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Abstract: The analysis of the constant-stress partially accelerated life test was considered under pro-
gressive Type-II censoring when the lifetime of the products follows a two-parameter bathtub-shaped
distribution. The maximum likelihood estimates of the unknown parameters were established, where
the expectation–maximization iterative solution is proposed for the estimation. The approximate con-
fidence intervals were also constructed based on asymptotic theory via the Fisher information matrix.
For comparison purposes, the bootstrap (i.e., Studentized-t and percentile) confidence intervals of the
unknown parameters were also obtained. Finally, simulation studies and a real-life data example are
presented to examine the performance of the different results.
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1. Introduction

With the development of manufacturing design technology, modern products have
the characteristics of high reliability and a long lifespan. Under these usage conditions,
life testing becomes increasingly difficult within a reasonable period due to the time and
cost limitations. To conduct life testing in an effective way, the accelerated life test (ALT)
has been introduced in practice, which provides a low-cost and quick method to obtain
the failure information. In the ALT, in order to obtain the failure data, products are tested
either under a harsher environment or under more intensive usage than the usual use
conditions, and the common stress factors include the temperature, pressure, and voltage,
among others. Data collected in such accelerated conditions are then extrapolated through
a physically appropriate statistical model to estimate the lifetime distribution under normal
use conditions. Generally, there are mainly three types of acceleration tests, namely the
constant-stress ALT, the step-stress ALT, and the progressive-stress ALT. All these types of
ALTs have been studied by a number of authors [1–5]; for more details about the ALT, one
can refer to the monograph by Nelson [6].

Under accelerating life testing, when the acceleration factor has an unknown value,
the partially accelerated life test (PALT) is usually conducted as a reasonable alternative
to the life test, where the units are investigated under both accelerated and regular use
conditions. There are mainly two types of PALTs, the constant-stress PALT and the step-
stress PALT. In the constant-stress PALT, the units are divided into two groups; one group
is assigned to run under the regular use conditions, while the other group is tested under
accelerated conditions. For the step-stress PALT, the units are initially run under the
regularuse conditions for a pre-specified period of time, and if a test unit does not fail
for the specified time, it is then run under accelerated conditions until failure occurs or
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the observation is censored. PALTs have been discussed by several authors. For instance,
Abdel-Hamid [7] considered the parameter estimation of the Burr Type-XII distribution
in a constant-stress PALT for progressively Type-II-censored data. Abdel-Hamid and Al-
Hussaini [8] studied the estimation problem in the step-stress PALT when the lifetime of
the tested units under the regular use conditions followed a finite mixture of a general class
of distributions. Abdel-Ghaly et al. [9] investigated the maximum likelihood estimation
(MLE) method to estimate the parameters of the Weibull distribution in the step-stress PALT.
A similar problem was also studied by Ismail [10] under the progressive hybrid Type-II
censoring scheme. Cheng and Wang [11] discussed the MLE of the Burr XII distribution
under the constant-stress PALT when multiple censored data were observed.

In practice, the lifetime distributions with bathtub-shaped hazard functions have
attracted the interest of many authors and provide appropriate conceptual models for some
electronic and mechanical products, as well as the lifetimes of humans. Chen [12] proposed
a two-parameter distribution with a bathtub-shaped or increasing failure rate function.
The survival function (SF), cumulative distribution function (CDF), probability density
function (PDF), and hazard rate function (HRF) of the Chen distribution are given by

S1(t) = eα(1−etβ
), t > 0,

F1(t) = 1− eα(1−etβ
), t > 0,

f1(t) = αβtβ−1 exp
{

α(1− etβ
) + tβ

}
, t > 0,

h1(t) = αβtβ−1etβ
, t > 0,

(1)

where α > 0 is the scale parameter and β > 0 is the shape parameter, respectively. In
practice, the applicability of a model may partially be attributed to the fact that its relia-
bility, hazard rate, and probability density functions all have nice expressions. Due to its
flexible structural properties and practical significance, the Chen distribution has found
wide applications in life test studies. It has been observed that the Chen distribution has a
bathtub-shaped hazard function when 0 < β < 1, and when β ≥ 1, it features an increasing
hazard rate function. The case α = 1 corresponds to the exponential power distribution.
Several authors have discussed the Chen distribution in different cases. For example, based
on Type-II-censored samples, Chen [12] constructed exact confidence intervals for the shape
parameter and also obtained exact confidence regions for both model parameters. Rastogi
and Tripathi [13] discussed the parameter estimation problem of the Chen distribution for
hybrid censored data. Wu [14] investigated the MLE method to estimate the parameters of
the Chen distribution under progressive Type-II censoring and also derived exact confi-
dence intervals and confidence regions for the related parameters. Ahmed [15] presented
the Bayesian approach to estimate the parameters of the Chen distribution for progressively
Type-II-censored data. Elshahhat and Rastogi [16] considered the Bayesian life analysis of a
generalized Chen’s population under progressive censoring.

In life testing, reliability analysis, and other related fields, censoring is a very common
phenomenon, and the experiments are often terminated before all units fail due to the
cost and time considerations. In such cases, the exact failure times are known for only a
portion of the units under study. The most-common censoring schemes are Type-I and
Type-II censoring, which, however, can only remove units at the termination point, lacking
flexibility in practical life tests. Therefore, progressive censoring is further proposed to
conduct the tests, which allows units to be removed at different testing stages. The strategy
of progressive censoring is vital to planning duration experiments in the field of reliability
and lifetime analysis and includes progressive Type-I and Type-II censoring as its special
population cases. For details about the censoring scheme, the reader can refer to the recent
review paper of Balakrishnan [17] and the monograph of Balakrishnan and Aggarwala [18],
as well as the references therein. In this paper, we considered the constant-stress PALT
applied to units whose lifetime under the use conditions was assumed to be the Chen
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distribution under a progressive Type-II censoring scheme. It is worth mentioning that,
although there are many discussions that have focused on the inference of the Chen
distribution such as the previously mentioned ones and others (e.g., Zhang and Gui [19],
Soliman et al. [20]), the inference for the partially constant-stress accelerated life test of
the Chen distribution has not been discussed in the literature. In addition, except for the
traditional likelihood-based inferential approach, another aim of this paper was that the
expectation–maximization estimation for the Chen model be proposed under the constant-
stress PALT.

The rest of this article is organized as follows. Section 2 provides a brief description of
the constant-stress PALT and some basic assumptions. Section 3 deals with the estimation
problem of the MLEs of the parameters. The corresponding confidence intervals are
proposed in Section 4, and this section also discusses two parametric bootstrap confidence
intervals. An illustration example and Monte Carlo simulation studies are presented in
Section 5 to investigate the performance the proposed results. Finally, some concluding
remarks are addressed in Section 6.

2. Model Description and Basic Assumptions
2.1. Model Description

In the constant-stress PALT, assuming that there are n identical test units, n1 units
are randomly selected from n test units for testing in the regular use conditions and
the remaining n2 = n− n1 units are tested under accelerated stress. Progressive Type-II
censoring is applied as follows. For j = 1, 2, when the first failure, say Tj1, has occurred, Rj1
units are randomly removed from the remaining nj − 1 surviving units. When the second
failure, say Xj2, has occurred, Rj2 units from the remaining nj − 2− Rj1 units are randomly
removed. The test proceeds at different stress levels until the mjth failure, say Tjmj , has

occurred, at which time all remaining Rjmj = nj −mj −∑
mj−1
k=1 Rjmj units are withdrawn

and the constant-stress PALT is terminated. In our discussion, the values of the censoring
numbers Rji, j = 1, 2, i = 1, 2, . . . , mj were predetermined with mj < nj. It is noted that the
complete sample and conventional Type-II censoring are special cases of the progressive
Type-II censoring scheme.

In our study, the progressively Type-II-censored samples Tj1 < Tj2 < . . . < Tjmj ,
j = 1, 2 were from two testing conditions, of which the CDFs and the PDFs are Fj(t)
and f j(t), respectively, with censoring schemes Rj = (Rj1, Rj2, . . . , Rjmj). Denote tj1 <
tj2 < . . . < tjmj as the observed values of Tj1, Tj2, . . . , Tjmj ; the joint PDF based on the two
progressively Type-II-censored samples can be expressed as

L(α, β, λ; t) =
2

∏
j=1

[
Cj

mj

∏
i=1

f j(tji)(1− Fj(tji))
Rji

]
, (2)

where t = (t1, t2), tj = (tj1, tj2, . . . , tjmj), j = 1, 2 and Cj = nj ∏
mj−1
i=1 [nj −∑i

k=1(1 + Rjk)].

2.2. Basic Assumptions

1. The lifetime of a unit tested under the regular use conditions follows a Chen distribu-
tion with the CDF and PDF presented in (1).

2. The hazard rate of a unit tested under accelerated conditions is given by h2(t) =
λh1(t), where λ is an acceleration factor satisfying λ > 1. Therefore, the HRF, SF, CDF,
and PDF under the accelerated conditions are given by
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h2(t) = αβλtβ−1etβ
, t > 0,

S2(t) = exp
{
−
∫ t

0
h2(u)du

}
= exp

{
αλ(1− etβ

)
}

, t > 0,

F2(t) = 1− eαλ(1−etβ
), t > 0,

f2(t) = αβλtβ−1 exp
{

αλ(1− etβ
) + tβ

}
, t > 0.

(3)

3. There are nj, j = 1, 2 units allocated under the regular use conditions with j = 1 and
the accelerated conditions with j = 2, of which the lifetimes Tij, i = 1, 2, . . . , nj, j = 1, 2
are mutually independent.

3. Maximum Likelihood Estimation

Based on (1)–(3), the log-likelihood function of L(α, β, λ; t), say `, can be expressed as

` ∝(m1 + m2) log(αβ) + m2 log(λ) + β
2

∑
j=1

mj

∑
i=1

log tji +
2

∑
j=1

mj

∑
i=1

tβ
ji

+ α
2

∑
j=1

mj

∑
i=1

λj−1(1 + Rji)(1− etβ
ji ), (4)

where the notation ∝ means “be proportional to” without additive constant terms.
Taking the derivatives of ` with respect to α, β, λ and equating them to zero, one can

derive the MLEs of the parameters α, β, and λ from the following likelihood equations:

`α = 0, `β = 0, and `λ = 0, (5)

where

`α =
∂`

∂α
=

m1 + m2

α
+

2

∑
j=1

mj

∑
i=1

λj−1(1 + Rji)(1− etβ
ji ),

`β =
∂`

∂β
=

m1 + m2

β
+

2

∑
j=1

mj

∑
i=1

log tji +
2

∑
j=1

mj

∑
i=1

tβ
ji log tji

− α
2

∑
j=1

mj

∑
i=1

λj−1(1 + Rji)e
tβ
ji tβ

ji log tji,

`λ =
∂`

∂λ
=

m2

λ
+ α

m2

∑
i=1

(1 + R2i)(1− etβ
2i ).

Based on the likelihood equations `α = 0 and `λ = 0 in (5), one has

α =
m1

∑m1
i=1(1 + R1i)(etβ

1i − 1)
, λ =

m2 ∑m1
i=1(1 + R1i)(etβ

1i − 1)

m1 ∑m2
i=1(1 + R2i)(etβ

2i − 1)
, (6)

which implies that

m1 + m2

β
+

2

∑
j=1

mj

∑
i=1

(1 + tβ
ji) log tji −

2

∑
j=1

mj ∑
mj
i=1(1 + Rji)e

tβ
ji tβ

ji log tji

∑
mj
i=1(1 + Rji)(e

tβ
ji − 1)

= 0. (7)

Therefore, using numerical iterative programs such as the Newton–Raphson algo-
rithm to solve the nonlinear Equation (7), the MLE of β can be calculated. Further, by
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substituting the MLE of β into (6), the MLEs of α and λ can be obtained. Alternatively,
one can also use the expectation–maximization (EM) algorithm to deduce the MLEs of the
unknown parameters. The EM algorithm is extensively used to the iterative computation
of maximum likelihood estimates and is very useful in a variety of fields such as survival
analysis, reliability theory, and other fields. The EM iteration alternates between perform-
ing an expectation step or E-step and a maximization step or M-step. The E-step creates
a function of the expectation of the log-likelihood of the current estimation evaluation
using the parameters, and the M-step calculates the parameters that maximize the expected
log-likelihood found in the E-step. For more details, one can refer to the work of Demp-
ster et al. [21], where the authors first introduced the EM algorithm to handle some missing
or incomplete data situations, and the monograph by McLachlan and Krishnan [22], as
well as the references therein.

In the constant-stress PALT, the progressively Type-II-censored samples can be viewed
as an incomplete dataset in each life test stage. Therefore, the EM algorithm will provide
a good alternative to the conventional iterative method in the process of numerically
computing the MLEs.

For j = 1, 2, let X = (Xj1, Xj2, . . . , Xjmj) with Xjk = (X1
jk, X2

jk, . . . , X
Rjk
jk ), k = 1, 2, . . . , mj,

represent the censored data under the normal use and accelerated conditions, respectively.
We treated the censored observations as missing data. Thus, the combination of (T, X)
forms the complete constant-stress PALT failure dataset, for which the likelihood function
can be expressed as

L∗(α, β, λ; t) =
2

∏
j=1

mj

∏
i=1

f j(tji) ·
2

∏
j=1

mj

∏
k=1

Rjk

∏
s=1

f j(xs
jk). (8)

The log-likelihood function of L∗(α, β, λ; t), say `∗, can be expressed as

`∗ ∝

[
m1 + m2 +

2

∑
j=1

mj

∑
k=1

Rjk

]
ln α +

[
m1 + m2 +

2

∑
j=1

mj

∑
k=1

Rjk

]
ln β +

[
m2 +

m2

∑
k=1

R2k

]
ln λ

+ β

 2

∑
j=1

mj

∑
i=1

ln tji +
2

∑
j=1

mj

∑
k=1

Rjk

∑
s=1

ln xs
jk

+
2

∑
j=1

mj

∑
i=1

[αλj−1(1− etβ
ji ) + tβ

ji]

+
2

∑
j=1

mj

∑
k=1

Rjk

∑
s=1

[αλj−1(1− e(xs
jk)

β

) + (xs
jk)

β].

The MLEs of the parameters α, β, and λ for the complete failure sample (T, X) can be
derived by taking the derivatives for the log-likelihood function `∗ with respect to α, β, and
λ and setting them to zero, which can be expressed as follows:

∂`∗

∂α
=

1
α

[
m1 + m2 +

2

∑
j=1

mj

∑
k=1

Rjk

]
+

2

∑
j=1

mj

∑
i=1

λj−1(1− etβ
ji ) +

2

∑
j=1

mj

∑
k=1

Rjk

∑
s=1

λj−1(1− e(xs
jk)

β

= 0,

∂`∗

∂β
=

1
β

[
m1 + m2 +

2

∑
j=1

mj

∑
k=1

Rjk

]
+

 2

∑
j=1

mj

∑
i=1

ln tji +
2

∑
j=1

mj

∑
k=1

Rjk

∑
s=1

ln xs
jk


+

2

∑
j=1

mj

∑
i=1

tβ
ji(1− αλj−1etβ

ji ) ln tji +
2

∑
j=1

mj

∑
k=1

Rjk

∑
s=1

(xs
jk)

β(1− αλj−1e(xs
jk)

β

) ln xs
jk = 0, (9)

∂`∗

∂λ
=

1
λ

[
m2 +

m2

∑
k=1

R2k

]
+ α

[
m2

∑
i=1

(1− etβ
2i ) +

m2

∑
k=1

R2k

∑
s=1

(1− e(xs
2k)

β
)

]
= 0.
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Furthermore, one has

α , α(β) =
B(etβ

2i , e(xs
2k)

β
)E(etβ

2i , e(xs
2k)

β
)−AD

DC(etβ
1i , e(xs

1k)
β
)

,

λ , λ(β) =
C(etβ

1i , e(xs
1k)

β
)D2

E(etβ
2i , e(xs

2k)
β
)[B(etβ

2i , e(xs
2k)

β
)E(etβ

2i , e(xs
2k)

β
)−AD]

,

(10)

where

A = m1 + m2 +
2

∑
j=1

mj

∑
k=1

Rjk,

B(b2i, bs
2k) =

m2

∑
i=1

(1− b2i) +
m2

∑
k=1

R2k

∑
s=1

(1− bs
2k),

C(c1i, cs
1k) =

m1

∑
i=1

(1− c1i) +
m1

∑
k=1

R1k

∑
s=1

(1− cs
1k),

D = m2 +
m2

∑
k=1

R2k,

E(e2i, es
2k) =

m2

∑
i=1

(1− e2i) +
m2

∑
k=1

R2k

∑
s=1

(1− es
2k).

and α , α(β) represents α equivalent to α(β)
By substituting (10) to ∂`∗

∂β = 0 in (9), one has

β = −
m1 + m2 + ∑2

j=1 ∑
mj
k=1 Rjk

∑2
j=1 ∑

mj
i=1 ln tji + ∑2

j=1 ∑
mj
k=1 ∑

Rjk
s=1 ln xs

jk

+∑2
j=1 ∑

mj
i=1 tβ

ji(1− α(β)λj−1(β)etβ
ji ) ln tji+

∑2
j=1 ∑

mj
k=1 ∑

Rjk
s=1(xs

jk)
β(1− α(β)λj−1(β)e(xs

jk)
β

) ln xs
jk


. (11)

Therefore, it can be observed that the pseudo likelihood equations can be rewritten as a
nonlinear function of β.

Given T = (Tj1, Tj2, . . . , Tjmj), j = 1, 2, for k = 1, 2, . . . , mj, the conditional distribution
of Xs

jk, s = 1, 2, . . . , Rjk follows a truncated Chen distribution with scale parameter αλj−1

and shape parameter β, of which the density can be expressed as

fX|T(xjk|t) =
f j(xjk)

1− Fj(tjk)
=

αβλj−1xβ−1
jk eαλj−1(1−e

xβ
jk )+xβ

jk

eαλj−1(1−e
tβ
jk )+tβ

jk

, xjk > tjk.

For j = 1, 2 and k = 1, 2, . . . , mj, one has

Ej1(α, β, λ) =Ej(e
(Xs

jk)
β

|Xjk > tjk) =
1 + αλj−1etβ

jk

αλj−1 ,

Ej2(α, β, λ) =Ej(ln Xs
jk|Xjk > tjk) = ln tjk +

eαλjke
tβ
jk

β

∫ ∞

tβ
jk

t−1e−αλj−1et
dt,

Ej3(α, β, λ) =Ej((Xs
jk)

β ln Xs
jk|Xjk > tjk) =

αλj−1

βSj(tjk)

∫ ∞

tβ
jk

teαλj−1(1−et)+t ln tdt,
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Ej4(α, β, λ) =Ej((Xs
jk)

βe(Xs
jk)

β

ln Xs
jk|Xjk > tjk) = αβ−1λj−1eαλj−1e

tβ
ij
∫ ∞

tβ
jk

te2t−αλj−1et
ln tdt.

Hence, an EM algorithm (Algorithm 1) to calculate the MLEs of the parameters α, β, and λ
is proposed as follows.

Algorithm 1 EM iterative algorithm.

Step 1 Let α(0), β(0), and λ(0) be the initial guess values of the MLEs for α, β, and λ.

Step 2 In the (d + 1)th iterative:

• (E-step) Replace any function of Xs
jk (say hXs

jk
) by E(h(Xs

jk)|X
s
jk > Tjk), and the

likelihood equations are replaced by

β = −
m1 + m2 + ∑2

j=1 ∑
mj

k=1 Rjk
∑2

j=1 ∑
mj

i=1 ln tji + ∑2
j=1 ∑

mj

k=1 ∑
Rjk
s=1 Ej2(α

(d), β(d), λ(d))

+∑2
j=1 ∑

mj

i=1 tβ
ji(1− [α(β)](d)([λ(β)](d))j−1etβ

ji ) ln tji

+∑2
j=1 ∑

mj

k=1 ∑
Rjk
s=1 Ej3(α

(d), β(d), γ(d))

−∑2
j=1 ∑

mj

k=1 ∑
Rjk
s=1 Ej4(α

(d), β(d), γ(d))[α(β)](d)([λ(β)](d))j−1



,

where

[α(β)](d) =
B(etβ

2i , E21(α
(d), β(d), λ(d)))E(etβ

2i , E21(α
(d), β(d), λ(d)))−AD

DC(etβ
1i , E11(α(d), β(d), λ(d)))

,

[λ(β)](d) =
C(etβ

1i , e(xs
1k)

β(d)
)D2(

E(etβ
2i , E21(α

(d), β(d), λ(d)))

·[B(etβ
2i , E21(α

(d), β(d), λ(d)))E(etβ
2i , E21(α

(d), β(d), λ(d)))−AD]

) .

• (M-step) The estimate of β, namely β(k+1), can be derived iteratively by solving the
following nonlinear equations:

β(d+1) = −
m1 + m2 + ∑2

j=1 ∑
mj

k=1 Rjk
∑2

j=1 ∑
mj

i=1 ln tji + ∑2
j=1 ∑

mj

k=1 RjkEj2(α
(d), β(d), λ(d))

+∑2
j=1 ∑

mj

i=1 tβ(d+1)

ji (1− [α(β)](d)([λ(β)](d))j−1etβ(d+1)

ji ) ln tji

+∑2
j=1 ∑

mj

k=1 RjkEj3(α
(d), β(d), γ(d))

−∑2
j=1 ∑

mj

k=1 RjkEj4(α
(d), β(d), γ(d))[α(β)](d)([λ(β)](d))j−1



,

and the estimates of α and λ, namely α(d+1), λ(d+1), can be further derived as

α(d+1) =
B(etβ(d+1)

2i , E21(α
(d), β(d), γ(d)))E(etβ(d+1)

2i , E21(α
(d), β(d), γ(d)))−AD

DC(etβ(d+1)

1i , E11(α(d), β(d), γ(d)))

,

λ(d+1) =
C(etβ(d+1)

1i , E11(α
(d), β(d), γ(d)))D2 E(etβ(d+1)

2i , E21(α
(d), β(d), γ(d)))

·[B(etβ(d+1)

2i , E21(α
(d), β(d), γ(d)))E(etβ(d+1)

2i , E21(α
(d), β(d), γ(d)))−AD]

 .

Step 4 Stop the iteration, and find the EM-based estimates of α, β, and λ when |α(d+1) −
α(d)| < ε, |β(d+1) − β(d)| < ε and |λ(d+1) − λ(d)| < ε for some given tolerance limit ε,
for example ε = 0.001.
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Remark 1. From Wu [14], it is observed that, for samples Tj1 < Tj2 < . . . < Tjmj , j = 1, 2, one
has that

Tj(β) =
1

nj(mj − 1)

mj

∑
i=1

(Rji + 1)
etβ

ji − 1

etβ
j1 − 1

− 1
mj − 1

follows the F distribution with 2mj − 2 and 2 degrees of freedom and Tj(β) is a strictly increasing
function of β. Hence, for 0 < γ < 1, one can choose the initial estimate of β from the following
100(1− γ)% confidence interval:(

ρ(t, F(2(n−1),2)(1−
γ

2
)), ρ(t, F(2(n−1),2)(

γ

2
))
)

,

where F(a,b)(p) is the 100p% right-tail percentile of the F distribution with a and b degrees of
freedom and ρ(t, y) is the solution of β for equation Tj(β) = y. Meanwhile, one can also let
Tj(β), j = 1, 2 equal the median of the F(2(n−1),2) distribution and find the root of β, which can also
be utilized as the initial estimate for β.

4. Confidence Interval Estimation

In this section, common large-sample-based asymptotic confidence intervals of the
model parameters were constructed via the Fisher information. In addition, the boot-
strap sampling technique was also used to obtain the bootstrap confidence intervals
for comparison.

4.1. Asymptotic Confidence Intervals

Under some mild regularity (see, e.g., Casella and Berger [23]), the asymptotic confi-
dence intervals of α, β, and λ can be derived from the usually asymptotic normality of the
maximum likelihood estimation with empirical variances estimated from the inverse of the
observed Fisher information matrix.

By direct calculation, the second partial derivatives of the log-likelihood function in
(5) can be expressed as

`αα =
∂2`

∂α2 = −m1 + m2

α2 , `αβ =
∂2`

∂α∂β
= −

2

∑
j=1

mj

∑
i=1

λj−1(1 + Rji)e
tβ
ji tβ

ji log tji,

`αλ =
∂2`

∂α∂λ
=

m2

∑
i=1

(1 + R2i)(1− etβ
2i ),

`ββ =
∂2`

∂β2 = −m1 + m2

β2 +
2

∑
j=1

mj

∑
i=1

tβ
ji log2 tji − α

2

∑
j=1

mj

∑
i=1

λj−1(1 + Rji)e
tβ
ji tβ

ji(1 + tβ
ji) log2 tji,

`βλ =
∂2`

∂β∂λ
= −α

m2

∑
i=1

(1 + R2i)etβ
2i tβ

2i log t2i, `λλ =
∂2`

∂λ2 = −m2

λ2 .

Thus, the observed Fisher information matrix I = I(α, β, λ) can be expressed as

I(α̂, β̂, λ̂) =

 −`αα −`αβ −`αλ

−`αβ −`ββ −`βλ

−`αλ −`βλ −`λλ

∣∣∣∣∣
α̂,β̂,λ̂

=

 Var(α̂) Cov(α̂, β̂) Cov(α̂, λ̂)

Cov(α̂, β̂) Var(β̂) Cov(β̂, λ̂)

Cov(α̂, λ̂) Cov(β̂, λ̂) Var(λ̂)

−1

.

Based on the asymptotic theory, the asymptotic distribution of (α̂, β̂, λ̂)′ is normally
distributed with mean vector (α, β, λ)′ and variance–covariance matrix I−1(α̂, β̂, λ̂), i.e., α̂

β̂

λ̂

−
 α

β
λ

 d−→ N
(

0, I−1(α̂, β̂, λ̂)
)

,
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where d→ denotes the convergence in the distribution and I−1(α̂, β̂, λ̂) is the inverse of the
Fisher information matrix I(α̂, β̂, λ̂). For 0 < γ < 1, the asymptotic 100(1− γ)% confidence
intervals of α, β, and λ are given by(

θ̂i − zγ/2

√
Var(θ̂i), θ̂i + zγ/2

√
Var(θ̂i)

)
, i = 1, 2, 3,

where θ1 = α, θ2 = β and θ3 = λ, and zγ is the upper γth quantile of the standard
normal distribution.

Sometimes, previous asymptotic confidence intervals may have negative lower bounds.
In order to overcome this drawback, the logarithmic transformation and delta methods can

be employed to obtain the asymptotic normality distribution of ln θ̂i as (ln θ̂i − ln θi)
d−→

N
(
0, Var(θ̂i)/θ2

i
)
, i = 1, 2, 3, which implies that the asymptotic 100(1− γ)% confidence

interval of ln θi is

(ln θ̂i ± zλ/2

√
Var(θ̂i)/θ̂i) , (Ai1, Ai2), i = 1, 2, 3.

Hence, the asymptotic 100(1− γ)% confidence interval of θi, i = 1, 2, 3 can be constructed
as (eAi1 , eAi2), respectively.

4.2. Bootstrap Confidence Intervals

The bootstrap method [24] is known to enlarge the sample by simulation so as to over-
come the shortage of experimental data. Compared with the exact method, the bootstrap
estimation is widely used due to its great properties such as its easy calculation. Generally,
one can derive the bootstrap confidence interval by both nonparametric and parametric
approaches. Following the suggestion of Kundu et al. [25], the parametric bootstrap confi-
dence intervals of the unknown model parameters were constructed in this part, where
the Studentized-t bootstrap confidence interval (SBCI) from Hall [26] and the percentile
bootstrap confidence interval (PBCI) suggested by Efron [24] were obtained, respectively.

Under the constant-stress PALT, the following procedure of the progressively Type-II-
censored samples is provided to generate the associated bootstrap data (e.g., Balakrishnan
and Sandhu [27]):

1. Based on the original progressively Type-II-censored sample tj1, tj2, . . . , tjmj , j = 1, 2
and censoring scheme Rj = (Rj1, Rj2, . . . , Rjmj), obtain the estimates of α, β, and λ,

say α̂, β̂, λ̂.
2. For the given mj and nj, j = 1, 2, generate mj independent observations

(Wj1, Wj2, . . . , Wjmj) from uniform distribution U(0, 1).

3. Set Eji = 1/(i + ∑
mj
k=mj−i+1 Rjk), for j = 1, 2, i = 1, 2, . . . , mj.

4. Set Vji = W
Eji
ji , for j = 1, 2, i = 1, 2, . . . , mj.

5. Set U∗ji = 1−∏
mj
k=mj−i+1 Vjk, i = 1, 2, . . . , mj. Then, U∗j1, U∗j2, . . . , U∗jmj

, j = 1, 2 is the

progressively Type-II-censored data from U(0, 1).
6. Based on α̂, β̂, and λ̂, two random samples (t∗j1, t∗j2, . . . , t∗jmj

), j = 1, 2 from CDFs F1(t)
and F2(t) presented in (1) and (3) are generated as follows:

t∗ji =

[
ln

(
1−

ln(1−U∗ji)

α̂λ̂j−1

)]1/β̂

.

7. As in Step 1, based on (t∗j1, t∗j2, . . . , t∗jmj
), j = 1, 2, the bootstrap sample estimates of

α, β, λ are computed, namely α̂∗, β̂∗, and λ̂∗.
8. Repeat Steps 2–7 N times; we can generate N different bootstrap samples for α, β, and

λ, i.e., θ̂∗1k , θ̂∗2k , . . . , θ̂∗N
k , k = 1, 2, 3, where θ∗1 = α∗, θ∗2 = β∗, and θ∗3 = λ∗, respectively.
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9. Arrange all α̂∗, β̂∗, and λ̂∗ in an ascending order; one can obtain the bootstrap samples

for α, β, and λ as θ̂
∗[1]
k , θ̂

∗[2]
k , . . . , θ̂

∗[N]
k , k = 1, 2, 3.

• Percentile bootstrap confidence intervals:

Let G(t) = P(θ̂∗k ≤ t) be the CDF of θ̂∗k and θ̂∗kboot = G−1(t) for given t. For 0 < γ < 1,
the approximate 100(1− γ)% PBCI of θk is given by(

θ̂∗kboot

(γ

2

)
, θ̂∗kboot

(
1− γ

2

))
, k = 1, 2, 3.

• Studentized-t bootstrap confidence intervals:

In order to construct the Studentized-t bootstrap confidence intervals for parameters
α, β, and λ, we derive the order statistics:

η
∗[1]
k < η

∗[2]
k < · · · < η

∗[N]
k , with η

∗[d]
k =

θ̂
∗[d]
k − θ̂k√
Var(θ̂∗[d]k )

, k = 1, 2, 3, d = 1, 2, . . . , N.

Denote G(t) = P(η∗k ≤ t) as the CDF of η∗k and ηkboot−t = θ̂k +
√

Var(θ̂k)G−1(t) for given
t. Thus, for 0 < γ < 1, the 100(1− γ)% SBCI of θk can be expressed as(

η̂kboot−t

(γ

2

)
, η̂kboot−t

(
1− γ

2

))
, k = 1, 2, 3,

where Var(θ̂k) can be estimated by the asymptotic variance from the observed Fisher
information matrix I(α̂, β̂, λ̂).

5. Numerical Studies

In this section, a real data example and simulation studies are presented for illustrative
purposes.

5.1. Data Analysis

The dataset from a light-emitting diode (LED) life test was analyzed, which was
also analyzed by Cheng and Wang [11]. Since the original data included 155 samples
with censoring level 0.25, for the sake of simplicity, we just extracted the observed failure
samples obtained under the use or stress conditions as the set of complete constant-stress
PALT data, for which the details are listed in Table 1.

Table 1. Complete LED constant-stress PALT failure data.

Regular Use Condition

0.18, 0.19, 0.19, 0.34, 0.36, 0.40 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.57, 0.63, 0.65, 0.70, 0.71,
0.71, 0.75, 0.76, 0.76, 0.79, 0.80, 0.85, 0.98, 1.01, 1.07, 1.12, 1.14, 1.15, 1.17, 1.20, 1.23, 1.24, 1.25,
1.26, 1.32, 1.33, 1.33, 1.39, 1.42, 1.50, 1.55, 1.58, 1.59, 1.62, 1.68, 1.70, 1.79, 2.00, 2.01, 2.04, 2.54,
3.61, 3.76, 4.65, 8.97.

Stress condition

0.13, 0.16, 0.20, 0.20, 0.21, 0.25, 0.26, 0.28, 0.28, 0.30, 0.31, 0.33, 0.35, 0.35, 0.35, 0.39, 0.50, 0.52,
0.58, 0.60, 0.60, 0.62, 0.63, 0.67, 0.71, 0.73, 0.75, 0.75, 0.78, 0.80, 0.80, 0.86, 0.90, 0.91, 0.93, 0.93,
0.94, 0.98, 0.99, 1.01, 1.03, 1.06, 1.06, 1.10, 1.22, 1.22, 1.24, 1.28, 1.39, 1.39, 1.46, 1.48, 1.52, 1.74,
1.95, 2.46, 3.02, 5.16.

For the purposes of comparison, we fit the Chen distribution, as well as the normal, the
Weibull, gamma, and log-normal to fit this real dataset. Since the exponential distribution
is a special case of the Weibull and gamma distributions, the exponential distribution
was also considered as a candidate model as well. In order to select the best-fitting model
from the candidate distributions, the goodness-of-fit criteria quantities are presented in
Table 2, including the Akaike information criterion (AIC), Bayesian information criterion
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(BIC), the second-order Akaike information criterion (AICc), as well as the values of the
log-likelihood. Let k be the number of free parameters in the related model and n be the
sample size, the related criteria are defined as

AIC=2k− 2 ln (likelihood), BIC=k ln n− 2 ln (likelihood), AICc=AIC +
2k(k + 1)
n− k− 1

.

The best model is the one with the least values of the AIC, BIC, and AICc. The results
presented in Table 2 indicate that the Chen distribution provided the best fit and can be
used to analyze these data.

Table 2. Summary of the goodness-of-fit test for the fit distributions.

Results under Data from Regular Use Conditions

Model log-likelihood AIC BIC AICc

Chen −52.9318 109.8636 113.9845 110.0818
Weibull −71.6092 147.2185 151.3394 147.4367
Gamma −69.2207 142.4414 146.5623 142.6596
normal −126.8569 257.7138 261.8347 257.9320

log-normal −93.9304 191.8608 195.9817 192.0790
exponential −74.3596 150.7193 152.7797 150.7907

results under data from stress conditions

Model log-likelihood AIC BIC AICc

Chen −41.1271 86.2542 90.3751 86.4724
Weibull −49.0693 102.1386 106.2595 102.3568
Gamma −47.4702 98.9404 103.0613 99.1586
normal −97.2140 198.4279 202.5488 198.6461

log-normal −93.9592 191.9184 196.0393 192.1366
exponential −53.4458 108.8916 110.9520 108.9630

Based on the complete data given in Table 1, a group of progressively Type-II-censored
constant-stress PALT data was generated, and the details are presented in Table 3. Therefore,
different point and interval estimates were obtained, and the results are provided in Table 4
with the 90% significance level for the interval estimates. It can be seen from Table 4,
the bootstrap confidence intervals outperformed the ACIs, where the SBCIs of α, β and λ
also featured a narrower interval length than those of PBCIs.

Table 3. Progressively Type-II-censored LED constant-stress PALT data.

Regular Use Conditions

T1 = (0.18, 0.40, 0.47, 0.65, 0.79, 1.07, 1.20, 1.32, 1.50, 1.68, 2.04, 4.65)
R1 = (4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 3, 1)

Stress conditions

T2 = (0.13, 0.21, 0.30, 0.35, 0.58, 0.63, 0.75, 0.86, 0.94, 1.03, 1.22, 1.39, 1.95, 5.16
R2 = (3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 2, 0)

Table 4. Estimates under LED constant-stress PALT data.

MLE ACI PBCI SBCI

α 0.0833 (0.0389,0.2177) (0.0496,0.2224) (0.0244,0.1931)
0.1788 0.1728 0.1687

β 0.7286 (0.6137,0.8435) (0.6234,0.8460) (0.5461,0.7459)
0.2298 0.2226 0.1998

λ 1.6067 (0.5604,2.6530) (1.1400,2.5212) (1.2593,2.6011)
2.0926 1.3812 1.3418
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5.2. Simulation Studies

In this part, extensive numerical studies were conducted to investigate the perfor-
mance of our methods. To generate the progressively Type-II-censored samples under the
constant-stress PALT, the algorithm developed by Balakrishnan and Aggarwala [18] was
implemented. In addition, in order to compare the performance of different estimates, four
quantiles were examined as follows:

(a) The mean-squared errors (MSEs) of the estimates of the parameters α, β, and λ com-
puted as 1

M ∑M
d=1(φl − φ̂ld)

2, repeated M-times, where φ1 = α, φ2 = β, and φ3 = λ
denote the selected values of the parameters α, β, and λ and φ̂ld, d = 1, 2, . . . , M is the
related estimates of φl , l = 1, 2, 3.

(b) The average estimates (AVEs) of the MLEs for the parameters α, β, and λ, which are
defined as φ̂l =

1
M ∑ φ̂ld.

(b) The coverage probabilities (CPs) of the confidence intervals of the parameters α, β,
and λ, which are defined as the probability that the interval estimate contains the true
parameters.

(c) The average widths (AWs) of the confidence intervals of the parameters α, β, and λ.

For j = 1, 2, three progressive censoring schemes were considered as follows:

Scheme I: Rj1 = Rj2 = · · · = Rj(mj−1) = 0 and Rjmj = nj −mj;

Scheme II: Rj1 = nj −mj and Rj2 = · · · = Rjmj = 0;

Scheme III: Rj1 = Rj2 = Rj(mj−1) = 1 and Rjmj = nj − 2mj + 1.

Under different choices of the parameter values, sample sizes, and censoring schemes,
the results of criteria quantities are presented in Tables 5–8 based on 10,000 repetitions,
where the numerical computational work was conducted by using the MATLAB 2017a
software; the interval results were obtained under a 90% significance level, and these same
censoring schemes were used under both the normal use and accelerated stress stages.
It is noted that the criteria quantities, the MSEs and AVEs, of the parameters α, β, and λ
decreased when the effective sample size m, n increased, which indicated that the MLEs
were consistent and worked satisfactorily under the simulated scenarios. In addition,
the point estimates obtained from Censoring Scheme II outperformed the results from
Censoring Schemes I and III in terms of the MSEs and AVEs in general. Furthermore,
it was seen that the different AWs of the various interval estimates decreased when the
sample size increased, whereas the CPs increased correspondingly with the same trend.
Moreover, it was also observed that the two bootstrap confidence intervals were superior
to the likelihood-based ACIs according to the quantities’ AWs, whereas the SBCI provided
relatively shorter interval widths than those of the PBCI in most cases, which is in agreement
with the results of Hall [26]. Similar to the point results and compared to the other two
censoring schemes, the interval estimates obtained from Censoring Scheme II also had
relatively shorter interval lengths under fixed simulated scenarios.

Table 5. AVEs and MSEs (with brackets) for the parameters with (α, β, λ) = (1, 0.5, 2) at n1 = n2 = n
and m1 = m2 = m.

n m CS α β λ

30 10 I 1.2217 (0.3254) 0.6041 (0.2322) 1.8104 (0.2416)
II 1.2034 (0.3135) 0.5783 (0.2158) 1.8329 (0.2337)
III 1.2516 (0.3217) 0.5926 (0.2411) 2.2021 (0.2504)

20 I 1.1510 (0.3126) 0.4124 (0.2258) 2.1765 (0.2300)
II 1.1379 (0.2989) 0.5473 (0.2122) 2.1341 (0.2213)
III 1.2037 (0.3097) 0.5721 (0.2194) 1.8647 (0.2321)
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Table 5. Cont.

n m CS α β λ

50 15 I 0.8153 (0.2205) 0.5678 (0.1601) 1.8790 (0.1818)
II 1.1536 (0.2114) 0.5545 (0.1534) 1.9444 (0.1726)
III 1.1764 (0.2198) 0.5581 (0.1643) 1.8426 (0.1769)

25 I 0.8437 (0.2143) 0.5454 (0.1532) 2.1095 (0.1745)
II 0.8924 (0.2009) 0.4792 (0.1521) 2.0423 (0.1708)
III 0.9609 (0.2132) 0.5562 (0.1530) 2.1111 (0.1723)

100 35 I 1.1111 (0.1421) 0.5333 (0.1532) 2.0899 (0.1251)
II 1.0613 (0.1346) 0.5201 (0.1467) 2.0351 (0.1139)
III 1.1453 (0.1399) 0.5400 (0.1499) 2.0932 (0.1300)

50 I 1.0712 (0.1314) 0.5204 (0.1406) 2.0532 (0.1126)
II 1.0221 (0.1289) 0.5172 (0.1375) 2.0241 (0.1089)
III 0.9105 (0.1357) 0.5198 (0.1437) 1.9613 (0.1231)

Table 6. AWs and CPs (with brackets) for the parameters with (α, β, λ = (1, 0.5, 2) at n1 = n2 = n
and m1 = m2 = m (γ = 0.1).

n m CS
α β λ

ACI SBCI PBCI ACI SBCI PBCI ACI SBCI PBCI

30 10 I 0.8213 0.5306 0.6189 2.3216 1.5324 1.6041 1.4279 0.9078 0.9111
(0.8722) (0.8631) (0.8624) (0.8701) (0.8623) (0.8712) (0.8671) (0.8641) (0.8650)

II 0.8011 0.4946 0.5717 2.2075 1.4561 1.5102 1.2436 0.8568 0.8389
(0.8693) (0.8556) (0.8579) (0.8643) (0.8656) (0.8697) (0.8632) (0.8637) (0.8725)

III 0.9311 0.5000 0.6034 2.2453 1.5656 1.5322 1.2979 0.8769 0.8662
(0.8731) (0.8615) (0.8611) (0.8679) (0.8611) (0.8714) (0.8574) (0.8679) (0.8734)

20 I 0.7891 0.5008 0.5869 1.9785 1.2562 1.3008 1.3153 0.8359 0.8533
(0.8760) (0.8698) (0.8658) (0.8697) (0.8630) (0.8620) (0.8602) (0.8635) (0.8639)

II 0.7222 0.4625 0.5634 1.8011 1.1054 1.2121 1.1137 0.7886 0.8216
(0.8663) (0.8571) (0.8567) (0.8635) (0.8627) (0.8654) (0.8551) (0.8612) (0.8654)

III 0.8010 0.4773 0.5743 1.8884 1.3409 1.2564 1.2532 0.8042 0.8480
(0.8723) (0.8673) (0.8712) (0.8722) (0.8543) (0.8635) (0.8563) (0.8627) (0.8640)

50 15 I 0.8059 0.4672 0.4918 1.5534 1.2074 1.2300 0.9157 0.7993 0.7899
(0.8924) (0.8731) (0.8710) (0.8822) (0.8717) (0.8652) (0.8791) (0.8663) (0.8711)

II 0.7474 0.4551 0.4635 1.5307 1.1935 1.2115 0.8993 0.7269 0.7425
(0.8812) (0.8678) (0.8689) (0.8769) (0.8642) (0.8657) (0.8790) (0.8659) (0.8661)

III 0.7713 0.4750 0.5001 1.6089 1.2617 1.3021 0.9334 0.7619 0.7713
(0.8929) (0.8754) (0.8723) (0.8843) (0.8754) (0.8690) (0.8814) (0.8660) (0.8700)

25 I 0.7451 0.4300 0.4419 1.2230 0.9611 0.9887 0.8656 0.6890 0.6998
(0.8809) (0.8754) (0.8665) (0.8669) (0.8713) (0.8743) (0.8691) (0.8658) (0.8671)

II 0.7009 0.4214 0.4327 1.2132 0.8794 0.9236 0.8102 0.6572 0.6627
(0.8807) (0.8629) (0.8624) (0.8614) (0.8610) (0.8689) (0.8678) (0.8654) (0.8665)

III 0.7513 0.4267 0.4678 1.2345 0.8999 0.9542 0.8423 0.7314 0.7320
(0.8816) (0.8742) (0.8741) (0.8736) (0.9645) (0.8720) (0.8684) (0.8637) (0.8702)

100 35 I 0.5327 0.2811 0.2841 0.8678 0.6231 0.6423 0.6217 0.5013 0.5134
(0.9132) (0.8956) (0.9012) (0.9231) (0.8942) (0.8972) (0.8963) (0.8956) (0.9142)

II 0.5202 0.2679 0.2700 0.7591 0.6124 0.6222 0.5936 0.4897 0.4999
(0.8965) (0.8817) (0.8835) (0.8922) (0.8879) (0.8938) (0.8856) (0.8901) (0.9009)

III 0.5220 0.2744 0.2786 0.7777 0.6515 0.6231 0.6110 0.5110 0.5183
(0.9111) (0.8924) (0.8971) (0.9045) (0.9023) (0.8939) (0.8942) (0.9014) (0.9125)

50 I 0.4712 0.1849 0.2013 0.6135 0.5214 0.5327 0.5121 0.4217 0.3868
(0.9121) (0.9121) (0.9178) (0.9127) (0.9011) (0.9126) (0.8971) (0.9131) (0.9063)

II 0.4657 0.1735 0.1989 0.5670 0.5173 0.5199 0.4785 0.3561 0.3620
(0.8934) (0.8903) (0.8997) (0.8930) (0.8954) (0.8979) (0.8849) (0.8943) (0.8974)

III 0.4699 0.2352 0.2247 0.5978 0.5336 0.5231 0.4990 0.3754 0.3926
(0.9023) (0.9156) (0.9234) (0.8965) (0.9087) (0.9118) (0.8937) (0.9072) (0.9125)
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Table 7. AVE and MSEs (with brackets) for the parameters with (α, β, λ) = (0.7, 1, 1.5) at n1 6= n2 and
m1 6= m2.

n1 m1 CS α β λn2 m2

30 10 I 0.9755 (0.3257) 1.3221 (0.2214) 1.7987 (0.2032)
40 15 II 0.9537 (0.3216) 1.3024 (0.2185) 1.7611 (0.2011)

III 0.9701 (0.3309) 1.3176 (0.2210) 1.8432 (0.2058)
16 I 0.9314 (0.3203) 1.3010 (0.2179) 1.7534 (0.1978)
18 II 0.8973 (0.3168) 1.2877 (0.2124) 1.7518 (0.1963)

III 0.9102 (0.3200) 1.3112 (0.2213) 1.7642 (0.1991)

50 15 I 0.8333 (0.2372) 1.3124 (0.1843) 1.7013 (0.1816)
60 20 II 0.8259 (0.2341) 1.2013 (0.1785) 1.6752 (0.1807)

III 0.8367 (0.2405) 1.2657 (0.1841) 1.6986 (0.1821)
25 I 0.7910 (0.2316) 1.1211 (0.1742) 1.6923 (0.1709)
30 II 0.7832 (0.2254) 1.0799 (0.1699) 1.3485 (0.1636)

III 0.7932 (0.2332) 1.1154 (0.1721) 1.6000 (0.1687)

100 35 I 0.7543 (0.1550) 1.0799 (0.1174) 1.6032 (0.1125)
120 40 II 0.6815 (0.1537) 1.0231 (0.1112) 1.5649 (0.1062)

III 0.8011 (0.1589) 1.1014 (0.1217) 1.6101 (0.1198)
45 I 0.7385 (0.1421) 1.0473 (0.1069) 1.5892 (0.1054)
50 II 0.7112 (0.1378) 1.0117 (0.1052) 1.5437 (0.1012)

III 0.7361 (0.1436) 1.0762 (0.1110) 1.6045 (0.1103)

Table 8. AWs and CPs (with brackets) for the parameters with (α, β, λ = (0.7, 1, 1.5) at n1 6= n2 and
m1 6= m2 (γ = 0.1).

n1 m1
CS

α β λ

n2 m2 ACI SBCI PBCI ACI SBCI PBCI ACI SBCI PBCI

30 10 I 0.9528 0.7600 0.8179 2.6223 1.1253 1.2638 1.3879 1.1022 1.2135
40 15 (0.8864) (0.8872) (0.8912) (0.8804) (0.8815) (0.8872) (0.8726) (0.8810) (0.8821)

II 0.8491 0.7306 0.7525 2.5762 1.1094 1.2114 1.3564 0.9423 0.9745
(0.8793) (0.8765) (0.8823) (0.8765) (0.8724) (0.8769) (0.8683) (0.8659) (0.8721)

III 1.0372 0.7962 0.8213 2.5990 1.1102 1.2471 1.4011 0.9987 1.1104
(0.8910) (0.8898) (0.8913) (0.8796) (0.8793) (0.8834) (0.8795) (0.8746) (0.8793)

16 I 0.9200 0.6983 0.7232 2.1032 0.9345 0.9814 1.1123 0.8971 0.9214
18 (0.8845) (0.8849) (0.8842) (0.8799) (0.8829) (0.8823) (0.8728) (0.8753) (0.8812)

II 0.8719 0.6854 0.7121 1.9967 0.8972 0.9423 1.1059 0.8865 0.8937
(0.8762) (0.8754) (0.8834) (0.8734) (0.8721) (0.8800) (0.8667) (0.8640) (0.8711)

III 0.8989 0.7156 0.7358 2.1124 0.9291 0.9878 1.1207 0.8992 0.9148
(0.8906) (0.8900) (0.8873) (0.8812) (0.8794) (0.8907) (0.8779) (0.8801) (0.8734)

50 15 I 0.8661 0.6374 0.6392 1.1231 0.7314 0.7569 0.7980 0.5896 0.6474
60 20 (0.8976) (0.8823) (0.8859) (0.8821) (0.8797) (0.8894) (0.8809) (0.8809) (0.8902)

II 0.8219 0.6011 0.6238 1.0989 0.6111 0.6777 0.7237 0.5619 0.5938
(0.8810) (0.8748) (0.8795) (0.8769) (0.8730) (0.8825) (0.8710) (0.8726) (0.8788)

III 0.8432 0.6455 0.6299 1.1237 0.7368 0.7495 0.7595 0.6035 0.6371
(0.8931) (0.8847) (0.8810) (0.8824) (0.8806) (0.8876) (0.8769) (0.8864) (0.8869)

25 I 0.8324 0.6011 0.6213 0.9871 0.6457 0.6534 0.7351 0.5600 0.5990
30 (0.8865) (0.8789) (0.8902) (0.8812) (0.8879) (0.8907) (0.8735) (0.8798) (0.8847)

II 0.8107 0.5846 0.5997 0.9658 0.5892 0.6004 0.7032 0.5478 0.5612
(0.8812) (0.8736) (0.8769) (0.8753) (0.8734) (0.8798) (0.8694) (0.8731) (0.8762)

III 0.8485 0.6109 0.6144 1.0216 0.6235 0.6278 0.7444 0.5592 0.6349
(0.8927) (0.8824) (0.8873) (0.8835) (0.8812) (0.8859) (0.8738) (0.8765) (0.8924)
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Table 8. Cont.

n1 m1
CS

α β λ

n2 m2 ACI SBCI PBCI ACI SBCI PBCI ACI SBCI PBCI

100 35 I 0.5124 0.3283 0.3611 0.7241 0.4653 0.5224 0.5531 0.3459 0.3618
120 40 (0.8910) (0.8875) (0.8913) (0.8967) (0.8923) (0.9078) (0.8952) (0.8924) (0.9078)

II 0.4837 0.3241 0.3548 0.6973 0.4327 0.4419 0.5136 0.3327 0.3412
(0.8867) (0.8856) (0.8879) (0.8952) (0.8856) (0.8978) (0.8911) (0.8874) (0.8942)

III 0.4965 0.3360 0.3716 0.7536 0.5061 0.5372 0.5429 0.3446 0.3547
(0.8881) (0.8907) (0.8942) (0.9011) (0.9108) (0.9116) (0.9035) (0.8979) (0.9011)

45 I 0.4611 0.3237 0.3572 0.6893 0.4325 0.4611 0.4803 0.3315 0.3600
50 (0.8889) (0.8912) (0.8931) (0.9015) (0.8897) (0.9174) (0.8977) (0.8993) (0.9057)

II 0.4352 0.3120 0.3345 0.6479 0.4234 0.4330 0.4760 0.3244 0.3309
(0.8845) (0.8849) (0.8908) (0.8947) (0.8861) (0.8921) (0.8914) (0.8868) (0.8937)

III 0.4458 0.3296 0.3478 0.6642 0.4496 0.4537 0.4993 0.3278 0.3469
(0.8876) (0.8924) (0.8920) (0.8969) (0.8974) (0.9123) (0.9123) (0.8895) (0.8986)

6. Concluding Remarks

In this paper, statistical inference was discussed for a constant-stress partially acceler-
ated life test. Under progressive Type-II censoring, parameter estimation was conducted,
when the lifetime of the units followed the two-parameter bathtub-shaped Chen distribu-
tion. The expectation–maximization procedure was implemented for maximum likelihood
estimation, and the confidence intervals of the model parameters were derived by using
the asymptotic theory and bootstrap techniques. The performance of the point and interval
estimates was investigated by simulation studies and a real-life example, and the results
indicated that the proposed methods worked satisfactorily. Although the constant-stress
partially accelerated life test was considered for the bathtub-shaped Chen distribution
in this paper, the results could be extended to other lifetime models with a proper mod-
ification. For further works, the testing design and optimal sampling planning for the
constant-stress partially accelerated life test seem also interesting and important in practice,
which will be discussed in the future.
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