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Abstract: This paper deals with the statistical inference of the unknown parameter and some life
parameters of inverse Lindley distribution under the assumption that the data are adaptive Type-
II progressively censored. The maximum likelihood method is considered to acquire the point
and interval estimates of the distribution parameter, reliability, and hazard rate functions. The
approximate confidence intervals are also addressed. The delta method is taken into consideration
to approximate the variances of the estimators of the reliability and hazard rate functions to get the
required intervals. Based on the assumption of gamma prior, we further consider Bayesian estimation
of the different parameters. The Bayes estimates are obtained by considering squared error and
general entropy loss functions. The Bayes estimates and highest posterior density credible intervals
are obtained by employing the Markov chain Monte Carlo procedure. An exhaustive numerical study
is conducted to compare the offered estimates with regard to their root means squared error, relative
absolute biases, confidence lengths, and coverage probabilities. To explain the suggested methods,
two applications are investigated. The numerical findings show that the Bayes estimates perform
better than those obtained based on the maximum likelihood method. The Bayesian estimations using
the asymmetric loss function give more efficient estimates than the symmetric loss. Finally, the inverse
Lindley distribution is recommended to be used as a suitable model to fit airborne communication
transceiver and wooden toys data sets when compared with some competitive models including
inverse Weibull, inverse gamma and alpha power inverted exponential.

Keywords: inverse Lindley model; reliability analysis; Bayes inference; MCMC techniques; maximum
likelihood; adaptive progressive hybrid censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

As a combination of exponential and gamma distributions, Lindley [1] established
the so-called Lindley distribution (LD). Because LD is only useful for modelling data
with a monotonically increasing failure rate, its relevance may be limited to data with
non-monotone shapes, such as upside-down bathtub shapes. Sharma et al. [2] offered
the inverse Lindley (IL) distribution, which has an upside-down bathtub-shaped hazard
rate function (HRF), as an inverted counterpart of the LD distribution. Assume that Y is
a random variable with the IL distribution, represented by the symbol IL(µ), where µ is
a scale parameter. According to Sharma et al. [2], for Y > 0, the associated probability
density function (PDF), reliability function (RF), and HRF, are given, respectively, by

f (y; µ) =
µ2(1 + y)
y3(1 + µ)

e−
µ
y , µ > 0, (1)
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R(y; µ) = 1−
(

1 +
µ

(1 + µ)y

)
e−

µ
y (2)

and

h(y; µ) =

(
µ
y

)2
(1 + y)[

y(1 + µ)
(

e
µ
y − 1

)
− µ

] . (3)

Basu et al. [3] considered the estimations of IL distribution using Type-I censored
data. Basu et al. [4] studied some estimation problems of IL distribution using progressive
hybrid Type-I censoring scheme with binomial removals. Basu et al. [5] investigated the
maximum likelihood, product of spacing and Bayesian estimations for IL based on hybrid
censored data. Hassan et al. [6] studied the inference about reliability parameter for IL
distribution based on ranked set sampling.

The life-testing experiments frequently end before all of the objects fail. it occurs
because of time restrictions or a lack of funding. The observations that arise from these
scenarios are referred to as the censored sample. Numerous censoring techniques have been
presented in the literature. Of these, the progressive censoring plan is highly helpful since
it enables the removal of a predetermined number of surviving items at various periods.
Adaptive Type-II progressive hybrid censoring (T2-APHC), proposed by Ng et al. [7], has
received a lot of attention from several authors because it allows for the production of highly
efficient statistical analysis. In this plan, the total test items n units are placed on a test at
time zero, the number of failures m(< n) is predetermined, and the testing time is permitted
to run over the prefixed time T. Also, the progressive censoring S = (S1, S2, . . . , Sm) is
prefixed, but some of its values may be adjusted consequently during the test. When the
first failure Y1:m:n occurs, S1 units are randomly removed from the test. Similarly, when
the second failure Y2:m:n occurs, S2 units are randomly removed and so on. If the mth
failure occurs before time T (i.e.,Ym:m:m < T), the test stops at the mth failure and we
have S∗m = n − m − ∑m

i=1 Si. On the other hand, if the rth failure occurs before time T
(i.e., Yr:m:n < T < Yr+1:m:n), where r + 1 < m and Yr:m:n, we change the removal pattern
bt setting Si = 0 for i = r + 1, r + 2, · · · , m− 1, then we have S∗m = n−m−∑r

i=1 Si. This
mechanism ensures that the test will stop when the experimenter achieves the desired
number of failures m, and that the overall test duration will be close to the optimal time
T. However, suppose y = (y1:m:n, S1), . . . , (yr:m:n, Sr), (yr+1:m:n, 0), . . . , (ym:m:n, S∗m) is a T2-
APHC sample obtained from a continuous population, then according to Ng et al. [7] the
likelihood function of the observed data can be defined as

L(µ|y) = C
m

∏
i=1

f (yi; µ)
r

∏
i=1

[R(yi; µ)]Si [R(ym; µ)]S
∗
m , (4)

where C is a constant and yi is used instead of yi:m:n for simplicity. In the past decade, using
T2-APHC plan, several authors have derived different point and/or interval estimators of
various parameters of life, for example; see Al Sobhi et al. [8], Hemmati and Khorram [9],
Nassar et al. [10], Panahi and Moradi [11], Elshahhat and Nassar [12], Panahi and Asadi [13],
Du and Gui [14], Alotaibi et al. [15], Alotaibi et al. [16], Ateya et al. [17], Elshahhat and
Nassar [18], and references cited therein.

We are motivated to perform this work because (1) The IL distribution exhibits two
very admirable characteristics. In addition to possessing a hazard function with an upside-
down bathtub shape, which is a common occurrence in many domains, it is a single
parameter distribution, which greatly smoothes out the mathematical difficulties. (2) The
effectiveness of the T2-APHC plan in reducing the overall test duration while preserving
the desired characteristics of progressive censoring in practical reliability studies. From the
aforementioned development, it is evident that the problem of estimating the unknown
parameter, RF, and HRF of the IL distribution based on the T2-APHC sample has not been
explored. Therefore, we can say that our main objective in this study is to investigate some
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estimation issues for the IL distribution when the data are T2-APHC. We first obtain the
maximum likelihood estimates (MLEs) of the various parameters as classical estimates as
well as the approximate confidence intervals (ACIs). We further use the Bayesian estimation
method to obtain the Bayes estimates and the highest posterior density (HPD) credible
intervals based on gamma prior. The Bayes estimates are obtained through the Markov
chain Monte Carlo (MCMC) technique. Two loss functions are taken into consideration
for this purpose. The first is the squared error (SE) loss function as a symmetric one. The
second is the general entropy (GE) loss function which is an asymmetric loss function. The
effectiveness of the various strategies is examined through extensive simulations, and two
actual data sets have been examined for illustration.

The remainder of the paper is structured as follows. In Section 3, the maximum
likelihood method is applied to acquire the MLEs of the various parameters µ, RF, and HRF
and the associated ACIs. Using gamma prior, two loss functions and the MCMC procedure,
we provide the Bayesian estimation, including point and HPD credible intervals, of the
unknown parameters in Section 3. A simulation study is performed and its outcomes are
presented in Section 4. Two real data sets are analyzed and displayed in Section 5. Finally,
Section 6 concludes the paper.

2. Classical Inference

In this section, the maximum likelihood method is taken into consideration to acquire
the model parameter estimates as well as its RF and HRF. Additionally, the ACIs of
the various parameters are created based on the asymptotic nature of the MLEs. It is
crucial to note that the RF and HRF estimators’ variances are calculated using the delta
approach since these functions’ variances cannot be obtained explicitly. Suppose that
y1:m:n < · · · < yr:m:n < T < yr+1:m:n < · · · < ym:m:n be a T2-APHC sample of size m
with S = (S1, . . . , Sr, 0, . . . , 0, Sm) from the IL distribution. The likelihood function in this
instance can be determined from (1), (2) and (4), after omitting the constant term, as follows

L(µ|y) = µ2me−µ ∑m
i=1 y−1

i

(1 + µ)m

r

∏
i=1

[
1−

(
1 +

µ

(1 + µ)yi

)
e−

µ
yi

]Si
[

1−
(

1 +
µ

(1 + µ)ym

)
e−

µ
ym

]S∗m
, (5)

where yi = yi:m:n, i = 1, . . . , m for the sake of simplicity. By using the natural logarithm
of (5), we can determine the log-likelihood function for the case under consideration
as follows

`(µ|y) = 2m log(µ)−m log(1 + µ)− µ
m

∑
i=1

y−1
i +

r

∑
i=1

Si log
[

1−
(

1 +
µ

(1 + µ)yi

)
e−

µ
yi

]
+ S∗m log

[
1−

(
1 +

µ

(1 + µ)ym

)
e−

µ
ym

]
. (6)

In this context, the MLE of the model parameter µ, symbolized by µ̂, can be owned by
maximizing (6) with respect to µ, or otherwise, by solving the resulting equation

d`(µ|y)
dµ

=
2m
µ
− m

1 + µ
−

m

∑
i=1

y−1
i + µ

r

∑
i=1

Sie
− µ

yi [1 + 2yi + µ(1 + yi)]

y2
i (1 + µ)2

[
1−

(
1 + µ

(1+µ)yi

)
e−

µ
yi

]
+

µS∗me−
µ

ym [1 + 2ym + µ(1 + ym)]

y2
m(1 + µ)2

[
1−

(
1 + µ

(1+µ)ym

)
e−

µ
ym
] . (7)

There is no closed-form for the MLE µ̂, as can be seen from (7). Therefore, a numerical
method may be used to solve (7) in order to obtain the MLE of µ.

One of the main issues in maximum likelihood estimation is how to prove the existence
and uniqueness of the acquired MLE µ̂. Due to the complex form of (7), by simulating a
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T2-APHC sample with µ = 2, (T, n, m) = (1.5, 40, 12) and S = (28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
both the existence and uniqueness of µ̂ are graphically proved in Figure 1, which presents
the log-likelihood function in (6) and the normal equation in (7). As a result, the MLE µ̂
of µ is 2.099918. It is clear, from Figure 1, that the offered maximum likelihood value of µ
exists and is unique.
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Figure 1. The log-likelihood function of µ from simulated T2-APHC data.

Utilizing the MLE’s invariance property to estimate RF and HRF is all that is necessary
once µ̂ has been determined. We can get the MLEs of RF and HRF at mission time t from (2)
and (3), respectively, by substituting the parameter µ with the corresponding MLE µ̂, as
shown below

R̂(t) = 1−
(

1 +
µ̂

(1 + µ̂)t

)
e−

µ̂
t (8)

and

ĥ(t) =

(
µ̂
t

)2
(1 + t)[

t(1 + µ̂)
(

e−
µ̂
t − 1

)
+ µ̂

] . (9)

The common asymptotic normality of the MLE µ̂ can be applied to create the
100(1− α)% ACI for the parameter µ with estimated variance, denoted by σ̂2

µ, obtained
from the inverse of the observed Fisher information matrix, which obtained based on the
inverse of the matrix of second derivative of (6) and locally at the MLE of µ. From the
log-likelihood function in (6), we obtain the second derivative of `(·) with respect to µ
as follows

d2`(µ|y)
dµ2 = −2m

µ2 +
m

(1 + µ)2 −
r

∑
i=1

Sie
− µ

yi (φi + ψi)

yi(1 + µ)2v2
i
− S∗me−

µ
ym (φm + ψm)

ym(1 + µ)2v2
m

, (10)
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where φi = yie
− µ

yi (1 + 2yi + 2µ(1 + yi)) + µ − yi[1 + 2yi(1 + µ)], ψi = µ2[4yi(1 + µ) +

µ2(1 + yi) + 3(1 + µ)] and vi = µe−
µ
yi − yi(1 + µ)(1− e−

µ
yi ), i = 1, . . . , m. As a result, the

ACI of the parameter µ can be constructed with (1− α)% level of confidence as follows

µ̂± zα/2 σ̂µ,

where zα/2 is the upper (α/2)th percentile point of the standard normal distribution and
σ̂µ is obtained as follows

σ̂µ =

(−d2`(µ|y)
dµ2

)−1

µ=µ̂

1/2

.

We also need to determine the variances for the MLEs of RF and HRF, on the other
hand, in order to build the ACIs for these functions. We apply the delta approach to obtain
approximations of the variances of R̂(t) and ĥ(t). The delta method is a general strategy
for calculating confidence intervals for any functions of MLEs. It takes a function that is too
complex to calculate the variance analytically, approximates it linearly, and then calculates
the variance of the linear function that is simpler and may be utilized for large sample
inference, see for more detail Greene [19]. To get the required approximate estimated
variances, we first need to obtain the following

dR(t)
dµ

=
µe−

µ
t [1 + µ(1 + t) + 2t]

t2(1 + µ)2

and

dh(t)
dµ

=
µ(1 + t)

{
e−

µ
t [2t + µ(1 + µ + t)]− [2t + µ(1 + t)]

}
t2
[
µ + t(1 + µ)− t(1 + µ)e−

µ
t

]2 .

Let ΘR = (dR(t)/dµ)|(µ=µ̂) and Θh = (dh(t)/dµ)|(µ=µ̂), then we can approximate the
required variances of R̂(t) and ĥ(t), respectively, as

σ̂2
R ≈ [ΘRσ̂2

µΘ>R ] and σ̂2
h ≈ [Θhσ̂2

µΘ>h ],

Thus, with 100(1− α)% level of confidence, the ACIs of RF and HRF can be computed,
respectively, as follow

R̂(t)± zα/2 σ̂R, and ĥ(t)± zα/2 σ̂h.

3. Bayesian Inference

This section deals with developing the Bayes estimators along with their HPD credible
intervals of µ, R(t) and h(t). Following the main features of the gamma density, reported
by Sharma et al. [2], the IL parameter µ is assumed to have a gamma (G(µ) ∝ µa−1e−bµ)
density prior, where a and b are assumed to be known. However, combining the likelihood
and gamma density functions of µ into the continuous Bayes’ theorem, the joint posterior
PDF of µ can be written as

Φ
(

µ|y
)
=
K−1µa+2m−1e−µ(b+∑m

i=1 y−1
i )

(1 + µ)m

[
1−

(
1 +

µ

(1 + µ)ym

)
e−

µ
ym

]S∗m

×
r

∏
i=1

[
1−

(
1 +

µ

(1 + µ)yi

)
e−

µ
yi

]Si

, (11)

where K =
∫ ∞

0 G(µ)× L(µ)dµ.
Loss functions in the Bayesian paradigm perform a critical role because they can

be used to identify overestimation and underestimation of a study of interest. We thus
take into account one symmetric loss, namely the SE loss function, and one asymmetric
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loss, namely the GE loss function. Regarding the SE loss, it is well known that the Bayes
estimator (say θ̃S) of θ is the posterior mean as

θ̃S =
∫ ∞

0
θΦ
(

θ|y
)

dθ.

On the other hand, the GE loss offers a significance importance in both overestimation
and underestimation. The GE loss, introduced by Calabria and Pulcini [20], is

G(θ̃, θ) ∝
(

θ̃

θ

)δ

− δ log
(

θ̃

θ

)
− 1,

where δ is the parameter loss that determines the degree of asymmetry. Under GE loss, the
Bayes estimator (say θ̃S) of θ is given by

θ̃G =
[

Eθ(θ
−δ)
]− 1

δ , (12)

provided that Eθ(θ
−δ) exists and is finite.

It is clear, from (11), that the posterior PDF of µ cannot be expressed explicitly or
reduced to any familiar distribution. Therefore, to compute the Bayes estimates of µ,
R(t) and h(t) or to create their HPD intervals, we suggest generating MCMC samples
from (11) using the Metropolis-Hastings (M-H) sampler, for detail see Gelman et al. [21]
and Lynch [22]. It is of interest to mention here that some approximations like Lindley’s
approximation and Tierney and Kadane’s approximation can be used to obtain the Bayes
estimates in such situations. The main disadvantages of these method are (1) they give only
point estimates for the unknown parameters and they cannot tell us anything regarding
the HPD credible intervals, (2) to acquire the needed estimates we should deal with
very complicated expressions, especially the third order derivatives. To overcome these
difficulties, the M-H technique can be performed using the following steps:

Step-1: Set the starting point µ(0) = µ̂.

Step-2: Set j = 1.

Step-3: Create µ∗ from N(µ̂, σ̂2
µ̂).

Step-4: Finding ξµ = min
{

1,
Φ( µ∗ |y)

Φ( µ(j−1)|y)

}
.

Step-5: Generate a sample u from the uniform U(0, 1) distribution.

Step-6: If u < ξµ, set µ(j) = µ∗; otherwise, set µ(j) = µ(j−1).

Step-7: Set j = j + 1.

Step-8: Redo Steps 3–7 D times to get µ(j) for j = 1, 2, . . . ,D.

Step-9: Ignore the first simulated samples (sayD0), to discard the impact of an initial guess,
where D̄ = D −D0.

Step-10: Compute the reliability R(t) and hazard rate h(t) parameters (for t > 0) via
replacing µ by its MCMC variates µ(j), j = D0 + 1, . . . ,D.

Step-11: Compute the Bayes estimates of µ (for example) under SE and GE loss functions as

µ̃S =
1
D̄

D
∑

j=D0+1
µ(j),

and

µ̃G =

 1
D̄

D
∑

j=D0+1

(
µ(j)
)−δ

− 1
δ

,
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respectively.

Step-12: Compute the HPD interval of µ by ordering the simulated samples of µ(j) for
j = D0 + 1, . . . ,D as µ(D0+1), µ(D0+2), . . . , µ(D). Then, according to the method intro-
duced by Chen and Shao [23], the 100(1− α)% two-sided HPD interval of µ can be
given as [

µ(j∗), µ(j∗+(1−α)D̄)
]
,

where j∗ = D0 + 1, . . . ,D is selected such that

µ(j∗+[(1−α)D̄]) − µ(j∗) = min
16j6D̄

[
µ(j+[(1−α)D̄]) − µ(j))

]
.

Step-13: Redo Steps 11–12 for the time parameters R(t) and h(t) at distinct time t > 0.

4. Monte Carlo Simulation

In this section, via different Monte Carlo simulations, the performance of the proposed
point and interval estimators of the IL parameter µ, reliability function R(t), and hazard
function h(t) is compared when an adaptive Type-II progressive hybrid strategy is imple-
mented. Without sacrificing generality, we simulate 1000 T2-APHC samples from IL(0.5)
and IL(1.5) based on various choices of T, n, m and S. It is also best emphasized here that
no restriction has been imposed on the maximum number of iterations, and convergence
is assumed when the absolute difference between successive estimates is less than 10−5.
By fix t = 0.25, the corresponding true values of (R(t), h(t)) at µ = 0.5 and 1.5 are (0.6842,
2.6373) and (0.9916, 0.1800), respectively. Using T(= 0.5, 2.5), two different levels of n and
m are used such as n(=40, 80), m(=12, 32) (for n = 40) and m(=24, 64) (for n = 80). Here,
the proposed values of m are taken as failure percentages (FPs) of each n such as m

n (=30,
80)%. Moreover, for each set of (n, m), three progressive patterns S = (S1, S2, . . . , Sm) are
also considered, where S = (2, 0, 0, 0, 4) is referred by S = (2, 0∗3, 4), as

Scheme-1 : S = (n−m, 0∗(m− 1)),

Scheme-2 : S =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
,

Scheme-3 : S = (0∗(m− 1), n−m).

Once the desired T2-APHC samples are generated, the maximum likelihood and 95%
ACI estimates of µ, R(t) and h(t) are obtained via R 4.1.2 software by installing ‘maxLik’
package (by Henningsen and Toomet [24]). Also, to develop the Bayes MCMC and HPD
interval estimates of µ, R(t) and h(t), 12,000 MCMC samples are simulated from the M-H
algorithm via ‘coda’ package (by Plummer et al. [25]) in R 4.1.2 software. Taking the
first 2000 variates as burn-in, following prior mean and prior variance criteria, the Bayes
inferences are developed based on two informative sets of the hyperparameters a and b
namely: prior-1: (a, b) = (2.5, 5) and prior-2: (a, b) = (5, 10) (for µ = 0.5) as well as prior-1:
(a, b) = (7.5, 5) and prior-2: (a, b) = (15, 10) (for µ = 1.5). Now, from 10,000 MCMC
samples, the MCMC estimates of µ, R(t) and h(t) are calculated based on SE and GE (for
δ(= −2,+2)) loss functions, as well as the 95% HPD intervals, are computed also.

From likelihood (or Bayes) approach, the average estimates (AEs) of µ, R(t) and h(t)
(say ξ) are given by

ξ̌k =
1
B ∑B

i=1 ξ̌
(i)
k , k = 1, 2, 3,

where B is the number of generated sequence data, ξ̌(i) is the calculated estimate of ξ at the
ith simulated sample, ξ1 = µ, ξ2 = R(t) and ξ3 = h(t).
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Comparison between point estimates of ξ is made based on their root mean squared-
errors (RMSEs) and mean relative absolute biases (MRABs) as

RMSE(ξ̌k) =

√
1
B ∑B

i=1

(
ξ̌
(i)
k − ξk

)2
, k = 1, 2, 3,

and
MRAB(ξ̌k) =

1
B ∑B

i=1
1
ξk

∣∣∣ξ̌(i)k − ξk

∣∣∣, k = 1, 2, 3,

respectively. Further, the comparison between interval estimates of ξ is made using their
average confidence lengths (ACLs) and coverage percentages (CPs) respectively as

ACL(1−α)%(ξk) =
1
B ∑B

i=1

(
U

ξ̌
(i)
k
−L

ξ̌
(i)
k

)
, k = 1, 2, 3,

and
CP(1−α)%(ξk) =

1
B ∑B

i=1 1(
L

ξ̌
(i)
k

;U
ξ̌
(i)
k

)(ξk), k = 1, 2, 3,

where 1(·) is the indicator function and L(·) and U (·) denote the lower and upper bounds,
respectively, of (1− α)% ACI (or HPD credible) interval of ξk. It is better to mention here
that other comparison criteria, such as: speed of computation, size of memory needed,
precision, etc., can be easily incorporated. Furthermore, sensitivity analysis is recommended
here to gauge the validity of the proposed control tests.

Via R data graphics, the simulation outputs results of µ, R(t) and h(t) are represented
with heatmaps in Figures 2–4, respectively, while the numerical tables of µ, R(t) and h(t)
are available as Supplementary Material. Furthermore, for brevity, several notations of
the estimation methods have been used in Figures 2–4 such as (for prior-1 (say P1) as an
example) the Bayes estimates based on SE loss mentioned as “SE-P1”, the Bayes estimates
based on GE loss for δ = −2 and +2 mentioned as “GE1-P1” and “GE2-P1”, respectively, as
well as the HPD interval mentioned as “HPD-P1”.

From Figures 2–4, the following observations can be easily drawn:

• General comment is the proposed estimates of µ, R(t) or h(t) of the IL model in
presence of T2-APHC sample behave well in terms of the lowest RMSE, MRAB and
ACL values as well as the highest CP values.

• All Bayes point and interval estimates of µ, R(t) and h(t), due to the gamma prior,
perform well compared to the other estimates as expected. Similar result is also
observed in the case of HPD intervals.

• Comparing the proposed priors 1 and 2, because the variance of prior-2 is lower than
the variance of prior-1, it is noted that the Bayes calculations based on prior-2 have
good perform for all unknown parameters than others.

• Asymmetric Bayes estimates of µ, R(t) or h(t) have overestimates (when (δ < 0)) and
have underestimates (when (δ > 0)).

• As n(or m) increases, all estimates of µ, R(t) and h(t) perform satisfactory. A similar
result is also observed when the sum of Si, i = 1, 2, . . . , m decreases.

• As µ increases, the RMSEs, MRABs and ACLs of µ increase while their CPs de-
crease as well as the RMSEs, MRABs and ACLs of R(t) and h(t) decrease while their
CPs increase.

• As T increases, it can be seen that:

(i) For IL(0.5)

– The simulated RMSE/MRAB values of the frequentist estimates of µ, R(t) and
h(t) increase while that associated with the Bayes estimates of µ, R(t) and
h(t) decrease.

– The ACLs of ACI/HPD interval estimates of µ, R(t) and h(t) narrowed down
while their CPs increase.
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(ii) For IL(1.5)

– The simulated RMSE/MRAB values of the both frequentist and Bayes estimates
of µ, R(t) and h(t) decrease.

– The ACLs of ACI/HPD interval estimates of µ decrease (with CPs increase) while
of R(t) and h(t) increase (with CPs decrease).
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(a) At µ = 0.5 (b) At µ = 1.5

Figure 2. Heatmap plots for the simulation (point/interval) results of µ.

• Comparing the proposed schemes 1, 2 and 3, it is noted that:

(i) For IL(0.5)

– Under Scheme-3 (is also known right (or Type-II) censoring), all proposed point
and interval estimates of µ behave better than others.

– The same finding is also observed in the estimation results for R(t) and h(t).
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(ii) For IL(1.5)

– The proposed point estimates of µ, R(t) and h(t) perform better for Scheme-1
(left-censoring) when T = 0.5 and for Scheme-3 (right-censoring) when T = 2.5
than others.

– The proposed interval estimates of µ, R(t) and h(t) behave better under Scheme-3
(right-censoring) in most cases compared to others.

• As a recommendation, we propose to utilize the Bayes M-H algorithm procedure to
estimate the IL parameters using T2-APHC.
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(a) At µ = 0.5 (b) At µ = 1.5

Figure 3. Heatmap plots for the simulation (point/interval) results of R(t).
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Figure 4. Heatmap plots for the simulation (point/interval) results of h(t).

5. Real-Life Applications

This section presents an analysis of two useful applications from the engineering and
marketing fields to highlight the usefulness of the proposed estimation methods and the
possibility of adapting study objectives to real practice.

5.1. Airborne Communication Transceiver

The airborne communication transceiver is a very high frequency and ultra-high fre-
quency transceiver designed for communication between aircraft via the built-in intercom,
in addition to communication with the ground means of air traffic control. In this applica-
tion, we shall use a data set, reported by Jorgensen [26], consisting of forty observations
of the active repair times (hours) for an airborne communication transceiver (ACT), see
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Table 1. In the past decade, this data set has received a lot of attention from several authors;
for example, see Saroj et al. [27], Sharma et al. [28], Ferreira et al. [29], among others.

Table 1. Times of active repair for ACT.

0.50 0.60 0.60 0.70 0.70 0.70 0.80 0.80 1.00 1.00
1.00 1.00 1.10 1.30 1.50 1.50 1.50 1.50 2.00 2.00
2.20 2.50 2.70 3.00 3.00 3.30 4.00 4.00 4.50 4.70
5.00 5.40 5.40 7.00 7.50 8.80 9.00 10.2 22.0 24.50

To explain the flexibility of the proposed model, based on the complete ACT data set,
the IL distribution is compared to five other common inverted distributions (for y > 0
and α, µ > 0) namely; inverse exponential (IE(µ)) proposed by Keller et al. [30], inverse
Weibull (IW(α, µ)) proposed by Keller et al. [31], inverse gamma (IG(α, µ)) discussed by
Glen [32], inverted Nadarajah–Haghighi (INH(α, µ)) proposed by Tahir et al. [33] and
alpha power inverted exponential (APIE(α, µ)) proposed by Ceren et al. [34] distributions.
To determine which distribution has the best fit, different goodness-of-fit measures are
considered called: negative log-likelihood (NL), Akaike (A), Bayesian (B), consistent Akaike
(CA), Hannan-Quinn (HQ) and Kolmogorov–Smirnov (KS) statistic with its p-value. To
calculate the proposed criteria, the MLE with its standard error (St.E) of α or µ is calculated
and presented in Table 2. It is evident, in terms of the smallest of NL, A, B, CA, HQ and
KS values as well as the highest p-value, that the IL lifetime model provides a better fit
than IE, IW, IG, INH and APIE distributions. For more investigation, the IL distribution
is also compared to the Lindley (L) model. It is quite evident, from Table 2, that the IL
distribution provides the best overall fit compared to L and other inverse models. Further,
quantile-quantile plots of IL, IE, IW, IG, INH and APIE distributions are displayed in
Figure 5. Furthermore, Figure 6 shows the histograms of ACT data and the lines of fitted
densities as well as fitted/empirical reliability functions of IL, IE, IW, IG, INH and APIE
distributions are displayed. It can be seen, from Figures 5 and 6, that the IL distribution can
be chosen as an appropriate distribution when compared to other distributions in presence
of ACT data.

Table 2. Fitting results of the IL and its competitive models from ACT data.

Model
MLE(St.E)

NL A B CA HQ KS (p-Value)
α µ

IL - 2.0541 (0.2611) 89.0538 182.1076 183.7965 182.2128 182.7182 0.0856 (0.9314)
L - 0.4242 (0.1859) 98.7913 199.5826 201.2715 199.6879 200.1933 0.2157 (0.0484)
IE - 1.5474 (0.2447) 89.4865 182.9731 184.6620 183.0783 183.5837 0.0936 (0.8750)
IW 1.2078 (0.1518) 1.5687 (0.2481) 89.4489 182.8978 186.2756 183.2221 184.1191 0.0953 (0.8610)
IG 1.3537 (0.2734) 2.0948 (0.5099) 89.4501 182.9002 186.2780 183.2246 184.1215 0.0959 (0.8552)

INH 2.7726 (3.1066) 0.3911 (0.5361) 89.4350 182.8700 186.2478 183.1943 184.0913 0.0944 (0.8680)
APIE 0.3480 (0.3226) 1.9654 (0.4463) 89.9196 183.8392 187.2169 184.1635 185.0605 0.0891 (0.9083)
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Figure 5. The quantile-quantile plots of the IL and its competitive models from ACT data.
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Figure 6. (a) Histograms/Fitted PDFs; (b) Empirical/Fitted RFs from ACT data.

From the complete ACT data, when m = 20, three T2-APHC samples based on
different schemes are generated and reported in Table 3. From Table 3, the MLEs with
their St.Es of µ, R(t) and h(t) (at time t = 1) are computed. By running the M-H algorithm
50,000 times with discarding the first 10,000 variates as burn-in, the Bayes estimates with
their St.Es under SE and GE (for δ(= −3,−0.03,+3)) loss functions of µ, R(t) and h(t) are
calculated using the improper gamma prior. Since there is no a priori information about µ
from ACT data, we assume that the hyperparameters a and b are not available but are set to
0.001 to run computations. Also, the two bounds of the 95% ACI/HPD interval estimates
with their lengths of the same parameters are also calculated. To apply the proposed
MCMC sampler, the maximum likelihood estimate of µ is selected as an initial guess. The
point and interval estimates of µ, R(t) and h(t) are provided in Tables 4 and 5, respectively.
It is clear, from Tables 4 and 5, that the estimates of µ, R(t) and h(t) obtained by the MCMC
procedure perform better than others. Similar performance is also observed in the case of
HPD interval estimates.

Table 3. Three generated samples from ACT data.

Sample T(r) Sch. S∗m T2-APHC Data

1 25 (20) (20, 0∗19) 0 0.50 0.60 0.70 0.80 1.00 1.10 1.30 1.50 2.00 2.50
2.70 3.00 4.00 4.50 5.40 7.00 8.80 9.00 22.0 24.5

2 1.4 (10) (0∗8, 5, 5, 5, 5, 0∗8) 10 0.50 0.60 0.60 0.70 0.70 0.70 0.80 1.00 1.10 1.30
1.50 1.50 1.50 1.50 2.00 2.20 2.50 2.70 3.00 3.30

3 1.8 (18) (0∗19, 20) 20 0.50 0.60 0.60 0.70 0.70 0.70 0.80 0.80 1.00 1.00
1.00 1.00 1.10 1.30 1.50 1.50 1.50 1.50 2.00 2.00

Table 4. Point estimates (first-column) with their St.Es (second-column) of µ, R(t) and h(t) from
ACT data.

Sample
Par. MLE SE

GE

δ→ −3 −0.03 +3

1 µ 2.2835 0.3598 1.6280 0.6890 1.6555 0.6280 1.6146 0.6689 1.5727 0.7108
R(1) 0.8272 0.0588 0.6767 0.1624 0.6822 0.1450 0.6740 0.1532 0.6650 0.1622
h(1) 0.3914 0.0882 0.5839 0.2050 0.5923 0.2009 0.5797 0.1883 0.5660 0.1747

2 µ 2.2446 0.2953 1.7079 0.5751 1.7328 0.5118 1.6958 0.5488 1.6576 0.5870
R(1) 0.8207 0.0500 0.6996 0.1334 0.7040 0.1167 0.6974 0.1233 0.6901 0.1306
h(1) 0.4010 0.0738 0.5574 0.1699 0.5652 0.1642 0.5535 0.1525 0.5409 0.1399

3 µ 2.0470 0.2638 1.5960 0.4883 1.6179 0.4292 1.5854 0.4616 1.5521 0.4949
R(1) 0.7841 0.0533 0.6685 0.1283 0.6730 0.1112 0.6662 0.1180 0.6588 0.1254
h(1) 0.4529 0.0727 0.5939 0.1545 0.6006 0.1477 0.5906 0.1378 0.5800 0.1271
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Table 5. Interval estimates of µ, R(t) and h(t) from ACT data.

Sample Par.
ACI HPD

Lower Upper Length Lower Upper Length

1 µ 1.5783 2.9887 1.4105 1.2348 2.0555 0.8207
R(1) 0.7120 0.9424 0.2304 0.5598 0.7949 0.2351
h(1) 0.2185 0.5642 0.3457 0.4487 0.7214 0.2727

2 µ 1.6658 2.8234 1.1575 1.3055 2.1098 0.8043
R(1) 0.7228 0.9187 0.1959 0.5911 0.8083 0.2172
h(1) 0.2563 0.5457 0.2893 0.4312 0.6909 0.2596

3 µ 1.5301 2.5640 1.0339 1.2331 1.9608 0.7277
R(1) 0.6797 0.8885 0.2088 0.5583 0.7736 0.2153
h(1) 0.3104 0.5954 0.2850 0.4699 0.7165 0.2466

Some common characteristics for the MCMC iterations of µ, R(t) and h(t) after burn-
in, namely: mean, mode, quartiles (Q1, Q2, Q3), standard deviation (St.D) and skewness are
computed and provided in Table 6. To highlight the convergence of MCMC draws, from
sample 1 (as an example), MCMC trace plots of µ, R(t) and h(t) are displayed in Figure 7.
Additionally, using the fitted Gaussian kernel for sample 1, the histograms of MCMC
variates of µ, R(t) and h(t) are also shown in Figure 7. For each trace plot, the sample mean
is represented by a solid (—) line as well as the HPD interval bounds are represented by
dashed (- - -) lines. For each histogram plot, the sample mean of each unknown parameter
is represented with a vertical dotted (:) line. Figure 7 demonstrates that the MCMC sampler
converges quite well and that the burn-in sample has a sufficient size to remove the effect
of the starting values. It is also noted, from Figure 7, that the generated variates of µ, R(t)
and h(t) are positive-skewed, negative-skewed and fairly symmetrical, respectively. Other
trace and histogram plots of µ, R(t) and h(t) based on samples 2 and 3 are plotted and
displayed in the Supplementary File.
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Figure 7. Trace (top) and Histograms (bottom) plots of µ, R(t) and h(t) from ACT data.
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Table 6. Characteristics for MCMC outputs of µ, R(t) and h(t) from ACT data.

Sample Par. Mean Mode Q1 Q2 Q3 St. D Skewness

1 µ 1.62801 1.53317 1.47551 1.61639 1.76855 0.21224 0.25728
R(1) 0.67674 0.65351 0.63505 0.67868 0.72045 0.06116 −0.22918
h(1) 0.58388 0.61298 0.53498 0.58447 0.63334 0.07047 0.00940

2 µ 1.70794 1.44214 1.56703 1.70275 1.84255 0.20671 0.22905
R(1) 0.69964 0.62397 0.66396 0.70304 0.73890 0.05595 −0.28905
h(1) 0.55737 0.64536 0.51211 0.55597 0.60126 0.06635 0.05584

3 µ 1.59602 1.58283 1.46351 1.58884 1.71644 0.18718 0.24613
R(1) 0.66845 0.66874 0.63109 0.67054 0.70674 0.05537 −0.20140
h(1) 0.59394 0.59585 0.55155 0.59380 0.63764 0.06310 −0.00177

5.2. Wooden Toys

In this application, from the marketing field, both proposed frequentist and Bayesian
estimators of the IL parameters are computed based on the prices of the thirty different chil-
dren’s wooden toys for sale at a Suffolk craft shop in April 1991, see Table 7. This data was
originally published by The Open University and recently analyzed by Chesneau et al. [35].
In Table 8, the calculated values of NL, A, B, CA, HQ and KS(p-value) of IL and its competi-
tive models are presented. It shows that the IL distribution fits the wooden toys data better
compared to the Lindley model with respect to the KS(p-value) statistic alone. It is also
evidence that the IL distribution is the best choice for the wooden toys data compared to
other inverse models based on the criteria A, B, CA and HQ whereas the IW, IG, INH and
APIE distributions are the next best-fit models based on the NL and KS(p-value) criteria.

Table 7. Prices of wooden toys for sale at a Suffolk craft shop.

0.50 0.65 0.90 0.99 1.12 1.35 1.39 1.45 1.70 1.74
1.85 1.99 1.99 2.00 2.15 2.60 3.00 3.99 4.20 4.75
5.12 5.81 6.24 7.36 8.69 9.80 10.0 11.5 11.59 12.20

Also, using the complete wooden toys data, Figure 8 displays the quantile-quantile
plots of IL, L, IE, IW, IG, INH and APIE distributions. It also supports the same findings
reported in Table 8. Further, for each model based on the wooden toys data, the plot of
histograms of wooden toys data with fitted densities as well as the plot of the fitted and
empirical reliability functions are shown in Figure 9. It is evident that the IL distribution is
the best model compared to its competitive models.
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Figure 8. The quantile-quantile plots of the IL and its competitive models from wooden toys data.
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Table 8. Fitting results of the IL and its competitive models from wooden toys data.

Model
MLE (St.E)

NL A B CA HQ KS (p-Value)
α µ

IL - 2.5572 (0.3834) 73.4838 148.9677 150.3689 149.1105 149.4159 0.1413 (0.5869)
L - 0.3999 (0.4439) 73.2321 148.4643 149.8655 148.6071 148.9125 0.1832 (0.2661)
IE - 1.9961 (0.3644) 73.6667 149.3334 150.7346 149.4762 149.7816 0.1509 (0.5014)
IW 1.2009 (0.1658) 2.1180 (0.3958) 72.8668 149.7337 152.5361 150.1781 150.6302 0.1023 (0.9119)
IG 1.4525 (0.3406) 2.8993 (0.8094) 72.5204 149.0407 151.8431 149.4852 149.9372 0.1094 (0.8654)
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y

D
e

n
s
it
y

0 2 4 6 8 10 12 14

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

IL
IE
IW
IG
INH
APIE

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

R
e
lia

b
ili

ty

IL
IE
IW
IG
INH
APIE

(a) (b)

Figure 9. (a) Histograms/Fitted PDFs; (b) Empirical/Fitted RFs from wooden toys data.

Now, we obtain the calculated values of the derived point and interval estimators of
µ, R(t) and h(t) based on three different T2-APHC samples with size m = 15 from the
complete wooden toys data set which are listed in Table 9. From Table 9, the classical and
Bayes MCMC estimates with their St.Es of µ, R(t) and h(t) (at time t = 0.5) are computed
and presented in Table 10. Moreover, two-sided 95% ACI/HPD interval estimates with
their lengths of the same unknown quantities are also calculated, see Table 11. Utilizing
the improper gamma prior under SE and GE (for δ(= −5,−0.05,+5)) loss functions, from
50,000 MCMC draws with 10,000 burn-in, the MCMC estimates with their St.Es of µ, R(t)
and h(t) are developed. To run the desired computations, the hyperparameters a and b are
selected to be 0.001. Moreover, the same properties mentioned in Table 6 are also reused
based on the wooden toys data and reported in Table 12.

Table 9. Three different samples from wooden toys data.

Sample T(r) Sch. S∗m T2-APHC Data

1 9.9 (14) (15, 0∗14) 0 0.50 0.65 0.99 1.35 1.39 1.45 1.74 1.99 2.60 3.00
4.75 5.81 6.24 9.80 10.0

2 1.8 (8) (0∗6, 5, 5, 5, 0∗6) 5 0.50 0.65 0.90 0.99 1.12 1.35 1.39 1.70 1.85 2.15
2.60 3.00 4.75 5.12 6.24

3 2.2 (15) (0∗14, 15) 15 0.50 0.65 0.90 0.99 1.12 1.35 1.39 1.45 1.70 1.74
1.85 1.99 1.99 2.00 2.15
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Table 10. Point estimates (first-column) with their St.Es (second-column) of µ, R(t) and h(t) from
wooden toys data.

Sample
Par. MLE SE

GE

δ→ −5 −0.05 +5

1 µ 2.2949 0.4186 1.5282 0.7986 1.5931 0.7018 1.5127 0.7822 1.4296 0.8652
R(2) 0.5720 0.0835 0.3914 0.1900 0.4084 0.1636 0.3871 0.1849 0.3623 0.2097
h(2) 0.3327 0.0391 0.4105 0.0815 0.4133 0.0807 0.4098 0.0772 0.4061 0.0734

2 µ 2.7440 0.4264 1.8678 0.9108 1.9338 0.8102 1.8522 0.8918 1.7684 0.9756
R(2) 0.6535 0.0700 0.4763 0.1865 0.4900 0.1635 0.4728 0.1806 0.4531 0.2003
h(2) 0.2927 0.0361 0.3749 0.0860 0.3782 0.0855 0.3741 0.0814 0.3696 0.0769

3 µ 2.5018 0.3813 1.7468 0.7906 1.8090 0.6928 1.7319 0.7700 1.6504 0.8514
R(2) 0.6115 0.0696 0.4473 0.1740 0.4615 0.1500 0.4437 0.1678 0.4226 0.1889
h(2) 0.3138 0.0341 0.3873 0.0775 0.3903 0.0766 0.3866 0.0728 0.3826 0.0688

Table 11. Interval estimates of µ, R(t) and h(t) from wooden toys data.

Sample Par.
ACI HPD

Lower Upper Length Lower Upper Length

1 µ 1.4743 3.1154 1.6411 1.1112 1.9806 0.8694
R(2) 0.4084 0.7356 0.3272 0.2837 0.5126 0.2289
h(2) 0.2561 0.4092 0.1532 0.3609 0.4550 0.0941

2 µ 1.9082 3.5798 1.6715 1.3886 2.3640 0.9754
R(2) 0.5162 0.7907 0.2745 0.3653 0.5942 0.2289
h(2) 0.2219 0.3635 0.1416 0.3262 0.4254 0.0991

3 µ 1.7545 3.2492 1.4947 1.3064 2.2146 0.9082
R(2) 0.4751 0.7480 0.2729 0.3326 0.5561 0.2235
h(2) 0.2470 0.3805 0.1335 0.3402 0.4346 0.0944

Table 12. Characteristics for MCMC outputs of µ, R(t) and h(t) from wooden toys data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skewness

1 µ 1.52822 1.42123 1.37158 1.51358 1.66957 0.22369 0.30424
R(2) 0.39136 0.36445 0.35065 0.38957 0.43033 0.05896 0.08941
h(2) 0.41053 0.42176 0.39487 0.41162 0.42729 0.02416 -0.17726

2 µ 1.86784 1.65210 1.69669 1.85332 2.02673 0.24872 0.30228
R(2) 0.47626 0.42587 0.43719 0.47556 0.51547 0.05819 0.01336
h(2) 0.37492 0.39672 0.35838 0.37578 0.39201 0.02515 -0.14876

3 µ 1.74680 1.71475 1.58299 1.74123 1.89660 0.23439 0.25017
R(2) 0.44727 0.44173 0.40797 0.44833 0.48577 0.05747 -0.00714
h(2) 0.38732 0.39011 0.37138 0.38735 0.40410 0.02430 -0.10953

It is observed, from Tables 10 and 11, that the fitted values of the point and interval
estimators of µ, R(t) and h(t) derived from the Bayes paradigm performed better than
those derived from the likelihood approach in terms of the lowest St.Es, as well as, the
HPD interval estimates are also performed better than others in terms of the shortest
intervals. Using the data set of sample 1 as an example, both trace and histogram plots
of the MCMC variates of µ, R(t) and h(t) are provided in Figure 10. It shows that the
MCMC mechanism converges well and demonstrates that the MCMC variates of R(t) and
h(t) are fairly symmetrical while that associated with µ are positive-skewed. Other plots
of µ, R(t) and h(t) based on samples 2 and 3 are presented in the Supplementary File.
Finally, from both engineering and marketing examples, we can conclude that the proposed
methodologies provide a satisfactory interpretation of the IL lifetime model in presence of
a sample obtained from an adaptive Type-II progressive hybrid censoring mechanism.



Axioms 2023, 12, 427 18 of 20

0 10000 20000 30000 40000

1.0

1.5

2.0

2.5

Iterations

µ

0 10000 20000 30000 40000

0.2

0.3

0.4

0.5

0.6

Iterations

R
(t

)

0 10000 20000 30000 40000

0.35

0.40

0.45

0.50

Iterations

h
(t

)

µ

F
re

q
u
e
n
c
y

1.0 1.5 2.0 2.5

0
1
0
0
0

2
0
0
0

3
0
0
0

R(t)

F
re

q
u
e
n
c
y

0.2 0.3 0.4 0.5 0.6

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

h(t)

F
re

q
u
e
n
c
y

0.30 0.35 0.40 0.45 0.50

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

Figure 10. Trace (top) and Histograms (bottom) plots of µ, R(t) and h(t) from wooden toys data.

6. Concluding Remarks

This study takes into account the statistical inference of the unknown parameter and
some reliability measures of the inverse Lindley distribution using adaptive Type-II pro-
gressively censored samples. The various parameters are inferred using both conventional
and Bayesian methods. We employ numerical techniques to acquire the necessary estimate
of the unknown parameter because it has been shown that its estimator cannot be derived
in closed form. The asymptotic properties of the maximum likelihood estimators are used
to produce the approximate confidence intervals in addition to the point estimates of the un-
known parameter, reliability, and hazard rate functions. We study the Bayesian estimation
of various unknown parameters using symmetric and asymmetric loss functions, and it is
noted that they cannot be obtained in closed expressions because of the complexity of the
posterior distribution. In order to get the Bayes point estimates and the highest posterior
density credible intervals, the Markov chain Monte Carlo method was applied. Various
statistical criteria, including root mean squared error and interval length, were assessed
using Monte Carlo simulations to determine the performance of the proposed methods.
The suggested approaches are demonstrated through two examples involving real data sets.
According to the numerical outcomes, the Bayes estimates are more precise than maximum
likelihood estimates in terms of minimum root mean squared error, relative absolute bias,
and interval length. As the number of observed failures increases the different estimation
methods perform well for the different progressive censoring schemes. As the variance of
the prior distribution decreases, the Bayes estimates perform well when compared with
those with high variance. Furthermore, the Bayes estimates using the general entropy loss
function as asymmetric loss function are more efficient than estimates obtained based on
the symmetric squared error loss function. Finally, the analysis of two data sets shows
that the inverse Lindley distribution can be used as a suitable model when compared with
some other competitive models, including Lindley, inverse Weibull and inverted Nadara-
jah–Haghighi distributions. As a future work, it is of interest to investigate other estimation
methods like maximum product of spacing and expectation-maximization algorithm of the
inverse Lindley distribution using the same censoring scheme.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/axioms12050427/s1. Table S1: The AEs (1st column), RMSEs (2nd
column) and MRABs (3rd column) of µ when µ = 0.5; Table S2: The AEs (1st column), RMSEs (2nd
column) and MRABs (3rd column) of µ when µ = 1.5; Table S3: The AEs (1st column), RMSEs (2nd
column) and MRABs (3rd column) of R(t) when µ = 0.5; Table S4: The AEs (1st column), RMSEs
(2nd column) and MRABs (3rd column) of R(t) when µ = 1.5; Table S5: The AEs (1st column), RMSEs
(2nd column) and MRABs (3rd column) of h(t) when µ = 0.5; Table S6: The AEs (1st column), RMSEs
(2nd column) and MRABs (3rd column) of h(t) when µ = 1.5; Table S7: The ACLs (1st column) and
CPs (2nd column) of ACI/HPD credible intervals of µ; Table S8: The ACLs (1st column) and CPs
(2nd column) of ACI/HPD credible intervals of R(t); Table S9: The ACLs (1st column) and CPs (2nd
column) of ACI/HPD credible intervals of h(t); Figure S1: Trace (top) and Histograms (bottom) plots
of µ, R(t) and h(t) under sample 2 from ACT data; Figure S2: Trace (top) and Histograms (bottom)
plots of µ, R(t) and h(t) under sample 3 from ACT data; Figure S3: Trace (top) and Histograms
(bottom) plots of µ, R(t) and h(t) under sample 2 from wooden toys data; Figure S4: Trace (top) and
Histograms (bottom) plots of µ, R(t) and h(t) under sample 3 from wooden toys data.
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