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Abstract: The fixed-circle issue is a geometric technique that is connected to the study of geometric
characteristics of certain points, and that are fixed by the self-mapping of either the metric space or of
the generalized space. The fixed-disc problem is a natural resultant that arises as a direct outcome
of this problem. In this study, our goal is to examine new classes of self-mappings that meet a new
particular sort of contraction in a metric space. The common geometrical characteristic of the set of
fixed points of any element of these classes is that a circle or even a disc, that is either termed the
fixed circle or even the fixed disc of the appropriate self-map, is included within that set. In order to
accomplish this, we establish two new classifications of contraction mapping: Fc-contractive mapping
and Fc-expanding mapping. In the investigation of neural networks, activation functions with either
fixed circles (or even fixed discs) are observed frequently. This demonstrates how successful our
results with the fixed-circle (respectively, the fixed-disc) model were.

Keywords: fixed point; fixed circle; fixed disc

MSC: 47H10; 54H25

1. Introduction

Over the course of the past few decades, the Banach contraction principle has been
researched and expanded upon using a variety of methods. These methods include gen-
eralizing the contractive condition that was utilized (see [1–20] for more details) and to
generalize the used metric space (see [21–29] for more details). A recent approach is to
examine the geometric characteristics of the fixed point set of a self-mapping with the help
of a special geometric shape, introduced by Özgür and Taş in [30]. For this purpose, several
theorems on the fixed circle are derived as the geometric aspects of the generalization of
fixed-point theorems (see [30–34], for further information).

Consider the metric space (X, d) and consider f as a self-mapping on X. First, we recall
that circle Cx0,ρ = {x ∈ X : d(x, x0) = ρ} is a fixed circle of f if f x = x for all x ∈ Cx0,ρ
(see [30]). Similarly, disc Dx0,ρ = {x ∈ X : d(x, x0) ≤ ρ} is called a fixed disc of f if f x = x
for all x ∈ Dx0,ρ. There are several cases of self-mappings that demonstrate how the fixed
point set of the self-mapping contains a circle (or a disc). Consider, for instance, the metric
space (C, d) along with the metric d defined for the complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2, as follows:

d(z1, z2) = |x1 − x2|+ |y1 − y2|+ |x1 − x2 + y1 − y2|. (1)

It is important to point out that the metric described in (1) is the same as the metric
that is induced by the norm function

‖z‖ = ‖x + iy‖ = |x|+ |y|+ |x + y|,
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(notice the example given in 2.4 of [35]). In the accompanying illustration that was created
with [36], you can see the circle denoted by C0,1. Define the self-mapping f1 on C, as
follows:

f1z =


z ; x ≤ 0, y ≥ 0 or x ≥ 0, y ≤ 0

−y + 1
2 + i

(
−x + 1

2

)
; x > 0, y > 0

−y− 1
2 + i

(
−x− 1

2

)
; x < 0, y < 0

,

for each z = x + iy ∈ C, then clearly the fixed point set of f1 contains circle C0,1, that is,
C0,1 is a fixed circle of f1 (see Figure 1). Therefore, the study of geometrical properties of
the fixed points of a self-mapping seems to be an intriguing problem in the case where the
fixed point is non unique.

Figure 1. The graph of the circle C0,1.

Moreover, self-mappings with fixed points are becoming more important to researchers
studying neural networks. For instance, in [37], it was pointed out that the fixed points of a
neural network can be determined by the fixed points of the activation function used. If the
global input-output relationship in a neural network can be considered in the framework
of Möbius transformations, then the existence of one or two fixed points throughout the
neural network is guaranteed (see [38] for basic algebraic and geometric properties of
Möbius transformations). Some possible applications of theoretical fixed-circle results to
neural networks have been investigated in recent studies [30,32].

Next, we remind the readers of the following theorems on a fixed circle.

Theorem 1 ([30]). Consider the metric space (Y, d) and let the mapping

φ : Y→ [0, ∞) such that φ(y) = d(y, y0), (2)

for every y ∈ Y. If there exists a self-mapping f : Y→ Y meeting

(C1) d(y, f y) ≤ φ(y)− φ( f y)

and
(C2) d( f y, y0) ≥ $,

for every y ∈ Cy0,$, hence circle Cy0,$ is a fixed circle of f .



Axioms 2023, 12, 401 3 of 14

Theorem 2 ([30]). Assume that (Y, d) is a metric space and φ is a mapping described in (2). If a
self-mapping f : Y→ Y fulfils the conditions

(1)∗ d(y, f y) ≤ φ(y) + φ( f y)− 2$

and
(2)∗ d( f y, y0) ≤ $,

for every y ∈ Cy0,$, hence circle Cy0,$ is a fixed circle of f .

Theorem 3 ([30]). Assume that (Y, d) is a metric space and φ is the map defined in (2). If a
self-mapping f : Y→ Y fulfils the following conditions

(1)∗∗ d(y, f y) ≤ φ(y)− φ( f y)

and
(2)∗∗ kd(y, f y) + d( f y, y0) ≥ $,

for every y ∈ Cy0,$ and some k ∈ [0, 1), then circle Cy0,$ is a fixed circle of f .

Theorem 4 ([32]). Assume that (Y, d) is a metric space and the mapping φ$ : R+ ∪ {0} → R be
defined by

φ$(y) =
{

y− $ ; y > 0
0 ; y = 0

, (3)

for every y ∈ R+ ∪ {0}. If there exits a self-mapping f : Y→ Y meeting

1. d( f y, y0) = $ for every y ∈ Cy0,$,
2. d( f y, f z) > ρ for every y, z ∈ Cy0,$ and y 6= z ,
3. d( f y, f z) ≤ d(y, z)− φ$(d(y, f y)) for every y, z ∈ Cy0,$,

hence circle Cy0,$ is a fixed circle of f .

The following is the organization of this manuscript. In Section 2, we provide some gen-
eralizations of Theorems 1–3. In Section 3, we present the definitions of an “Fc-contraction”
and an “Fc-expanding map” where we prove new theorems on a fixed circle. In Section 4,
we consider the fixed point sets of some activation functions frequently used in the study of
neural networks with a geometric viewpoint. This demonstrates how effective our results
are, based on fixed circles. In Section 5, we present some open problems for future studies.
When the fixed point we are looking at is not unique, our findings highlight the significance
of the geometry of the other fixed points in a self-mapping.

2. New Fixed-Circle Theorems for Some Generalized Contractive Mappings

First, we provide a theorem for a fixed circle using an auxiliary function.

Theorem 5. Assume that (Y, d) is a metric space, f is a self-mapping on Y and the mapping
θ$ : R→ R is described by

θ$(y) =
{

$ ; y = $
y + $ ; y 6= $

,

for every y ∈ R and $ ≥ 0. Suppose that

1. d( f y, y0) ≤ θ$(d(y, y0)) + Ld(y, f y) for some L ∈ (−∞, 0] and every y ∈ Y,
2. $ ≤ d( f y, y0) for every y ∈ Cy0,$,
3. d( f y, f z) ≥ 2$ for every y, z ∈ Cy0,$ and y 6= z,
4. d( f y, f z) < $ + d(z, f y) for every y, z ∈ Cy0,$ and y 6= z,

then, f fixes the circle Cy0,ρ.
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Proof. Let y ∈ Cy0,$ be a point chosen at random. By using conditions (1) and (2), we
obtain

d( f y, y0) ≤ θ$(d(y, y0)) + Ld(y, f y) = $ + Ld(y, f y)

and so
$ ≤ d( f y, y0) ≤ $ + Ld(y, f y). (4)

There are two distinct cases.
Case 1. If L = 0, then we find d( f y, y0) = $ by (4), that is, we have f y ∈ Cy0,$. Assume

that d(y, f y) 6= 0 for y ∈ Cy0,$. Since y 6= f y, by using condition (3), we obtain

d( f y, f 2y) ≥ 2$. (5)

Furthermore, using condition (4)

d( f y, f 2y) < $ + d( f y, f y)

and hence
d( f y, f 2y) < $,

which contradicts inequality (5). Therefore, it should be d(y, f y) = 0 by which it implies
that f y = y.

Case 2. Let L ∈ (−∞, 0). If d(y, f y) 6= 0, we obtain a contradiction by (4). Hence, it
should be d(y, f y) = 0.

Thereby, we obtain f y = y for every y ∈ Cy0,$, that is, Cy0,$ is a fixed circle of f . To put
it another way, the fixed point set of f contains circle Cy0,$.

Remark 1. Notice that, if we consider the case L ∈ (−∞, 0) in condition (1) of Theorem 5 for
y ∈ Cx0,$, then we obtain

−Ld(y, f y) ≤ θ$(d(y, y0))− d( f y, y0) = d(y, y0)− d( f y, y0) = ϕ(y)− ϕ( f y)

and hence
−Ld(y, f y) ≤ ϕ(y)− ϕ( f y).

For L = −1, we obtain
d(y, f y) ≤ ϕ(y)− ϕ( f y).

This means that condition (C1) (resp. condition (1)∗∗) is satisfied for this case.
Clearly, condition (2) of Theorem 5 is the same as condition (C2).Moreover, if condition (2) of

Theorem 5 is fulfilled, then condition (2)∗∗ is satisfied. Consequently, Theorem 5 is a generalization
of Theorem 1 and Theorem 3 for the cases L ∈ (−∞, 0) \ {−1}. For the case L = −1, Theorem 5
coincides with Theorem 1, and it is a particular case of Theorem 3.

Next, we present some illustrative examples.

Example 1. Consider the metric space (R, d) with the standard metric d(y1, y2) = |y1 − y2| and
circle C0,1 = {−1, 1}. If we describe the self-mapping f1 : R→ R as

f1y =

{
3y2 + y− 3 ; y ∈ {−1, 1}

0 ; elsewhere
,

for each y belongs to R, so it is not difficult to see that f1 meets the hypothesis of Theorem 5 for
circle C0,1 and L = −1

2 . Indeed, conditions (2), (3), and (4) of Theorem 5 can be easily checked. For
condition (1), we take into consideration the two cases below.

Case 1. Let y ∈ C0,1. Hence, we have θ1(|y|) = 1 and so

d( f1y, y0) =
∣∣∣3y2 − 3 + y

∣∣∣ ≤ 1− 1
2

∣∣∣3y2 − 3
∣∣∣ = θ$(d(y, y0)) + Ld(y, f1y).
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Case 2. Let y /∈ C0,1. Then we have |y| 6= 1 and hence, θ1(|y|) = |y|+ 1. Clearly, we have

d( f1y, y0) = 0 ≤ |y|+ 1− 1
2
|y| = 1

2
|y|+ 1.

Consequently, C0,1 is the fixed circle of f1.

Example 2. Consider (R, d) to be the standard metric space and circle C0,2 = {−2, 2}. Define
f2 : R→ R by

f2y =


2 ; y = −2
−2 ; y = 2
0 ; elsewhere

,

for each y ∈ R, then f2 does not meet condition (1) of Theorem 5 for each y ∈ C0,2 and for
any L ∈ (−∞, 0). Furthermore, f2 does not fulfil condition (4) for each y ∈ C0,2 and for any
L ∈ (−∞, 0]. Clearly, f2 does not fix C0,2, and this example shows that condition (4) is crucial in
Theorem 5.

Example 3. Consider (R, d) to be the standard metric space and circles C0,1 = {−1, 1} and
C0,2 = {−2, 2}. If we define f3 : R→ R as

f3y =

{
y ; y ∈ C0,1 ∪ C0,2
0 ; otherwise

,

for each y ∈ R, then f3 meets the hypothesis of Theorem 5 for circles C0,1 and C0,2 and for any
L ∈ [−1, 0]. Clearly, C0,1 and C0,2 are the fixed circles of f3.

Example 4. Consider (R, d) to be the standard metric space and describe the self-mapping g :
R→ R as

gy =

{ 3
2 ; y ≥ 0
− 3

2 ; y < 0
,

for each y ∈ R. Hence, g meets both conditions (2) and (4) of Theorem 5; however, it does not meet
condition (1) for circle C0,1. However, the fixed point set of g consists of points − 3

2 and 3
2 . So, circle

C0,1 is not a fixed circle of g, and this example shows that condition (1) is required to obtain a fixed
circle.

Moreover, C0, 3
2
=
{
− 3

2 , 3
2
}

is the unique fixed circle of g. It is simple to verify that g satisfies
conditions (2) and (4) of Theorem 5, but does not satisfy condition (1) for circle C0, 3

2
. This

demonstrates that the conclusion reached by applying the opposite of Theorem 5 does not hold true
in most situations. Again, condition (1) is also crucial here.

We give another result of a fixed circle.

Theorem 6. Let (Y, d) be a metric space, f be a self-mapping on Y and the mapping θρ : R→ R
be, as in Theorem 5. Suppose that

1. 2d(y, y0)− d( f y, y0) ≤ θρ(d(y, y0)) + Ld(y, f y) for some L ∈ (−∞, 0] and each y ∈ Y,
2. d( f y, y0) ≤ ρ for each y ∈ Cy0,ρ,
3. d( f y, f z) ≥ 2ρ for every y, z ∈ Cy0,ρ and y 6= z,
4. d( f y, f z) < ρ + d(z, f y) for each y, z ∈ Cy0,ρ and y 6= z,

hence, circle Cy0,ρ is fixed by the self-mapping f .

Proof. Consider y ∈ Cy0,ρ to be an arbitrary point. Using conditions (1) and (2), we obtain

2d(y, y0)− d( f y, y0) ≤ d(y, y0) + Ld(y, f y),

2ρ− d( f y, y0) ≤ ρ + Ld(y, f y)
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and
ρ ≤ d( f y, y0) + Ld(y, f y) ≤ ρ + Ld(y, f y). (6)

Similar to the arguments used in the proof of Theorem 5, a direct computation indicates
that circle Cy0,ρ is fixed by f .

Remark 2. Notice that, if we consider the case L = −1 in condition (1) of Theorem 6 for y ∈ Cy0,ρ,
then we obtain

d(y, f y) ≤ θρ(d(y, y0)) + d( f y, y0)− 2d(y, y0) = ρ + d( f y, y0)− 2ρ = ϕ(y) + ϕ( f y)− 2ρ.

Hence, condition (1)∗ is satisfied. Furthermore, condition (2) of Theorem 6 is contained in condition
(2)∗. Therefore, Theorem 6 is a particular case of Theorem 2 in this case. For the cases L ∈ (−∞, 0),
Theorem 6 is an extension of Theorem 2.

Now, we look at some instances to help illustrate our point.

Example 5. Consider the standard metric space (R, d) and circle C0,1 = {−1, 1}. Consider the
map f4 : R→ R as

f4y =

{
1
y ; y ∈ {−1, 1}

2y ; otherwise
,

for each y ∈ R, hence, f4 satisfies the hypothesis of Theorem 6 for L = − 1
2 . Clearly, C0,1 is a fixed

circle of f4. It is easy to check that f4 does not fulfill condition (1) of Theorem 5 to any L ∈ (−∞, 0].

Example 6. Consider the standard metric space (R, d) and circles C0,1 = {−1, 1} and C1,2 =
{−1, 3}. Consider the self-mapping f5 : R→ R defined by

f5y =

{
y ; y ∈ C0,1 ∪ C1,2

αy ; otherwise
,

for each y ∈ R and α ≥ 2, so f5 satisfies the hypothesis of Theorem 6 for L = 0 and for circles C0,1
and C1,2. Clearly, C0,1 and C1,2 are the fixed circles of f5. Notice that fixed circles C0,1 and C1,2 are
not disjoint.

Considering Examples 3 and 6, we deduce that a fixed circle does not require the
uniqueness in Theorems 5 and 6. If a fixed circle is non unique, then two fixed circles of a
self-mapping can be disjoint or not. Next, we prove a theorem where f fixes a unique circle.

Theorem 7. Let (Y, d) be a metric space and f : Y→ Y be a self-mapping that fixes circle Cy0,$. If
the following condition

d( f y, f z) < max{d(z, f y), d(z, f z)}, (7)

is satisfied by f for every y ∈ Cy0,$ and z ∈ Y \ Cy0,$, then Cy0,$ is the unique fixed circle of f .

Proof. Let Cy1,µ be another fixed circle of f . If we take y ∈ Cy0,$ and z ∈ Cy1,µ with y 6= z,
from the inequality (7), we obtain

d(y, z) = d( f y, f z)

< max{d(z, f y), d(z, f z)} = d(y, z),

that is a contradiction. We have y = z for every y ∈ Cy0,$, z ∈ Cy1,µ then f has only one
fixed circle Cy0,$.

Example 7. Consider the standard metric space (C, d) and circle C0, 1
4
. Define f6 on C as follows:
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f6t =
{ 1

16t ; t 6= 0
0 ; t = 0

,

for t ∈ C, where t represents the complex conjugate of t. It is not difficult to see that C0, 1
4

is the
unique fixed circle of f6, where f6 does not fulfil the hypothesis of Theorem 7.

Example 7 demonstrates that the counterfactual of Theorem 7 is not correct in general.
Now, in order to illustrate Theorem 7, we consider the following example.

Example 8. Let Y = {−1, 0, 1} and the metric d : Y× Y→ [0, ∞) be described by

d(y, z) =
{

0 ; y = z
|y|+ |z| ; y 6= z

,

for every y, z ∈ Y. If we take the self-mapping f7 : Y→ Y is described by

f7y = 0,

for any y ∈ Y; hence, C1,1 = {0} is the unique fixed circle of f7.

Next, we present the following interesting theorem that involves the identity map
IY : Y→ Y described by IY(y) = y for all y ∈ Y.

Theorem 8. Consider the metric space (Y, d). Let the map f be from Y to itself with fixed circle
Cy0,$. The self-mapping f fulfils the following condition

d(y, f y) ≤ α[max{d(y, f y), d(y0, f y)} − d(y0, f y)], (8)

for every y ∈ Y and some α ∈ (0, 1), if and only when f = IY.

Proof. Take y ∈ Y with f y 6= y. By inequality (8), if d(y, f y) ≥ d(y0, f y), then we obtain

d(y, f y) ≤ α[d(y, f y)− d(y0, f y)] ≤ αd(y, f y),

which leads us to a contradiction due to the fact that α ∈ (0, 1). If d(y, f y) ≤ d(y0, f y), then
we obtain

d(y, f y) ≤ α[d(y0, f y)− d(y0, f y)] = 0.

Hence, we have f y = y and that is f = IY, since y is an arbitrary point in Y.
Conversely, IY satisfies condition (8) clearly.

Corollary 1. Let (Y, d) be a metric space and f : Y → Y be a self-mapping. If f satisfies the
hypothesis of Theorem 5 (resp. Theorem 6) but condition (8) is not satisfied, then f 6= IY.

Now, we rewrite the next theorem given in [30].

Theorem 9 ([30]). Consider the metric space (Y, d) and let the map f be from Y to itself, which
has a fixed circle Cy0,$ and φ, as in (2). Then f meets the condition

d(y, f y) ≤ φ(y)− φ( f y)
h

, (9)

for every y ∈ Y and h > 1, if and only when f = IY.

Theorem 10. Consider the metric space (Y, d). Let the map f be from Y to itself, which has a fixed
circle Cy0,$ and φ, as in (2). Then, f fulfils (8) if and only when f satisfies (9).
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Proof. The proof follows easily.

3. New Classes of Contractive and Expanding Mappings in Metric Spaces

In this part of the article, we will apply a different strategy to acquire new results
for the fixed circle. This new approach also ensures the existence of a fixed disc of a
self-mapping. The following group of functions, which was first presented by Wardowski
in [39], is our primary resource for accomplishing this.

Definition 1 ([39]). Let F stand for the entire group of functions F : (0, ∞)→ R in such a way
that

(F1) F is neither decreasing nor constant,
(F2) For every sequence {αn} in (0, ∞) the below must be true.

lim
n→∞

αn = 0 iff lim
n→∞

F(αn) = −∞,

(F3) There exists t ∈ (0, 1) such that lim
α→0+

αtF(α) = 0.

Several examples of functions that satisfy the axioms (F1), (F2) and (F3) of Definition 1
are the following F(y) = ln(y), F(y) = ln(y) + y, F(y) = − 1√

y and F(y) = ln(y2 + y)
(check [39] for further information).

At this point, we are going to discuss a new sort of contraction that goes as follows.

Definition 2. Consider the metric space (Y, d). Let f be a self-mapping on Y. If there exists t > 0,
F ∈ F and y0 ∈ Y in such a way that

d(y, f y) > 0⇒ t + F(d(y, f y)) ≤ F(d(y0, y)),

for every y ∈ Y, then f is called as an Fc-contraction.

It is important to notice that the point y0, which is referred to in Definition 2, needs
to be a fixed point in the mapping f . In fact, if y0 is not a fixed point of f , we obtain
d(y0, f y0) > 0 and then

d(y0, f y0) > 0⇒ t + F(d(y0, f y0)) ≤ F(d(y0, y0)).

It is clear that it is a contradiction due to the fact that the domain of F is (0, ∞). As a result,
the next proposition may be stated as a direct consequence of Definition 2.

Proposition 1. Consider the metric space (Y, d). If f is an Fc-contraction with y0 ∈ Y, then we
obtain f y0 = y0.

Using this new type of contraction, we will now state the following fixed-circle theo-
rem.

Theorem 11. Consider the metric space (Y, d). Let f be an Fc-contraction with y0 ∈ Y. Define the
number γ by

γ = inf{d(y, f y) : y 6= f y, y ∈ Y}.

Then, Cy0,γ is a fixed circle of f . Particularly, f fixes each circle Cy0,r where r < γ.

Proof. If γ = 0, then clearly Cy0,γ = {y0}, and by using Proposition 1, we observe that
Cy0,γ is a fixed circle of f . Assume γ > 0 and let y ∈ Cy0,γ. If f y 6= y, then by the definition
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of γ, we have d(y, f y) ≥ γ. Since F is increasing, using the Fc-contractive property of f ,
we obtain

F(γ) ≤ F(d(y, f y))

≤ F(d(y0, y))− t

< F(d(y0, y)) = F(γ),

which leads to a contradiction. Therefore, we have d(y, f y) = 0, that is, f y = y. Conse-
quently, Cy0,γ is a fixed circle of f .

Now, we prove that f also fixes any arbitrary circle Cy0,r with r < γ. Take y ∈ Cy0,r
and assume that d(y, f y) > 0. Again, using the Fc-contractive property of the self-mapping,
we obtain

F(d(y, f y)) ≤ F(d(y0, y))− t < F(r).

Since F is increasing, we find
d(y, f y) < r < γ.

However, γ = inf{d(y, f y) : for every y 6= f y}, which brings forth a contradiction. Hence,
we obtain d(y, f y) = 0, that is, f y = y. Accordingly, Cy0,r, is a circle of f that is fixed.

Remark 3. (1) We note that in Theorem 11, the Fc-contraction f fixes the disc Dy0,γ. Hence, the
centre of any fixed circle is also fixed by f . In Theorem 4, the self-mapping f maps Cy0,ρ into (or
onto) itself, but the centre of the fixed circle does not require to be fixed by f .

(2) In relation to the number of points in the set Y, the number of fixed circles of an Fc-
contractive self-mapping f may be infinite (see Example 11).

We give some illustrative examples.

Example 9. We consider the set Y =
{

0, 1, e2,−e2, e2 − 1, e2 + 1
}
⊂ R with the usual metric

and identify the self-mapping f8 : Y→ Y as

f8y =

{
1 ; y = 0
y ; y 6= 0

.

The self-mapping f8 is an Fc-contractive self-mapping, such as F(y) = ln y, t = 1 and y0 = e2.
Obviously, we have d(y, f8y) > 0 only for the point y = 0 and

t + F(d(y, f8y)) = 1 + ln|0− 1| ≤ F(d(y0, y)) = ln
∣∣∣e2 − 0

∣∣∣ = 2 ln e = 2.

Clearly, we obtain γ = 1, and f8 fixes the circle Ce2,1 =
{

e2 − 1, e2 + 1
}

. f8 fixes also the disc
De2,1 =

{
y ∈ Y : d(y, e2) ≤ 1

}
=
{

e2, e2 − 1, e2 + 1
}

. Notice that circle C0,e2 =
{
−e2, e2} is

another fixed circle of f8.

As may be observed in the following illustration, the converse assertion of Theorem 11
does not always hold true.

Example 10. Take (Y, d) as a metric space, y0 ∈ Y be any arbitrary point and µ > 0 be any
number. If we consider the self-mapping f9 : Y→ Y defined by

f9y =

{
y ; d(y, y0) ≤ µ
y0 ; d(y, y0) > µ

,

Therefore, it is not hard to realize that f9 is not an Fc-contractive self-mapping for the point y0 but
f9 fixes each circle Cy0,r where r ≤ µ.
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Example 11. Consider the standard metric space (C, d) and describe the self-mapping f10 : C→
C as

f10z =

{
z ; |z| < 2

z + 1 ; |z| ≥ 2
,

for all z ∈ C. We have γ = min{d(z, f10z) : z 6= f10z} = 1 and f10 is an Fc-contractive self-
mapping with F(x) = ln y, t = ln 2 and z0 = 0 ∈ C. Clearly, the self-mapping f10 has infinitely
many circles that are fixed.

Presently, we have settled on a new theorem of fixed circles based on the following
well-known fact, that if a self-mapping f on Y is surjective, then there exists a self mapping
f ∗ : Y→ Y, in such a way that the map ( f ◦ f ∗) is the identity map for Y. First, we give a
new type of expanding map.

Definition 3. A self-mapping f on a metric space Y is referred to as an Fc-expanding map, if there
exist t < 0, F ∈ F and y0 ∈ Y in such a way that

d(y, f y) > 0⇒ F(d(y, f y)) ≤ F(d(y0, f y)) + t,

for every y ∈ Y.

Theorem 12. Consider the metric space (Y, d). If f : Y → Y is a surjective Fc-expanding map
with y0 ∈ Y, then f has a circle that is fixed in Y.

Proof. Since f is surjective, there exists a self-mapping f ∗ : Y → Y, such that the map
( f ◦ f ∗) is the identity map for Y. Take y ∈ Y be such that d(y, f ∗y) > 0 and z = f ∗y. First,
notice the following fact

f z = f ( f ∗y) = ( f ◦ f ∗)y = y.

Since
d(z, f z) = d( f z, z) > 0,

by using Fc-expanding property of f , we obtain

F(d(z, f z)) ≤ F(d(y0, f z)) + t

and
F(d( f ∗y, y)) ≤ F(d(y0, y)) + t.

Therefore, we obtain
−t + F(d( f ∗y, y)) ≤ F(d(y0, y)).

Consequently, f ∗ is an Fc-contraction of Y with y0 as −t > 0. Then, using Theorem 11, f ∗

has a fixed circle Cy0,γ. Let z ∈ Cy0,γ be any point. Using the fact that

f z = f ( f ∗z) = z,

we deduce that f z = z, then z is a fixed point of f , which implies that f also fixes Cy0,γ, as
required.

Example 12. Let us take the set Y = {1, 2, 3, 4, 5} with the standard metric and define the self-
mapping f11 : Y→ Y by

f11y =


1 ; y = 2
2 ; y = 1
y ; y ∈ {3, 4, 5}

.

f11 is a surjective Fc-expanding map with y0 = 4, F(y) = ln y and t = − ln 2. We obtain

γ = min{d(y, f y) : y 6= f y, y ∈ Y} = 1
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and circle C4,1 = {3, 5} is the fixed circle of f .

Example 13. Let (C, d) be the standard metric space and consider the self-mapping f12 : C→ C
defined by

f12z =

{
z ; |z| ≤ 1

2
3 z ; |z| > 1

,

for all z ∈ C. We have

γ = inf{d(z, f12z) : z 6= f12z}

= inf
{∣∣∣∣z− 2

3
z
∣∣∣∣ = |z|3 : |z| > 1

}
=

1
3

.

f12 is a surjective Fc-expanding map with y0 = 0, F(y) = ln y and t = ln
( 3

4
)
. Indeed, we obtain

ln
(

1
2

)
< ln

(
3
4

)
⇒ ln

(
|z|
3

)
< ln

(
2|z|

3

)
+ ln

(
3
4

)
for each z with |z| > 1. Circle C0, 1

3
=
{

z : |z| = 1
3

}
is a fixed circle of f .

Remark 4. The conclusion for Theorem 12 does not hold true in all cases if f is not a surjective
map. For instance, if we consider the set Y = {1, 2, 3, 4} using the standard metric d and let the
self-mapping be defined as f12 : Y→ Y where

f13y =


1 ; y = 2
2 ; y ∈ {1, 3}
4 ; y = 4

.

It is not hard to verify that f13 fulfils the condition

d(y, f y) > 0⇒ F(d(y, f y)) ≤ F(d(y0, f y)) + t

for all y ∈ Y, with F(y) = ln y, y0 = 4 and t = − ln 2. Therefore, f13 meets all of the axioms of
Theorem 12, except that f13 is not surjective. Notice that γ = 1 and f13 does not fix circle C4,1.

4. Fixed Point Sets of Activation Functions

Activation functions are the primary neural networks’ decision-making units in a
neural network; and hence, it is important to choose the most appropriate activation
function for the neural network analysis [40,41]. Characteristic properties of activation
functions play an important role in learning and stability issues of a neural network.
A comprehensive analysis of different activation functions with individual real-world
applications was given in [40]. We note that the fixed point sets of commonly used activation
functions (e.g., Ramp function, ReLU function, Leaky ReLU function) contain some fixed
discs and fixed circles.

Example 14. Let us consider the Leaky ReLU function defined by

f (y) = max(ky, y) =
{

ky ; y ≤ 0
y ; y > 0

,

where k ∈ [0, 1]. In [42], the Leaky–Reluplex algorithm was proposed to verify deep neural networks
(DNNs) with the Leaky ReLU activation function (see [42] for more details). Now, we consider
the fixed point set of the Leaky ReLU activation function by a geometric viewpoint. Clearly, the
fixed point set of f is Fix( f ) = [0, ∞). Let ρ = y0 ∈ (0, ∞) be a fixed point and consider the circle
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Cy0,ρ = {0, 2y0}. Then, it is easy to verify that the function f (y) meets the criteria of Theorem 5
for circle Cy0,ρ with L = 0. Clearly, circle Cy0,ρ is a fixed circle of f and the centre of the fixed circle
is also fixed by f .

Most of the known fixed point theorems (e.g. Banach fixed point theorem, Brouwer’s
fixed point theorem) have been used in the theoretic studies of neural networks. For
example, in [43], the existence of a fixed point for every recurrent neural network was
shown, and a geometric approach was used to locate the fixed points. Brouwer’s fixed
point theorem was used to maintain the existence of a fixed point. This study shows the
importance of the geometric viewpoint and theoretic fixed point results in applications.

5. Conclusions and Prospective Initiatives

In this section, we point out the investigation of some open questions. Concerning the
geometry of non unique fixed points of a self-mapping on a metric space, novel geometric
(fixed-circle or fixed-disc) findings have been found. To do this, we use two different
approaches. One of them is to measure whether a given circle is fixed or not by a self-
mapping. Another approach is to find which circle is fixed by a self-mapping under some
contractive or expanding conditions. The investigation of new conditions which ensure
that a circle or a disc is fixed by a self-mapping can be considered as a future problem. For
a self-mapping in which the fixed point set contains a circle or a disc, new contractive or
expanding conditions can also be investigated.

Additionally, there are several examples of self-mappings that have a common fixed
circle. Here is an example, let (R, d) be the usual metric space and consider circle C0,1 =
{−1, 1}. We define the self-mappings f13 : R→ R and f14 : R→ R by

f13y =

{
1
y ; y ∈ {−1, 1}
0 ; otherwise

and f14y =
5y + 3
3y + 5

,

for each y ∈ R, respectively. Both self-mappings f13 and f14 fix circle C0,1 = {−1, 1}, then,
circle C0,1 = {−1, 1} is a common fixed circle of the self-mappings f13 and f14. At this
point, the following question can be left for future study.

Question 13. What condition(s) must exist for any circle Cx0,ρ to be the common fixed circle for
two or more self-mappings?

In conclusion, the problems discussed in this study can also be investigated on various
generalized metric spaces. For instance, the notion of an Ms-metric space was introduced
in [44].

Notation 14. We use the following notations.

1. msa,b,c := min{ms(a, a, a), ms(b, b, b), ms(c, c, c)}
2. Msa,b,c := max{ms(a, a, a), ms(b, b, b), ms(c, c, c)}

Definition 4. An Ms-metric on a set Y that contains at least one point is function ms : Y3 → R+,
if for all a, b, c, t ∈ Y we have

1. ms(a, a, a) = ms(b, b, b) = ms(c, c, c) = ms(a, b, c)⇐⇒ a = b = c,
2. msa,b,c ≤ ms(a, b, c),
3. ms(a, a, b) = ms(b, b, a),
4.

(ms(a, b, c)−msa,b,c) ≤(ms(a, a, t)−msa,a,t)

+ (ms(b, b, t)−msb,b,t) + (ms(c, c, t)−msc,c,t).

Then, the pair (Y, ms) is called an Ms-metric space.
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One can consult [44] for some examples and basic notions of an Ms-metric space.
In Ms-metric spaces, we define a circle as follows:

Ca0,ρ = {a ∈ Y | ms(a0, a, a)−msa0,a,a = ρ}.

Question 15. Consider the Ms-metric space (Y, ms) where k > 1, and let f be a surjective
self-mapping on Y. Yet, we obtain

ms(a, f a, f 2a) ≤ kms(a0, a, f a),

for every a ∈ Y and some a0 ∈ Y. Does f have a point circle on Y?

Question 16. Let (Y, ms) be an Ms-metric space, t > 0, F ∈ F, and f be a surjective self-mapping
on Y. Yet, we have

ms(a, f a, f 2a) > 0⇒ F(ms(a, f a, f 2a)) ≥ F(ms(a0, a, f a)) + t,

for every a ∈ Y and some a0 ∈ Y. Does f have a fixed circle on Y?
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32. Özgür, N.Y.; Taş, N. Some fixed-circle theorems and discontinuity at fixed circle. AIP Conf. 2018, 1926, 020048.
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