insights into other areas of mathematical modeling.

In summary, we believe that our work presents an exciting avenue for future research.
By building upon our findings and addressing the limitations of the proposed algorithm,
we can develop more sophisticated techniques for solving complex mathematical models
in finance and other areas. Solving the above problems is the main goal of our next
research work.



Axioms 2023, 12, 429 15 of 16

Author Contributions: Conceptualization, Y.W. and T.C.; methodology, Y.W.; software, Y.W.; valida-
tion, Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W. and T.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 11571008.

Data Availability Statement: The data used to support the findings of this study are included
within the article. The link to the code is https://github.com/yingWWen/Study-of-Burger-Huxley-
Equation-using-neural-network-method (accessed on 14 March 2023).

Acknowledgments: The authors thank the support of the National Natural Science Foundation of
China [grant number 11571008].

Conflicts of Interest: As far as we know, there are no conflicts of interest or financial or other conflicts.
The funders had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Ockendon, J.R.; Howison, S.; Lacey, A.; Movchan, A. Applied Partial Differential Equations; Oxford University Press on Demand:

Oxford, UK, 2003.
2. Mattheij, R.M.; Rienstra, S.W.; Boonkkamp, J.T.T. Partial Differential Equations: Modeling, Analysis, Computation; SIAM: Philadelphia,

PA, USA, 2005.
3. Duffy, D.J. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach; John Wiley & Sons: Hoboken,

NJ, USA, 2013.
4. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260.
5. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386.
6. Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 2009.
7. Zou, J.; Han, Y.; So, S.S. Overview of artificial neural networks. In Artificial Neural Networks: Methods and Applications; Humana

Press: Totowa, NJ, USA, 2009; pp. 14–22.
8. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257.
9. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.

Neural Netw. 1998, 9, 987–1000.
10. Chakraverty, S.; Mall, S. Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations; CRC Press:

Boca Raton, FL, USA, 2017.
11. Yang, L.; Meng, X.; Karniadakis, G.E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE

problems with noisy data. J. Comput. Phys. 2021, 425, 109913.
12. Blechschmidt, J.; Ernst, O.G. Three ways to solve partial differential equations with neural networks–review. GAMM-Mitteilungen

2021, 44, e202100006.
13. Han, J.; Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and

backward stochastic differential equations. Commun. Math. Stat. 2017, 5, 349–380.
14. Nabian, M.A.; Meidani, H. A deep learning solution approach for high-dimensional random differential equations. Probabilistic

Eng. Mech. 2019, 57, 14–25.
15. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary differential equations. Adv. Neural Inf. Process. Syst.

2018, 31, 6572–6583.
16. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,

375, 1339–1364.
17. Gorikhovskii, V.; Evdokimova, T.; Poletansky, V. Neural networks in solving differential equations. J. Phys. Conf. Ser. 2022,

2308, 012008.
18. Huang, Z.; Liang, M.; Lin, L. On Robust Numerical Solver for ODE via Self-Attention Mechanism. arXiv 2023, arXiv:2302.10184.
19. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev.

2021, 63, 208–228.
20. Berg, J.; Nyström, K. A unified deep artificial neural network approach to partial differential equations in complex geometries.

Neurocomputing 2018, 317, 28–41.
21. Ruthotto, L.; Haber, E. Deep neural networks motivated by partial differential equations. J. Math. Imaging Vis. 2020, 62, 352–364.
22. Quan, H.D.; Huynh, H.T. Solving partial differential equation based on extreme learning machine. Math. Comput. Simul. 2023,

205, 697–708.
23. Tang, K.; Wan, X.; Yang, C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential

equations. J. Comput. Phys. 2023, 476, 111868.
24. Slavova, A.; Zecc, P. Travelling wave solution of polynomial cellular neural network model for burgers-huxley equation. C. R.

l’Acad. Bulg. Sci. 2012, 65, 1335–1342.

https://github.com/yingWWen/Study-of-Burger-Huxley-Equation-using-neural-network-method
https://github.com/yingWWen/Study-of-Burger-Huxley-Equation-using-neural-network-method


Axioms 2023, 12, 429 16 of 16

25. Panghal, S.; Kumar, M. Approximate analytic solution of Burger Huxley equation using feed-forward artificial neural network.
Neural Process Lett. 2021, 53, 2147–2163.

26. Kumar, H.; Yadav, N.; Nagar, A.K. Numerical solution of Generalized Burger–Huxley & Huxley’s equation using Deep Galerkin
neural network method. Eng. Appl. Artif. Intell. 2022, 115, 105289.

27. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany,
1993; Volume 107.

28. Gröbner, W.; Knapp, H. Contributions to the Method of Lie Series; Bibliographisches Institut Mannheim: Mannheim, Germany, 1967;
Volume 802.

29. Wen, Y.; Chaolu, T.; Wang, X. Solving the initial value problem of ordinary differential equations by Lie group based neural
network method. PLoS ONE 2022, 17, e0265992.

30. Wang, X.; Zhu, Z.; Lu, Y. Solitary wave solutions of the generalised Burgers-Huxley equation. J. Phys. Math. Gen. 1990, 23, 271.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Basic Idea of a Lie-Series-Based Neural Network Algorithm
	Differential Forms and Lie Series Solution
	Algorithm of a Lie-Series-Based Neural Network
	The General Structure of the Neural Network

	Lie-Series-Based Neural Network Algorithm for Solving Burgers Huxley Equation
	Discussion and Conclusions
	References

