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Abstract: Outlier detection is of great significance in the domain of data mining. Its task is to find
those target points that are not identical to most of the object generation mechanisms. The existing
algorithms are mainly divided into density-based algorithms and distance-based algorithms. However,
both approaches have some drawbacks. The former struggles to handle low-density modes, while the
latter cannot detect local outliers. Moreover, the outlier detection algorithm is very sensitive to parameter
settings. This paper proposes a new two-parameter outlier detection (TPOD) algorithm. The method
proposed in this paper does not need to manually define the number of neighbors, and the introduction of
relative distance can also solve the problem of low density and further accurately detect outliers. This is a
combinatorial optimization problem. Firstly, the number of natural neighbors is iteratively calculated, and
then the local density of the target object is calculated by adaptive kernel density estimation. Secondly,
the relative distance of the target points is computed through natural neighbors. Finally, these two
parameters are combined to obtain the outlier factor. This eliminates the influence of parameters that
require users to determine the number of outliers themselves, namely, the top-n effect. Two synthetic
datasets and 17 real datasets were used to test the effectiveness of this method; a comparison with another
five algorithms is also provided. The AUC value and F1 score on multiple datasets are higher than other
algorithms, indicating that outliers can be found accurately, which proves that the algorithm is effective.

Keywords: outlier detection; natural neighbors; adaptive kernel density estimation; local density;
relative distance

MSC: 00A35

1. Introduction

With the advance of information science, more data are being collected into databases,
storing a large amount of information for science, governments, businesses, and society [1].
Most scientific research focuses on constructing a general pattern map for most data.
However, abnormal data are often more valuable than normal data because they often
represent a small number of the most specific features. Outlier detection is a significant,
emerging, and promising research direction [2]. As a part of data mining, it is the highest
priority in many domains; for example, intrusion detection, bank fraud [3], credit analysis,
and wireless sensor abnormality detection [4]. It is also a method of preprocessing data
in data mining, or can be used as a standalone tool for discovering certain, specific, and
implicit pieces of information in a data sample. Its task is to find data whose characteristics
are completely different from most of the data features, which are called “outliers”.

In recent decades, outliers were not valued by researchers, but were treated as “by-
products” or “noise” of data mining methods. In 1980, Hawkins [5] defined an outlier in his
classic book “Identification of Outliers”: outliers behave relatively differently from most
data objects in a dataset, so it is suspected that the object is caused by other mechanisms.
In recent years, many scholars have been working on finding more efficient and reliable
outlier-detection algorithms. In general, three major categories of outliers can be detected [6]:
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supervised outlier detection, semi-supervised outlier detection and unsupervised outlier
detection. In supervised and semi-supervised modes, the model is built from the training
dataset and it takes both time and labor to label the dataset. Conversely, unsupervised
modes do not need training datasets and can be divided into global and local detection
algorithms [7]. Therefore, this paper mainly studies unsupervised outlier detection methods.

In recent years, researchers have proposed various unsupervised outlier detection
algorithms, including statistics-based, distance-based [8–10], clustering-based [11], and
density-based algorithms [3,12]. However, the most common detection methods are based
on distance or density.

The study of outliers began with statistical learning models, especially in the field
of statistical learning methods. If a data object deviates too much from the standard
distribution, it is considered an outlier [13]. Outlier detection methods based on statistical
learning are relatively simple to use, and the application of the model does not require
much change; however, there are high requirements regarding the users’ knowledge of the
dataset. Therefore, this method is not suitable for datasets with unknown conditions.

The distance-based method does not need to assume the distribution of any data. Most
methods use existing distance measurement methods to calculate the distance between
all data objects, and identify anomaly values according to the distance relationship. The
DB(ε, π)-outliers approach proposed by Knorr and Ng [14] is a classical distance-based
method, and K-nearest neighbor (KNN) distance is used to calculate outlier scores [15].
These methods have relatively intuitive concepts and are easier to understand, but cannot
detect outliers in areas of different densities. Meanwhile, it is difficult to determine the
threshold of the distance, which is critical for detection performance. Clustering-based
methods will find some outliers that do not pertain to any cluster in the process of clustering,
and these points called outliers [16,17].

In the density-based method, if the density of the calculated target point is lower than
its nearest neighbor’s density, it is called an outlier. The earliest algorithm is the local outlier
factor (LOF) [18]. The following research [19] shows that LOF judges outliers according
to the score of each point. Next, several extensions of the LOF model appeared, such as
the connection-based outlier (COF) [19]. This approach is very similar to LOF; the only
difference is the way the density estimate is calculated. The weakness of this approach is
that the data distribution is indirectly assumed, which will lead to poor density estimation.
The local density factor (LDF) [20] has a certain robustness, which is a further improvement
to the LOF algorithm. With regard to kernel density estimation, several new methods have
also been introduced recently. An outlier score based on relative density (RDOS) [21] is
proposed to measure the local outliers of the target point. Meanwhile, the extended nearest
neighbors of the object are considered, and these neighbors are used to further use the local
kernel density estimation. The adaptive-kernel density [22] approach is assigned an outlier
score to show local differences, and uses an adaptive kernel to improve the recognition
ability. In 2018, a relative kernel density [23] not only calculated the local density of the data
points, but also calculated the density fluctuations between the fixed point and the adjacent
points to further improve the accuracy. Next, Wahid et al. [24] adopted the weighted kernel
density estimation (WKDE) method. This not only uses self-adaptation, but also adds
weight to the density, and uses extended nearest neighbor to calculate the score of outliers.
Local-gravitation outlier detection (LGOD) [25] introduces the concept of inter-sample
gravity, which determines the extent of the anomalies by calculating the change in the
gravity of a sample’s nearest neighbours. The average divergence difference (ADD) [26]
algorithm introduces the concept of average divergence difference to improve the accuracy
of local outlier detection. Although the density of clusters in the datasets used varies greatly,
the proposed methods have certain effects. However, if there are low-density patterns in
the provided data, these methods will not accurately determine the outliers, and the effect
will be degraded [19]. Density-based methods tend to be insensitive to global outliers.

In this study, we propose a new method to further calculate local density and relative
distance based on natural neighborhood, where natural neighborhoods are neighbors to each
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other, and there is no need to manually determine neighborhood parameters. Combinatorial
optimization is mainly to find optimal object from a limited set of objects. To find outliers
through the combination of density and distance, through the fusion of these two measures,
this method can be applied to low-density modes without setting the number of neighbors.
First, an adaptive kernel density estimation method is proposed to compute the density of
the target point. After the density of each target point is determined, the relative distance is
introduced. The relative distance is mainly used to judge the proximity between the target
object and the object in its own natural neighborhood set, which is mainly composed of the
average distance from the target point to its natural neighbors and the distance between natural
neighbors. Combining density and distance, a comprehensive outlier factor is obtained to more
accurately detect outliers in the dataset. Compared with the current single-parameter outlier
detection algorithm, this paper introduces the outlier factor of a two-parameter combination
to judge the outlier. The main innovations of the article are summarized as below:

(1) The natural neighborhood is introduced into outlier detection, and iteration is used to
determine the number of neighbors.

(2) A calculation method of adaptively setting kernel width is proposed to improve the
discrimination ability of outlier detection.

(3) The density and distance are combined to form a new outlier factor.
(4) We set a suitable threshold as the boundary value to determine whether the object is

abnormal, so that the final result does not consider the top-n problem.

The remainder of this article is outlined below. Section 2 presents the preparatory work
used to develop the improved method. Section 3 presents the improvement method put
forward in this paper. Section 4 contains the comparison and analysis of the experimental
results of some outlier detection methods and the improved methods. Finally, Section 5
contains the conclusion and future work directions.

2. Related Work
2.1. Parzen Window for Outlier Detection

Parzen window evaluation, known as the kernel density estimate (KDE), studies the
distribution properties from the data samples themselves. There is no need to add any
prior knowledge, and there is no additional assumption for the data scatter. Therefore, this
is highly valued in the field of statistical theory and application. There are several kernel
functions, and the Gaussian kernel is commonly used. The Gaussian kernel is a classical
robust radial-basis kernel, which can resist the influence of noise in datasets.

To detect abnormal values in datasets, we can use kernel density estimation to obtain
the density of all samples in the set and only compare the density with the threshold
to establish the outliers. Although this nonparametric approach does not require any
assumptions, it tends to perform poorly for real-world datasets with multiple clusters of
significantly different densities, as demonstrated by the example in Figure 1.

Figure 1. Global measurement cannot detect red local outliers.
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In Figure 1, a red point near the dense cluster and away from the scattered cluster is
a local outlier. If we use the density estimation method mentioned above, the density of
red points in Figure 1 is higher than that of most points in sparse clustering. Thus, if the
threshold is set too small, the local outlier cannot be found; however, if the threshold is too
large, the points in the scattered cluster will be regarded as outliers and thus have a high
error rate. Therefore, it lacks the ability to identify local density in this case.

2.2. Local Outlier Factor

Local outlier factor (LOF) [18] is a density-based outlier detection algorithm that
introduces, for the first time, the idea of local outliers that are significant to many algorithms.
For every target point, LOF calculates the ratio of its density to the density of adjacent
points, yielding its local outlier factor to indicate the extent of the outlier. The parameter k
is very important for determining the outlier factor in LOF. The function of parameter k is
to obtain the k points that are closest to the target point, also known as k-nearest neighbors,
to determine the distance between the k-th nearest neighbor point and the target point,
known as the k-distance. Some simple definitions of LOF are as follows:

Definition 1 ([18]). The reachability distance of point p w.r.t. point q is defined as:

reach-dist(p, q) = max{k-distance(q), dist(p, q)} (1)

An example of Formula (1) is shown in Figure 2. For different points p1 and p2, their
reachable distances are different. For point p1, because p1 is in the k-neighborhood of o
(k = 4), its reachable distance is k-distance(o), which is equal to the radius of the circle; and
for point p2, it is clear that p2 is not in the k-neighborhood of o, so its reachable distance is
their actual distance.

Figure 2. Example of reachable distance.

Definition 2 ([18]). The local reachability density (LRD) of point p is the inverse of the average
reachability distance of the k near neighbors of point p, which can be defined by:

LRD(p) =

(
∑q∈knn(p) reach-dist(p, q)

|Nk(p)|

)−1

(2)

where |Nk(p)| represents the number of points in the k-th distance of point p.

Definition 3 ([18]). The local outlier factor(LOF) of point p is defined by:

LOF(p) =
∑q∈knn(p)

LRD(q)
LRD(p)

|Nk(p)| (3)
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The outlier factor score for the object p reflects the extent to which we call p outliers. It
is determined by the ratio of p to p’s neighbor density. Obviously, if the value of the outlier
factor at the p point is greater than 1, p is more likely to be an outlier.

3. Proposed Method

The density-distance outlier detection algorithm based on natural neighborhood does
not need to manually define the number of neighbors. If only density is used as the
measurement condition, the boundary points will often be mistaken for outliers, and will
increase with the increase in parameters. Therefore, we introduce the relative distance to
eliminate the interference of boundary points and increase the difference between boundary
points and outliers. Through the fusion of density and distance, a comprehensive outlier
factor is obtained for evaluation.

3.1. Natural Neighbor

Natural neighbor is an extended concept of a neighbor, which has a stable structure.
The understanding of objective reality gave birth to this concept. The number of real
friends a person has should be the number of people who mutually regard him or her as
their friend. For a data instance, if x thinks that y is a neighbor, and y also acknowledges
that x is a neighbor, then object y is one of the natural neighbors of object x. The whole
calculation process of natural neighbors can be completed automatically without any
parameters. Therefore, the natural neighborhood stability structure formula of the data
object is as follows:(

∀xp
)(
∃xq
)
(k ∈ N) ∧

(
xp 6= xq

)
→
(
xq ∈ KNNk

(
xp
))
∧
(
xp ∈ KNNk

(
xq
))

(4)

where KNNk
(

xp
)

is the k nearest neighbors of object xp.
The k-nearest neighbor of object xp refers to the collection of all points in the dataset

whose distance from xp is not greater than that between xp and its k-th neighbor. The
formation process of the stable structure of natural neighbors is as follows: the search of
neighbor range is expanding, from 1 to λ (λ as natural neighbor eigenvalue (NaNE)). The
NaNE refers to the minimum k value when the algorithm termination condition is satisfied.
In each search, the number of reverse neighbors of each instance in the dataset is calculated
and the following conditions are judged: (1) all instances have reverse neighbors; (2) the
number of instances without reverse neighbors remains unchanged. The reverse neighbor
of a target object refers to an object that treats the target object as one of its k-nearest
neighbors. When any of the above conditions is satisfied, the stable structure of natural
neighbors has been formed. Then our NaNE value is equal to the k value used in the search.
λ is obtained by the following formula.

λ = min
{

k|∑n
p=1 f

(
nbk
(
xp
))

= 0 or ∑n
p=1 f

(
nbk
(
xp
))

= ∑n
p=1 f

(
nbk−1

(
xp
))}

(5)

where nbk
(

xp
)

is the number of reverse nearest neighbors of xp in iteration k. f (x) is
defined as follows:

f (x) =
{

1 if x = 0
0 otherwise

(6)

Definition 4 (natural neighbors). The natural neighbor of xp is the neighbor when k iterates to
the natural neighbor eigenvalue, which is defined as follows:

NaN
(
xp
)
= KNNλ

(
xp
)

(7)
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Algorithm 1 shows the search algorithm process of natural neighbors

Algorithm 1: Natural Neighbor Search Algorithm
Input: Dataset X
Output: λ, NaN

Initialize k = 1,number(1) = 0,nb
(
xp
)
= 0,KNNk

(
xp
)
= ∅;

create a KD-tree T from the Dataset X;
while true do

foreach object xp in X do
find the kth neighbor xq of xp using T;
nb
(

xq
)
= nb

(
xq
)
+ 1

KNNk
(

xp
)
= KNNk−1

(
xp
)
∪ xq

end
nbk = nb;
number(k) = length( f ind(nbk = 0))
if number(k) == 0 or number(k) = number(k− 1) then

break;
end
k = k + 1

end
λ = k;
foreach object xp in X do

NaN
(

xp
)
= KNNλ

(
xp
)

end

3.2. Local Density Estimation

Generally speaking, density is a measure of how close a data object is to its neighbor-
hood objects, and which method to use to estimate the density is also crucial. We adopted
adaptive Gaussian kernel density estimation, which greatly reduces the dependence of
kernel function on required parameters.

For a present dataset X = {x1, x2, · · · , xn}, where Xi ∈ Rd for i = 1, 2, · · · , m, the
distribution density can be computed as:

ρ(x) =
1
n

n

∑
i=1

hi
−dK

(
x− xi

hi

)
(8)

where K(·) indicates the kernel function and hi is the width that controls the smoothness
of the kernel density function. 1/n and h−d standardize the density estimation and make
it integral to 1 in the range of x. Kernel functions satisfy the following expression [27].
The distribution estimate in Formula (8) provides a lot of good features, such as being
nonparametric, continuous, and differentiable [28].∫

K(x)dx = 1,
∫

xK(x)dx = 0, and
∫

x2K(x)dx > 0 (9)

In the classical density problem, estimated previously using the Parzen window, all
points use a fixed width parameter h. However, the estimation results of the kernel function
are different for the width. Against the background of anomaly detection, the favorable
setting of kernel width is the exact opposite of density evaluation. In areas with a high
density, we tend not to care about these interesting structures, because they do not provide
any value for the determination of outliers. Larger widths may lead to over-smoothing
and structure cleaning, but in the low-density region, smaller widths may lead to noise
estimation. Therefore, the best choice of width may depend on its specific location in the
data space.
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Below is a concrete example: consider a 1D dataset {1, 2, 3, 4, 5, 10}. The last one is
suspected to an exception. Suppose we can correctly apply the above ideas; then, the
dataset can be converted to {2.8, 2.9, 3, 3.1, 3.2, 20}. Finally, we can more clearly see that the
last one is an anomaly.

3.3. Adaptive Kernel Width

At present, we further consider the adaptive setting of the width hi in the Formula (10).
Considering the effect of kernel width, we strictly limit this to numbers greater than 0.
Considering the ith point, the average distance to its natural neighbor is expressed by dλ(xi);
i.e., dλ(xi) = (1/λ)∑j∈NaN(xi)

d
(

xi, xj
)
. Then, we let dλmax and dλmin show the maximum

and minimum quantity in the set dλ(xi), respectively. Similar to Silverman’s rule [29],
the rough estimation of point density can be expressed by dλ(xi), and then the negative
correlation among width hi and dλ(xi) is constructed. Through the above demands, the
adaptive width is defined by the following formula:

hi = c
[
dλmax + dλmin + ε− dλ(xi)

]
(10)

where scaling factor c (c > 0) controls smoothing result, ε is a very small number used
to ensure that the core width is not 0 (e.g., 10−5). This method of setting the core width
has two advantages: (a) it improves the discriminative power of the outlier metric; (b) it
smoothes the difference between normal samples’ difference. The term dλmax + dλmin was
introduced for two reasons. Firstly, the calculated width must be positive. Secondly, even if
there is no scale factor c, the denominator width and numerator in the index of Formula (11)
will be in the same proportion.

With the adaptive width, the local density of the target point can be expressed as ρ(xi).
We can see that the measure of local density in our proposed method is not necessarily
probability density. Therefore, it is not necessary to normalize the formula. The most
common Gaussian kernel is used as the kernel function; then, the local density of ith point
is as follows:

ρ(xi) =
1

n− 1 ∑
j∈{1,2,··· ,n}\{i}

exp

{
−
( xi − xj

hi

)2
}

(11)

The right side of Formula (11) does not include the contribution of the target point
itself (exp

{
−(xi − xi)

2/hi
2
}
= 1). The relative difference in density can be reflected (for

example, the quantity 0.2/0.5 is much smaller than the quantity 1.2/1.5).

3.4. Relative Distance

In previous density outlier detection methods, outliers can be determined only by ker-
nel density estimation. However, in order to detect outliers more accurately and overcome
the problem that local density cannot be used to detect low-density patterns, this paper
also considers the influence of the relative distance of the target points.

The relative distance mainly examines the closeness of the object to the object in its
own natural neighborhood set, which is composed of natural neighborhood distance and
internal neighborhood distance. First, the formula for the natural neighborhood distance is
shown in Formula (12).

d̄
(
xp
)
=

1
λ ∑

xi∈NaN(xp)

dist
(

xi, xp
)

(12)

where d̄xp is the natural neighborhood distance of the object xp , xi is an object in the natural
neighbor set of object xp, and dist

(
xi, xp

)
is the Euclidean distance between object xi and

object xp.
The natural neighborhood distance is actually an average distance, which is the

average of the sum of the distances from each object in the candidate set to each object in
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its own natural neighbor set. Next, the internal neighborhood distance is determined, the
formula is as follows:

D̄
(
xp
)
=

1
λ(λ− 1) ∑

xi ,xj∈NaN(xp),i 6=j

dist
(
xi, xj

)
(13)

where D̄xp is the internal neighborhood distance of the object xp, dist
(
xi, xj

)
is the Euclidean

distance between object xi and object xj.
The internal neighborhood distance is the average sum of the two distances of all

natural neighbor objects using object xp. After calculating the natural neighborhood
distance and internal neighborhood distance of all points in the set, the relative distance of
the objects can be obtained, as shown in Formula (14).

RD
(
xp
)
=

d̄
(
xp
)

D̄
(
xp
) (14)

3.5. Density-Distance Outlier Detection Algorithm Based on Natural Neighborhood

It is difficult to raise the accuracy of the algorithm by using a single outlier factor
as the key factor for judging outliers. Therefore, the combinatorial optimization problem
of combining multiple factors to judge outlier gradually appears. Through the above-
mentioned arguments, the algorithm steps are as follows:

(1) Compute the natural neighborhood of the target object;
(2) Compute the local density of the target object;
(3) Compute the relative distance of the target object;
(4) The calculation formula of the comprehensive outlier factor is obtained.

After evaluating the local density and relative distance of each point, the outlier
factor of the object xp can be determined, and a new algorithm, TPOD, is proposed, as
defined below:

TPOD(xp) =
RD
(
xp
)

ρ
(
xp
) (15)

Density focuses on the degree of correlation between objects, while distance focuses
on the degree of deviation between objects. Combining the characteristics of density and
distance outlier detection methods, a new algorithm, TPOD, is proposed. The ratio of
distance to density is used to determine the calculation of a new outlier factor. Using
different outlier factors is important for outlier detection results. Algorithm 2 shows the
pseudo-code of this method.

3.6. Threshold

The outlier score of data points in sparse areas is much higher than that in dense areas.
In other words, we can set the threshold as the boundary to divide normal points and
abnormal points. Therefore, we provide a new method for setting suitable thresholds, as
shown below:

σ = η
∑n

i=1 TPOD(xi)

n
(16)

where TPOD(xi) refers to the TPOD value of the data point xi, and η is a coefficient,
determined by experience. After experimental verification, η is usually 0.2 on synthetic
datasets and 0.01 on real datasets. In general, if the TPOD value of the data point is smaller
than the preset threshold σ, then the data point is part of the normal range. Conversely, it
will be deemed an abnormal value.
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Algorithm 2: A Density-Distance Approach for Outlier Detection
Input: Dataset X, natural neighborhood size λ, scaling factor c
Output: Outlier scores TPOD

Initialize TPOD;
for every xi ∈ X do

Derive the reference set: natural neighbors NaN(xi);
Compute the average distance to its natural neighbors dλ(xi);

end
Get dλmax and dλmin from all values dλ(xi) where i ∈ {1, 2, · · · , m}
for every xi ∈ X do

Compute the adaptive width of the ith point hi by Formula (10);
Compute the local density of the ith point ρ(xi) by Formula (11);

end
for every xi ∈ X do

Compute the natural neighborhood distance of the ith point d̄(xi) by Formula
(12);

Compute the internal neighborhood distance of the ith point D̄(xi) by Formula
(13);

Compute the relative distance of the ith point RD(xi) by Formula (14);
end
for every xi ∈ X do

Compute the two parameters outlier factor TPOD(xi) using Formula (15);
end
Output the outlier scores TPOD.

3.7. Time Complexity Analysis

In this section, we analyzed the time complexity of the algorithm, as follows: In the
first stage of the process of searching for natural neighbors, the KD tree was used to search
for neighbor information, and its computational time complexity was O(n log n), where n
refers to the number of datasets. For the formation of a stable structure of natural neighbors,
we conducted a λ-step iteration, and the time complexity of this search process was O(λn).
The second step is to calculate the local density and relative distance of each point, using its
natural neighbor information, so its time complexity is O(λn). Finally, we relied on these
two values to obtain the final TPOD score, with a time complexity of O(1). In summary,
we finally obtained that the complexity of our proposed algorithm is O(n log n).

4. Experimental and Results Analysis
4.1. Experimental Dataset

The dataset used in the experiment was divided into two parts: an artificial syn-
thetic dataset and real dataset, and the effectiveness of the algorithm was verified from
two directions.

(1) Artificial synthetic datasets

The first dataset contained three clusters, and the cluster centers were (−7, −7), (−3, 9),
and (5, 2). There was a total of 239 sample points, of which 14 were outliers. The points in the
second dataset were distributed near the cosine curve. There was a total of 194 sample points, of
which 5 were outliers. In Figure 3, we show the distribution of points in these synthetic datasets.

(2) Real-life datasets

In the outlier detection algorithm, the preprocessing operation of the dataset is very
important. The selection of a suitable dataset occured pre-operation, and the preprocessing
of the dataset occured post-operation. Our outlier detection experiments were also eval-
uated on real datasets to assess the effect of various outlier detection algorithms. These
datasets were all from the datasets or variants of the UCI standard [30], and have been
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applied by many previous studies. The datasets used in this paper were the same version as
the datasets used in the literature. A description of the dataset is shown in Table 1. In [31],
we obtained two types of dataset: the previously frequently used outlier detection datasets
and some semantic outlier datasets. At the same time, preprocessing was carried out before
reusing these datasets. The specific processing process is as follows:

a. 1-of-n encoding: This can convert non-numeric data in the dataset into numeric data.
A categorical attribute with n possible values in a 1-of-n encoding maps to n binary
attributes, where 1 indicates that the value of the relevant attribute exists, while 0
indicates that it does not exist.

b. Normalization: The values of all numerical attributes are all normalized to the range
of [0, 1].

(a) (b)

Figure 3. Artificial dataset distribution. (a) Gaussian synthetic datasets. (b) Cosine synthetic datasets.

In Table 1, we present basic information of the 17 datasets used, which are commonly
used to evaluate classification methods. In the field of anomaly detection, a few categories
in the classified data are regarded as outliers. We also analyzed the background knowledge
of some datasets to explain the difference between the distribution of normal data and
outlier data in the datasets. The 17 datasets we used contain 148–9868 data, and the
dimensions ranged from 7 to 57. In the HeartDisease dataset data on heart health are
collected, in which infected people are called outliers, while healthy people are normal. In
addition, the spambase dataset and the mail collection show that 1813 spam messages are
abnormal, and the rest are normal.

Table 1. summarizes the details of each dataset.

Dataset of Features of Outliers of Data

Lymphography 17 6 148
WDBC 30 10 367
WPBC 33 47 198
GLASS 7 9 214
Ionosphere 32 126 351
Waveform 21 100 3443
PenDigits 16 20 9868
Cardiotocography 21 471 2126
HeartDisease 13 120 270
PageBlocks 10 560 5473
Pima 8 268 768
SpamBase 57 1813 4601
Stamps 9 31 340
breastcancer 30 10 357
letter 32 100 1600
satellite 36 75 5100
concrete 8 515 1030
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4.2. Experimental Setup

The experiments in this section were carried out on a computer with the Intel core
i7-6700 processor platform, 3.40-GHz frequency, 8-GB memory. The operating system is
Windows 10. The experiments were performed in Python 3.8.

There are many indicators to assess the performance of outlier detection, for instance
accuracy, precision, and F1 score [32]. However, since many datasets related to anomaly
detection are unbalanced, some indicators are not suitable for application in this paper.
The main evaluation indicators we adopted were AUC and F1 score [12]. F1 score is a
comprehensive evaluation index combining precision and recall. Its calculation formula is
shown in Formula (17). False positive rate (FPR) and true positive rate (TPR) are used in
the ROC curve. The formula is shown in Formulas (18) and (19).

F1 =
2∗precision ∗ recall
precision + recall

(17)

FPR =
FP

FP + TN
(18)

TPR =
TP

TP + FN
(19)

The descriptions of these indicators are shown in Table 2. The accuracy rate refers to
how many of the samples that we predicted were correct, and the recall rate refers to how
many of the samples that were actually correct were selected by us. When evaluating a
model, we hope that the accuracy rate and recall rate are both high, but we cannot have
both. Therefore, the F1 score considers the factors of precision and recall, and reconciles
the two, which can evaluate the quality of the model. The greater the F1 score, the better
the effect of the model.

Table 2. Indicator description (P: Positive, N: Negative).

Prediction Actual Final

P P TP
P N FP
N P FN
N N TN

4.3. Experimental Results Analysis

Firstly, we tested the performance of the TPOD method on the two synthetic datasets.
The first composite dataset consists of three clusters centered on (−7, −7), (−3, 9) and (5, 2),
respectively. In our new method, TPOD, we made use of c = 0.9 in kernel functions. The
calculated TPOD scores were ranked, and the first 14 of the Gaussian dataset are listed in
Table 3.

The top five TPOD values of the cosine dataset are shown in Table 4. This shows that
the effectiveness of our algorithm can accurately distinguish outliers in the dataset.

From the Table 3, we can see that the top 14 pieces of data are all the data points
shown in Figure 4a, where the blue points represent inlines, and the red points indicates
the abnormal values that were found. From the Table 4, we can see that the top five pieces
of data are all the data points shown in Figure 4b, where the cyan points represent inlines,
and the red points indicate the abnormal values that were found.
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Table 3. The 14 largest TPOD data samples in the Gaussian composite dataset.

Data TPOD Rank

(−8.5, 10) 9.02 1
(6, −7.5) 4.31 2
(2, 10) 3.51 3
(−6, 2.5) 3.11 4
(0, −6) 3.01 5
(−3.8, 5) 2.77 6
(4, −5) 2.49 7
(3, 8) 2.37 8
(1, 5.2) 1.64 9
(−4, 0) 1.60 10
(2, −5) 1.47 11
(−2, 1.9) 1.31 12
(−3, −8) 1.10 13
(−2, 0) 1.09 14

Table 4. The five largest TPOD data samples in the Cosine composite dataset.

Data TPOD Rank

(0, −1) 6.24 1
(2, 1) 5.08 2
(6, −0.5) 4.92 3
(3, 0) 3.26 4
(8, −1) 1.17 5

(a) (b)

Figure 4. Distribution of outliers identified. (a) Gaussian synthetic datasets. (b) Cosine synthetic datasets.

Then, in the real dataset, the comparison algorithms used in the experiment were as
follows: LOF [18], COF [19], local distance outlier detection(LDOF) [33], angle based outlier
detection(ABOD) [34], and a relative density-based outlier score(RDOS) [21]. The five
algorithms in the experiment performed outlier detection on 17 datasets. A large number
of experiments showed that the value of the parameter c can be selected from the range
[0.5, 1]. The selection of the k parameter in the comparison method can be performed using
the nearest neighbor search method in the literature [35].

For algorithm comparison, we ran six outlier detection algorithms on the dataset in
Table 1. After using these methods to calculate outliers, we present the best effects of these
methods in Figures 5 and 6. Lines with different colors represent different outlier detection
methods. The specific AUC result values are shown in Table 5, and the best results are shown
in bold. For example, on the cardiotocography dataset, the optimal AUC value of other
comparison methods was 0.5932, and our method TPOD obtained the optimal AUC value
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of 0.6700. The AUC of the algorithm is 12.9% higher than that of the last ranked algorithm.
Meanwhile, for the lymphography dataset, the AUC result obtained by our proposed method
can reach 0.9988. Each method achieved low AUC scores on the WPBC dataset. The reason
for this is that the class distributions are not very different, so it is difficult to distinguish
outliers when using the nearest neighbor concept. Our proposed TPOD method is still the
best, indicating that our method can also obtain good results for low-density patterns.

Table 5. AUC score of 6 outlier detection methods over 17 datasets.

Datasets LOF COF ABOD LDOF RDOS TPOD

Lymphography 0.9730 0.9707 0.9965 0.9425 0.9965 0.9988
WDBC 0.9020 0.8779 0.8989 0.8389 0.8824 0.9255
WPBC 0.5171 0.4691 0.5161 0.6938 0.8038 0.8688
Ionosphere 0.9031 0.9108 0.9271 0.8961 0.8503 0.9320
Waveform 0.7609 0.7493 0.7035 0.6957 0.7534 0.7849
Cardiotocography 0.5932 0.5679 0.5097 0.5634 0.5933 0.6700
HeartDisease 0.5494 0.5298 0.6391 0.5691 0.5333 0.6261
PageBlocks 0.8180 0.7642 0.7020 0.8208 0.6108 0.9113
Stamps 0.6883 0.5953 0.7868 0.6626 0.7254 0.8450
Pima 0.6192 0.6044 0.7053 0.5693 0.6246 0.7271
SpamBase 0.4740 0.4993 0.4109 0.4797 0.5337 0.5216
breastcancer 0.9807 0.9627 0.9532 0.9647 0.9437 0.9807
letter 0.9073 0.8821 0.9063 0.8658 0.9229 0.9238
concrete 0.6599 0.6758 0.6848 0.5906 0.6713 0.6960
satellite 0.9701 0.9516 0.9663 0.8836 0.9663 0.9656
PenDigits 0.9167 0.9472 0.9711 0.7133 0.9719 0.9792

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. AUC values of six methods on nine datasets. (a) Lymphography. (b) WDBC. (c) WPBC.
(d) glass. (e) Ionosphere. (f) Waveform. (g) Cardiotocography. (h) HeartDisease. (i) PageBlocks.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6. AUC values of six methods on eight datasets. (a) Stamps. (b) Pima. (c) SpamBase.
(d) breastcancer. (e) letter. (f) concrete. (g) satellite. (h) PenDigits.

In general, from the above results, we can see that our proposed approach of TPOD
has a better performance than the widely used outlier detection algorithm. Of the datasets
in Table 1, TPOD showed the best performance. For PenDigits dataset, the AUC score
obtained by the TPOD experiment with our method is 0.9792, where the parameter λ = 70
and c = 0.5. In particular, the TPOD approach achieved the best results for 14 datasets, in-
cluding Lymphography, WDBC, WPBC, GLASS, Ionosphere, Waveform, Cardiotocography,
PageBlocks, Stamps, PenDigits, letter, concrete, Pima, and breastcancer. In the remaining
three datasets, HeartDisease, SpamBase and breastcancer, the performance of TPOD was
lower than the ABOD, RDOS, and LOF outlier detection methods, respectively. However,
in the HeartDisease dataset, the optimal AUC result of TPOD at λ = 12, c = 0.9 is 0.6261,
which is slightly behind the optimal result of the ABOD method at k = 5; in the SpamBase
dataset, TPOD is at λ = 33, with the optimal AUC result obtained when c = 0.6 is 0.5216,
which is slightly behind the optimal result of the LOF method when k = 68. Compared
to other algorithms, our algorithm considers more comprehensive factors and can more
comprehensively reflect the data information. After introducing density, relative distance
is further introduced to more accurately detect outliers. For parameters, natural neighbors
provide a stable neighborhood structure.

To further affirm the performance of our proposed algorithm, we also calculated the
F1 scores on these datasets. As shown in Table 6, the results in bold are the best, and the
second best results are expressed by * . For example,in the lymphography dataset, the
optimal F1 score result of TPOD at λ = 12, c = 1 is 0.85, which is greater than the maximum
value of 0.83 in our compared methods. Among the 16 datasets in our experiments, our
algorithm TPOD performed the best in 9 datasets and the second best in 4 datasets. In
general, our algorithm performs well in most datasets.
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Table 6. F1 score of 6 outlier detection methods over 16 datasets. Note: The second best result is
represented by *.

Datasets LOF COF ABOD LDOF RDOS TPOD

Lymphography 0.72 0.66 0.83 * 0.30 0.49 0.85
WDBC 0.58 0.33 0.35 0.31 0.10 0.57 *
WPBC 0.18 0.21 0.28 0.25 0.36 * 0.38
GLASS 0.30 * 0.33 0.20 0.17 0.24 0.20
Ionosphere 0.81 0.83 0.88 0.71 0.70 0.84 *
Waveform 0.20 0.26 0.07 0.12 0.08 0.23 *
Cardiotocography 0.32 0.29 0.33 0.29 0.35 * 0.38
HeartDisease 0.49 0.46 0.54 * 0.43 0.52 0.63
PageBlocks 0.51 0.47 * 0.37 0.45 0.38 0.45
Pima 0.45 0.45 0.50 0.51 * 0.53 0.53
SpamBase 0.31 0.32 0.36 0.43 0.45 * 0.56
Stamps 0.20 0.19 0.22 0.22 0.27 * 0.35
breastcancer 0.77 0.57 * 0.40 0.21 0.11 0.20
letter 0.54 0.50 0.45 0.38 0.22 0.51 *
satellite 0.60 * 0.27 0.46 0.15 0.10 0.62
concrete 0.61 0.63 0.67 * 0.67 * 0.65 0.69

5. Conclusions

In our daily life, we should not underestimate abnormal situations. For example,
the discovery of a rare disease would be a major breakthrough. Focusing on the problem
that distance-based outlier detection methods cannot detect local outliers and density-
based outlier detection methods cannot handle low-density patterns, we introduce two
parameters to combinatorial optimization to overcome these shortcomings. Firstly, the
natural neighborhood of the target point was found through iteration, and then adaptive
kernel density estimation was used to calculate the local density of the point. Secondly,
we computed the relative distance of the target point. Finally, by fusing the density and
distance values of the target points to calculate the comprehensive outlier, the outliers
could be identified more accurately. We also provided a threshold to determine the final
outlier, eliminating the impact of top-n. The experimental results on 2 artificial datasets
and 17 UCI real-life datasets show that the effect of this method is the best compared with
5 typical outlier detection methods.

In future work, we plan to extend the outlier detection problem to high-dimensional
space. For datasets with a small proportion of outliers, we can further reduce the size of
the dataset and remove some outliers that are unlikely to be outliers. In addition, outlier
detection methods can be applied in practical applications.
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