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Abstract: In this paper, we investigate properties concerning some recently introduced finite coarse
shape invariants—the k-th finite coarse shape group of a pointed topological space and the k-th
relative finite coarse shape group of a pointed topological pair. We define the notion of finite coarse
shape group sequence of a pointed topological pair (X, X0, x0) as an analogue of homotopy and
(coarse) shape group sequences and show that for any pointed topological pair, the corresponding
finite coarse shape group sequence is a chain. On the other hand, we construct an example of a
pointed pair of metric continua whose finite coarse shape group sequence fails to be exact. Finally,
using the aforementioned pair of metric continua together with a pointed dyadic solenoid, we show
that finite coarse-shape groups, in general, differ from both shape and coarse-shape groups.

Keywords: topological space; inverse system; pro-category; pro*-category; shape; finite coarse shape;
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1. Introduction

The shape theory of metric compacta was founded by K. Borsuk in 1967 [1,2]. Later
on, the shape theory was extended to the class of all topological spaces by S. Mardešić [3]
and K. Morita [4]. Further generalizations were made by N. Koceić-Bilan and N. Uglešić.
They have founded the coarse shape theory for all topological spaces using the inverse
systems approach. The coarse shape classification of topological spaces is generally coarser
than the homotopy type classification and shape classification, although they all coincide
on the class of polyhedra.

The authors have recently introduced a new classification of topological spaces based
on the finite coarse shape theory [5]. This new theory is quite abstract and defined for
an arbitrary pair (C, D) consisting of a category C, and it is a full and pro-reflective
(dense) subcategory D. In the special case when C = HTop (the homotopy category of
all topological spaces) and D = HPol (the category of all topological spaces having the
homotopy type of a polyhedron), one speaks of the (topological) finite coarse shape category
Sh~. The standard shape category Sh of topological spaces can be considered as a proper
subcategory of the finite coarse shape category Sh~ and Sh~ is a proper subcategory of
the coarse shape category Sh∗. Following the general construction, for C = HTop? (C =
HTop2

?) (the homotopy category of all pointed topological spaces (pairs)) and D = HPol?
(D = HPol2

?) (the category of all pointed topological spaces (pairs) having the homotopy
type of a pointed polyhedron (polyhedral pair)), one obtains the pointed topological finite
coarse shape category (of pairs) Sh~? (Sh~2

? ).
In reference [6] the authors introduced the notion of the k-th finite coarse shape group

π̌~
k (X, x0) of a pointed topological space (X, x0). For each k ∈ N, π̌~

k (X, x0) is a group (for

k = 0 a pointed set) having Sh~?
((

Sk, s0

)
, (X, x0)

)
as underlying set with a group operation

defined in a certain way (more on this in Section 2.1). Analogously, one can define the
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notion of the k-th relative finite coarse shape group π̌~
k (X, X0, x0) of a pointed pair of topological

spaces (X, X0, x0). For each k ∈ N \ {1}, π̌~
k (X, X0, x0) is a group (for k = 1 a pointed set)

having Sh~2
?

((
Bk,Sk−1, s0

)
, (X, X0, x0)

)
as underlying set. Furthermore, the existence of a

certain k-th (relative) finite coarse shape group functor π̌~
k from the corresponding finite coarse

shape category to the category Grp (Set?) implies that the (relative) finite coarse shape
groups are invariants of the finite coarse shape theory.

In this paper, we introduce the notion of finite coarse shape group sequence of a pointed
topological pair (X, X0, x0). Since homotopy group sequences [7] and coarse shape group
sequences are exact [8], while shape group sequences are only semiexact at each term
(“chains”) [3], it makes sense to investigate whether finite coarse shape group sequences
have these properties. We will show that finite coarse-shape group sequences are chains
and construct an example of a pointed pair of metric compacta such that the corresponding
finite coarse-shape group sequence fails to be exact. Moreover, the aforementioned pointed
pair of metric compacta will facilitate us to show that finite coarse-shape groups, in general,
differ from both shape and coarse shape groups.

2. Preliminaries
2.1. The Finite Coarse Shape

We will now recall some elementary notions and properties of the finite coarse shape
theory. A finite ∗-morphism (shorter ~-morphism) of inverse systems X = (Xλ, pλλ′ , Λ) and
Y =

(
Yµ, qµµ′ , M

)
in a category C is an ordered pair

(
f , f m

µ

)
consisting of a function

f : M→ Λ (called an index function) and, for every µ ∈ M, of a sequence of morphisms
f m
µ : X f (µ) → Yµ, m ∈ N, in C such that:

(1) for every pair of comparable indices µ, µ′ ∈ M, µ ≤ µ′, there exist λ ∈ Λ, λ ≥
f (µ), f (µ′), and mµµ′ ∈ N such that, for every m ≥ mµµ′ ,

f m
µ p f (µ)λ = qµµ′ f

m
µ′ p f (µ′)λ;

(2) for every µ ∈ M

card
{

f m
µ : m ∈ N

}
< ℵ0.

By composition of ~-morphisms
(

f , f m
µ

)
: X→ Y and (g, gm

ν ) : Y→ Z = (Zν, rνν′ , N)

we mean a ~-morphism (h, hm
ν ) : X→ Z such that

h = f g and hm
ν = gm

ν f m
g(ν), for all m ∈ N, ν ∈ N.

Given a category C, by inv~-C we denote the category having all inverse systems in C
as objects and, for any pair of object X and Y, having all ~-morphisms between X and Y as
morphisms with the composition mentioned above as the categorial composition.

A ~-morphism
(

f , f m
µ

)
: X → Y is said to be equivalent to a ~-morphism

(
f ′, f

′m
µ

)
:

X→ Y, and one writes
(

f , f m
µ

)
∼
(

f ′, f
′m
µ

)
, if every µ ∈ M admits λ ∈ Λ, λ ≥ f (µ), f ′(µ),

and mµ ∈ M such that, for every m ≥ mµ,

f m
µ p f (µ)λ = f

′m
µ p f ′(µ)λ.

The relation∼ is an equivalence relation on every set of ~-morphisms between inverse
systems in C. The equivalence class

[(
f , f m

µ

)]
of a ~-morphism

(
f , f m

µ

)
: X→ Y is denoted

by f~.
All inverse systems in C as objects and all equivalence classes f~ as morphisms form

a category denoted by pro~-C. The composition in pro~-C is defined by the representa-
tives, i.e,

g~ ◦ f~ = h~ = [(h, hm
ν )],
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where (h, hm
ν ) =

(
f g, gm

ν f m
g(ν)

)
.

The joining which keeps the inverse systems in C fixed and associates to every mor-
phism f =

[(
f , fµ

)]
: X→ Y of pro-C the pro~-C morphism f~ =

[(
f , f m

µ

)]
: X→ Y such

that f m
µ = fµ, for all µ ∈ M, m ∈ N, determines a faithful functor J~C : pro-C → pro~-C.

Hence, pro-C can be considered as a subcategory of pro~-C.
Analogously, the joining which keeps the inverse systems in C fixed and associates

to every morphism f~ =
[(

f , f m
µ

)]
: X→ Y of pro~-C the same morphism as morphism

f∗ =
[(

f , f m
µ

)]
: X → Y of pro∗-C determines a faithful functor J∗C : pro~-C → pro∗-C.

Hence, pro~-C is a subcategory of pro∗-C.
Let C be an arbitrary category and D ⊆ C a dense and full subcategory. Let p : (X)→

X and p′ : (X) → X′ be D-expansions of the same object X ∈ Ob(C) and let q : (Y) → Y
and q′ : (Y)→ Y′ be D-expansions of the same object Y ∈ Ob(C). A morphism f~ : X→ Y
is said to be equivalent to a morphism f

′~ : X′ → Y′ in pro~-D, denoted by f~ ∼ f
′~,

provided
J~D(j) ◦ f~ = f

′~ ◦ J~D(i),

where i : X→ X′ and j : Y→ Y′ are canonical isomorphisms between different expansions
of objects X and Y, respectively. The relation∼ is an equivalence relation such that f~ ∼ f

′~

and g~ ∼ g
′~ imply g~f~ ∼ g

′~f
′~ whenever the compositions g~f~ and g

′~f
′~ exist.

The equivalence class of a morphism f~ is denoted by 〈f~〉.
Based on the relation ∼ of pro~-D, to every pair (C, D) (where D is a dense and full

subcategory of C) we associate a category Sh~
(C,D)

such that:

− Ob
(

Sh~
(C,D)

)
= Ob(C);

− for any pair X, Y of objects in Sh~
(C,D)

, the set Sh~
(C,D)

(X, Y) consists of equivalence
classes 〈f~〉 of all morphisms f~ : X→ Y in pro~-D, where p : X → X and q : Y → Y
are any D-expansions of objects X and Y respectively;

− the composition of 〈f~〉 : X → Y and 〈g~〉 : Y → Z is defined by the representa-
tives, i.e., 〈

g~〉 ◦ 〈f~〉 :=
〈
g~ ◦ f~

〉
: X → Z.

The category Sh~
(C,D)

is called the abstract finite coarse shape category of a pair (C, D),

while the morphisms 〈f~〉 : X → Y in Sh~
(C,D)

are called finite coarse shape morphisms and
denoted by F~ : X → Y. A finite coarse shape morphism F~ : X → Y can be described by
a diagram

X Y

X Y

p

F~

q

f~

It is important to emphasize that the set Sh~
(C,D)

(X, Y) is in a one-to-one correspon-
dence with the set pro~-D(X, Y), for any D-expansions X and Y of objects X and Y respectively.

Isomorphic objects X and Y in the category Sh~
(C,D)

are said to have the same finite coarse
shape type. This is denoted by sh~(X) = sh~(Y).

Functors J~C : pro-C → pro~-C and J∗C : pro~-C → pro∗-C induce faithful functors
J~
(C,D)

: Sh(C,D) → Sh~
(C,D)

and J∗(C,D) : Sh~
(C,D)

→ Sh∗(C,D), respectively, by putting:

− J~
(C,D)

(X) = J∗(C,D)(X) = X, for every object X ∈ C,

− J~
(C,D)

(F) = F~ =
〈
J~D(f)

〉
, for every shape morphism F = 〈f〉,

− J∗(C,D)(F~) = F∗ = 〈J∗D(f~)〉, for every finite coarse shape morphism F~ = 〈f~〉.
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Hence, the abstract shape category Sh(C,D) (see [3]) can be considered as a subcategory
of the abstract finite coarse shape category Sh~

(C,D)
and Sh~

(C,D)
is a subcategory of the

abstract coarse shape category Sh∗(C,D).

The composition of functors S(C,D) : C → Sh(C,D) (the shape functor) and J~
(C,D)

is

called the abstract finite coarse shape functor, denoted by S~
(C,D)

: C → Sh~
(C,D)

.

Throughout this paper, we will restrict to C = HTop? (C = HTop2
?) and D = HPol?

(D = HPol2
?). In this case, one speaks of the pointed topological finite coarse shape category (of

pairs), briefly denoted by Sh~? (Sh~2
? ), and the finite coarse shape functor S~.

Recall that the objects of HTop? are all the pointed topological spaces (X, x0), x0 ∈ X,
and morphisms are all the homotopy classes [ f ] of mappings of pointed spaces f : (X, x0)→
(Y, y0), i.e., homotopy classes of functions f : X → Y satisfying f (x0) = y0. Analo-
gously, objects of HTop2

? are all the pointed pairs of topological spaces (X, X0, x0), x0 ∈
X0 ⊆ X, and morphisms are all the homotopy classes [ f ] of mappings of pointed pairs
f : (X, X0, x0) → (Y, Y0, y0), i.e., homotopy classes of functions f : X → Y satisfying
f (X0) ⊆ Y0 and f (x0) = y0. We will usually denote an H-map [ f ] by omitting the brackets
unless we need to especially distinct some mapping f and the corresponding homotopy
class [ f ]. By reducing the object classes to all the pointed pairs having homotopy type of
some pointed polyhedral pair, and to all pointed spaces having homotopy type of some
pointed polyhedron, one gets full subcategories HPol2

? ⊆ HTop2
? and HPol? ⊆ HTop?,

respectively.
It is well known (Theorem 1.4.7, Theorem 1.4.8, [3]) that every pointed pair of topolog-

ical spaces (X, X0, x0) admits an HPol2
?-expansion

p : (X, X0, x0)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ)

and that every pointed topological space (X, x0) admits an HPol?-expansion

q : (X, x0)→
((

Xµ, x0µ

)
, qµµ′ , M

)
.

To end this section, let us recall the notion of normally embedded subspace. Let (X, x0)
be a pair of topological spaces. We say that X0 is normally embedded in X provided for every
normal covering U0 of X0 there is a normal covering U of X such that

U|X0 = (U ∩ X0 : U ∈ U )

refines U0. An important property of normally embedded subspace is given in Corollary
1.6.7, [3]: for a pointed topological pair (X, X0, x0), where the subspace X0 is normally
embedded in X, there exists an HPol2

?-expansion

p = [(pλ)] : (X, X0, x0)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ)

such that
p = [(pλ)] : (X, x0)→ ((Xλ, x0λ), pλλ′ , Λ) and

p|X0
=
[(

pλ|X0

)]
: (X0, x0)→

(
(X0λ, x0λ), pλλ′ |X0λ′

, Λ
)

are HPol?-expansions of the pointed spaces (X, x0) and (X0, x0) respectively. Such an
expansion p of a pointed pair (X, X0, x0) is called a normal HPol2

?-expansion.

2.2. (Relative) Homotopy Groups and (Relative) Finite Coarse Shape Groups

In this section, let us recall some basic notions and properties concerning (relative) ho-
motopy groups [7] and (relative) finite coarse shape groups [6]. For every pointed topologi-
cal pair (X, X0, x0) and every k ∈ N the relative k-dimensional homotopy group πk(X, X0, x0)

consists of all the homotopy classes of maps from
(
Bk,Sk−1, s0

)
to (X, X0, x0), where Bk
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is the unit k-dimensional disk with boundary ∂Bk = Sk−1. For k ≥ 2, πk(X, X0, x0) has a
group structure with the operation being commutative for every k ≥ 3.

Similarly, for every pointed topological space (X, x0) and for every k ∈ N0, the k-
th homotopy group πk(X, x0) consists of all the homotopy classes of maps from

(
Sk, s0

)
to (X, x0). For every k ∈ N, πk(X, x0) is a group with the operation being commutative
for every k ≥ 2. Since every map from

(
Bk,Sk−1, s0

)
to (X, X0, x0) can be identified with

a map from Bk/Sk−1 = Sk to X mapping the base point s0 = Sk−1/Sk−1 to x0, the k-th
homotopy group πk(X, x0) coincides with the relative k-dimensional homotopy group
πk(X, {x0}, x0), for every k ≥ 2.

For every pointed topological pair (X, X0, x0) and every k ∈ N a homotopy
boundary homomorphism

∂k : πk(X, X0, x0)→ πk−1(X0, x0)

is defined by the rule

∂k( f ) = f |(Sk−1,s0) :
(
Sk−1, s0

)
→ (X0, x0),

for any f ∈ πk(X, X0, x0). In other words, the image ∂k( f ) of any H-map f :
(
Bk,Sk−1, s0

)
→

(X, X0, x0) is the restriction of f to the boundary Sk−1 of Bk, i.e., an element of the (k− 1)-th
homotopy group of the pointed subspace (X0, x0) of X. A homotopy boundary homomor-
phism ∂k is a homomorphism of groups for every k ≥ 2, while ∂1 is a base point preserving
function. Now, the homotopy group sequence is defined as a sequence

· · ·
∂k+1→ πk(X0, x0)

πk(i)→ πk(X, x0)
πk(j)→ πk(X, X0, x0)

∂k→ · · ·

· · · ∂1→ π0(X0, x0)
π0(i)→ π0(X, x0),

(1)

where i : (X0, x0)→ (X, x0) and j : (X, {x0}, x0)→ (X, X0, x0) are homotopy classes of the
appropriate inclusions.

For every k ∈ N0 and every pointed space (X, x0) the k-th finite coarse shape group
π̌~

k (X, x0) can be defined as follows. For every k ∈ N, π̌~
k (X, x0) is a group (for k ≥ 2 an

abelian group) having Sh~?
((

Sk, s0

)
, (X, x0)

)
as underlying set with a group operation

given by the formula

A~ + B~ =
〈
a~
〉
+
〈
b~〉 = 〈a~ + b~〉 = 〈[(an

λ)] + [(bn
λ)]〉 = 〈[(an

λ + bn
λ)]〉. (2)

The finite coarse shape morphisms A~ and B~ are represented by pro~-HPol? mor-
phisms a~ =

[(
an

λ

)]
and b~ =

[(
bn

λ

)]
:
(
Sk, s0

)
→ ((Xλ, x0λ), pλλ′ , Λ) respectively, where

p : (X, x0)→ ((Xλ, x0λ), pλλ′ , Λ)

is an HPol?-expansion of a pointed space (X, x0). The sum an
λ + bn

λ denotes the sum in
the group πk(Xλ, x0λ). Especially, π̌~

0 (X, x0) is a pointed set of all finite coarse shape
morphisms from

(
S0, s0

)
to (X, x0), i.e., the set Sh~?

((
S0, s0

)
, (X, x0)

)
.

For every k ∈ N and every pointed topological pair (X, X0, x0) the k-th relative finite
coarse shape group π̌~

k (X, X0, x0) can be defined as follows. For every k ≥ 2, π̌~
k (X, X0, x0)

is a group (for k ≥ 3 an abelian group) having the set Sh~?
((

Bk,Sk−1, s0

)
, (X, X0, x0)

)
as

underlying set with a group operation given by the Formula (2).
The finite coarse shape morphisms A~ and B~ are hereby represented by pro~-HPol2

?

morphisms a~ =
[(

an
λ

)]
and b~ =

[(
bn

λ

)]
:
(
Bk,Sk−1, s0

)
→ ((Xλ, X0λ, x0λ), pλλ′ , Λ),

respectively, where
p : (X, X0, x0)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ).
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is an HPol2
?-expansion of a pointed pair (X, X0, x0). The sum an

λ + bn
λ in this case de-

notes the sum in the group πk(Xλ, X0λ, x0λ). For k = 1, π̌~
1 (X, X0, x0) is a pointed set

consisting of all finite coarse shape morphisms from
(
B1,S0, s0

)
to (X, X0, x0), i.e., the set

Sh~2
?

((
B1,S0, s0

)
, (X, X0, x0)

)
.

It is obvious that, for X0 = {x0}, an HPol2
?-expansion of a pointed pair (X, X0, x0) is

p : (X, {x0}, x0)→ ((Xλ, {x0λ}, x0λ), pλλ′ , Λ)

and that every homotopy class from
(
Bk,Sk−1, s0

)
to (X, {x0}, x0) can be identified with a

homotopy class from
(
Sk, s0

)
to (X, x0), so the sets Sh~2

?

((
Bk,Sk−1, s0

)
, (X, {x0}, x0)

)
and

Sh~?
((

Sk, s0

)
, (X, x0)

)
can be identified for every k ∈ N. This, together with πk(X, x0) =

πk(X, {x0}, x0) for every k ≥ 2, implies that the k-th finite coarse shape group π̌~
k (X, x0) can

be considered as the k-th relative finite coarse shape group π̌~
k (X, {x0}, x0), for every k ≥ 2.

For every k ∈ N0 and for every finite coarse shape morphism F~ : (X, x0)→ (Y, y0),
a homomorphism of finite coarse shape groups (for k = 0 a base point preserving function)

π̌~
k
(

F~) : π̌~
k (X, x0)→ π̌~

k (Y, y0)

is defined by the rule
π̌~

k
(

F~)(A~) = F~ ◦ A~,

for any finite coarse shape morphism A~ ∈ π̌~
k (X, x0). Analogously, for every k ∈ N and

for every finite coarse shape morphism F~ : (X, X0, x0)→ (Y, Y0, y0), a homomorphism of
relative finite coarse shape groups (for k = 1 a base point preserving function)

π̌~
k
(

F~) : π̌~
k (X, X0, x0)→ π̌~

k (Y, Y0, y0)

is defined by the same rule. These two joinings induce functors π̌~
k : Sh~? → Grp

(π̌~
0 : Sh~? → Set?) and π̌~

k : Sh~2
? → Grp (π̌~

1 : Sh~2
? → Set?) respectively, associating with

every pointed topological space (X, x0) the k-th finite coarse shape group π̌~
k (X, x0) and

with every pointed topological pair (X, X0, x0) the k-th relative finite coarse shape group
π̌~

k (X, X0, x0) respectively. The functors π̌~
k : Sh~? → Grp and π̌~

k : Sh~2
? → Grp are called

the k-th (relative) finite coarse shape group functors.
To obtain our main goals, the following result from [6] will be of a great significance.

Theorem 1. Let (X, x0) be a pointed space and let p = [(pλ)] : (X, x0) → ((Xλ, xλ), pλλ′ , Λ)
be an HPol?-expansion of (X, x0). Then, for every k ∈ N,

π̌~
k (X, x0) ∼= lim

←

(
π̌~

k (Xλ, xλ), π̌~
k (pλλ′), Λ

)
.

In reference [6], Example 5.1, the authors have derived an explicit formula for the k-th
finite coarse shape group of a pointed stable space, i.e., a space having the shape type of
some pointed polyhedron. Namely, if (P, p0) is a pointed stable space and k ∈ N, then the
k-th finite coarse shape group of (P, p0) is given by

π̌~
k (P, p0) = ∏

n∈N

f
πk(P, p0)

/⊕
n∈N

πk(P, p0),

where ∏
n∈N

f πk(P, p0) denotes a subgroup of ∏
n∈N

πk(P, p0) consisting only of the elements of

∏
n∈N

πk(P, p0) having (at most) finitely many mutually different coordinate values. In the

same way one obtains the following result.
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Proposition 1. Let (P, P0, p0) be a pointed pair of stable spaces and let k ∈ N be an arbitrary integer.

(i) If k ≥ 2, then the k-th relative finite coarse shape group of (P, P0, p0) is a group given by

π̌~
k (P, P0, p0) = ∏

n∈N

f
πk(P, P0, p0)

/⊕
n∈N

πk(P, P0, p0).

(ii) If k = 1, then

π̌~
1 (P, P0, p0) = ∏

n∈N

f
πk(P, P0, p0)/∼,

where ∼ is an equivalence relation on the direct product of pointed sets ∏
n∈N

f πk(P, P0, p0)

identifying elements having almost all equal coordinates.

3. The Finite Coarse Shape Group Sequence of a Pointed Pair (X, X0, x0)

In this section, we introduce the notion of finite coarse shape group sequence of a pointed
topological pair as the finite coarse shape theory analogue of the homotopy group sequences
and the (coarse) shape group sequences. Recall that a sequence

· · · → G′
f ′→ G

f→ G′′ → · · ·

of group homomorphisms is said to be exact (semiexact) at term G if Im f ′ = Ker f (Im f ′ ⊆
Ker f ). Even if G, G′ and G′′ are no more than pointed sets and f is only a base point pre-
serving function, the property of exactness (semiexactness) at G still makes sense provided
Ker f is considered as the preimage f−1(o) of the base point (or neutral element) o. A se-
quence of homomorphisms is said to be exact (a chain) if it is exact (semiexact) at each term.
It is known that homotopy group sequences and coarse shape group sequences are exact,
while shape group sequences are, generally, no more than chains. Therefore, it is interesting
to investigate whether finite coarse-shape group sequences have these properties.

Definition 1. Let (X, X0, x0) be a pointed topological pair such that X0 is normally embedded
in X and let k ∈ N be an arbitrary integer. The joining

∂~k : π̌~
k (X, X0, x0)→ π̌~

k−1(X0, x0)

given by the rule
∂~k
(

A~) = A~|(Sk−1,s0) :
(
Sk−1, s0

)
→ (X0, x0),

for every finite coarse shape morphism A~ ∈ π̌~
k (X, X0, x0), is called the boundary homomorphism

of finite coarse shape groups.

Notice that A~|(Sk−1,s0) is a well defined finite coarse shape morphism. Indeed, since

X0 is normally embedded in X, there exists a normal HPol2
?-expansion

p : (X, X0, x0)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ)

of a pointed pair (X, X0, x0). If A~ in Sh~2
? is represented by a pro~-HPol2

? morphism

a~ = [(an
λ)] :

(
Bk,Sk−1, s0

)
→ ((Xλ, X0λ, x0λ), pλλ′ , Λ),

then ∂~k (A~) in Sh~? is represented by a pro~-HPol? morphism

a~|(Sk−1,s0) :=
[(

an
λ|(Sk−1,s0)

)]
:
(
Sk−1, s0

)
→ ((X0λ, x0λ), pλλ′ , Λ),
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i.e.,
A~|(Sk−1,s0) ∈ Sh~?

((
Sk−1, s0

)
, (X0, x0)

)
.

Theorem 2. For every k ≥ 2, the boundary homomorphism of the finite coarse shape group ∂~k is a
group homomorphism.

Proof. Let
p : (X, X0, x0)→ ((Xλ, X0λx0λ), pλλ′ , Λ)

be a normal HPol2
?-expansion of a pointed pair (X, X0, x0) and let A~ ∈ π̌~(X, X0, x0) be an

arbitrary finite coarse shape morphism. Then A~ is represented by a pro~-HPol2
? morphism

a~ = [(an
λ)] :

(
Bk,Sk−1, s0

)
→ ((Xλ, X0λ, x0λ), pλλ′ , Λ),

and ∂~k (A~) is represented by a pro~-HPol? morphism

a~|(Sk−1,s0) = [(an
λ|Sk−1)] :

(
Sk−1, s0

)
→ ((X0λ, x0λ), pλλ′ , Λ).

Notice that, for coordinate functions an
λ, the relation

an
λ|(Sk−1,s0) = ∂k(an

λ)

holds. Since the homomotopy boundary homomorphism ∂k is a group homomorphism,
we infer that for every two finite coarse shape morphisms A~, B~ ∈ π̌~

k (X, X0, x0) the
following equalities

∂~k
(

A~ + B~) = ∂~k
(〈

a~
〉
+
〈
b~〉) (2)

= ∂~k (〈[(an
λ + bn

λ)]〉) =

=
〈[

((an
λ + bn

λ))|(Sk−1,s0)

]〉
= 〈[(∂k(an

λ + bn
λ))]〉 = 〈[(∂k(an

λ) + ∂k(bn
λ))]〉 =

= 〈[(∂k(an
λ))]〉+ 〈[(∂k(bn

λ))]〉 =
〈[(

an
λ|(Sk−1,s0)

)]〉
+
〈[(

bn
λ|(Sk−1,s0)

)]〉
=

=
〈

a~|(Sk−1,s0)

〉
+
〈

b~|(Sk−1,s0)

〉
= A~|(Sk−1,s0) + B~|(Sk−1,s0) = ∂~k

(
A~)+ ∂~k

(
B~)

hold.

Remark 1. For k = 1 the boundary homomorphism of finite coarse shape groups ∂~1 : π̌~
1 (X, X0, x0)

→ π̌~
0 (X0, x0) is a base point preserving function.

Definition 2. Let (X, X0, x0) be a pointed topological pair such that X0 is normally embedded
in X and let

Ǐ~k := π̌~
k
(
S~(i)

)
: π̌~

k (X0, x0)→ π̌~
k (X, x0), for every k ∈ N0,

J̌~k := π̌~
k
(
S~(j)

)
: π̌~

k (X, {x0}, x0)→ π̌~
k (X, X0, x0), for every k ∈ N.

The sequence

· · ·
∂~k+1→ π̌~

k (X0, x0)
Ǐ~k→ π̌~

k (X, x0)
J̌~k→ π̌~

k (X, X0, x0)
∂~k→ · · ·

· · ·
Ǐ~1→ π̌~

1 (X, x0)
J̌~1→ π̌~

1 (X, X0, x0)
∂~1→ π̌~

0 (X0, x0)
Ǐ~0→ π̌~

0 (X, x0),

(3)

is called the finite coarse shape group sequence of the pointed pair (X, X0, x0).
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If X0 is normally embedded in X and if p : (X, X0, x0) → ((Xλ, X0λ, x0λ), pλλ′ , Λ) is
a normal HPol2

?-expansion of the pointed pair (X, X0, x0), then it is readily seen that the
finite coarse shape morphisms S~(i) and S~(j) are represented by pro~-HPol? morphisms

[(1Λ, in
λ)] :

(
(X0λ, x0λ), pλλ′ |X0λ′

, Λ
)
→ ((Xλ, x0λ), pλλ′ , Λ) (4)

and
[(1Λ, jn

λ)] : ((Xλ, {x0λ}, x0λ), pλλ′ , Λ)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ), (5)

respectively, where in
λ = iλ : (X0λ, x0λ) → (Xλ, x0λ) and jn

λ = jλ : (Xλ, {x0λ}, x0λ) →
(Xλ, X0λ, x0λ) are homotopy classes of the corresponding inclusions, for every λ ∈ Λ and
n ∈ N. Let us now clarify the properties of finite coarse shape group sequences.

Theorem 3. If (X, X0, x0) is a pointed topological pair such that X0 is normally embedded in X,
then the finite coarse shape group sequence of (X, X0, x0) is a chain.

Proof. Let
p : (X, X0, x0)→ ((Xλ, X0λ, x0λ), pλλ′ , Λ)

be a normal HPol2
?-expansion of the pointed pair (X, X0, x0). Given an arbitrary k ∈ N,

we will prove semiexactness of the finite coarse shape group sequence of (X, X0, x0) at the
term π̌~

k (X, x0) (the proof can be done analogously at any other term).
For an arbitrary finite coarse shape morphism F~ =

〈[(
f n
λ

)]〉
∈ π̌~

k (X0, x0), because
Equations (4) and (5), it holds that

J̌~k ◦ Ǐ~k
(

F~) = J̌~k (〈[((1Λ, in
λ))]〉 ◦ 〈[( f n

λ )]〉) = 〈[((1Λ, jn
λ))]〉 ◦ 〈[(in

λ ◦ f n
λ )]〉 = 〈[(jn

λ ◦ in
λ ◦ f n

λ )]〉

Notice that, for every λ ∈ Λ and n ∈ N, the H-map jnλ ◦ in
λ ◦ f n

λ is an element of the
k-dimensional relative homotopy group πk(X, X0, x0) and

in
λ ◦ f n

λ ∈ Im πk(in
λ) = Im πk(iλ).

Since a homotopy group sequence is exact at any term, i.e., Ker πk
(

jn
λ

)
= Im πk

(
in
λ

)
, we

infer that
πk(jn

λ)(i
n
λ ◦ f n

λ ) = jnλ ◦ in
λ ◦ f n

λ = o,

where o is the neutral element of πk(X, X0, x0). This means that

J̌~k ◦ Ǐ~k
(

F~) = O~,

that is, Im Ǐ~k ⊆ Ker J̌~k and the statement is proved.

The following example shows that finite coarse shape group sequences, in general, fail
to be exact.

Example 1. Let
(

P2, P1, ?
)

be the pointed pair which consists of the real projective plane P2,
the real projective line P1 and of an arbitrary base point ?. Let p :

(
P2, P1, ?

)
→
(

P2, P1, ?
)

be a
mapping defined by the commutative diagram

(
B2,S1, ?

) (
B2,S1, ?

)

(
P2, P1, ?

) (
P2, P1, ?

)ϕ

f

ϕ

p

,

where B2 is the unit disc in C, S1 = ∂B2 is the unit circle, f (z) = z3 and ϕ : B2 → P2 is the
quotient map which identifies pairs of antipodal points of S1.
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Let (X, X0, ?) denote the pointed pair of metric continua, which is the inverse limit of the in-
verse sequence

((
P2, P1, ?

)
, pii+1,N

)
, where pii+1 = p, for every i ∈ N. By Theorem 9, I.5.3 of [3],

this inverse limit induces an HTop2
?-expansion p = [(pi)] : (X, X0, ?)→

((
P2, P1, ?

)
, [pii+1],N

)
of the pointed pair (X, X0, ?), where [pii+1] = [p], for every i ∈ N. Moreover, since both P2 and
P1 are compacts having the homotopy type of a polyhedron, p is an HPol2

?-expansion of (X, X0, ?).
It is readily seen that p is a normal HPol2

?-expansion of the pointed pair (X, X0, ?).
Recall that π1

(
P1, ?

) ∼= Z, π1
(

P2, ?
) ∼= Z2 and π1

(
P2, P1, ?

)
= 0. Let us now describe the

(relative) finite coarse shape groups π̌~
1 (X0, ?), π̌~

1 (X, ?) and π̌~
1 (X, X0, ?). From Theorem 1 and

Example 5.1 [6], we infer that

π̌~
1 (X0, ?) ∼= lim

←

(
π̌~

1

(
P1, ?

)
, π̌~

1 ([pii+1]),N
)
∼=

∼= lim
←

(
∏
n∈N

f
π1

(
P1, ?

)/⊕
n∈N

π1

(
P1, ?

)
, π̌~

1 ([pii+1]),N
)
∼= lim
←

(
∏
n∈N

fZ
/⊕

n∈N
Z, p′ii+1,N

)
,

where p′ii+1 denotes the multiplication by 3. Hence, the 1st finite coarse shape group of (X0, ?) is a

subgroup of the direct product of groups ∏ f

n∈N
Z
/⊕

n∈N
Z, i.e.,

π̌~
1 (X0, ?) 6 ∏

p∈N

(
∏
n∈N

fZ
/⊕

n∈N
Z
)

,

but π̌~
1 (X0, ?) is actually trivial. Suppose the contrary, i.e., that there exists an element

0 6= x = (xi|i ∈ N) ∈ lim
←

(
∏
n∈N

fZ
/⊕

n∈N
Z, p′ii+1,N

)
.

Notice that such an element x has the following properties:

(a) For every i ∈ N, the i-th coordinate xi of x is a sequence
(
xm

i
)

m of integers such that
card

{
xm

i : m ∈ N
}
< ℵ0.

(b) For every pair i, i′ ∈ N, i ≤ i′, there exists mii′ ∈ N such that

xm
i = pm

ii′ ◦ xm
i′ = pii′ ◦ xm

i′ = 3i′−ixm
i′ , for every m ≥ mii′ .

(c) Since x 6= 0, there exists i0 ∈ N such that

xi0 6= 0 ∈ ∏
n∈N

fZ
/⊕

n∈N
Z.

The property (c), by the definition of the group ∏ f

n∈N
Z
/⊕

n∈N
Z, means that for every m ∈ N there

exists m′ ∈ N, m′ > m, such that 0 6= xm′
i0
∈ Z. In other words, there exists a subsequence

(
xmk

i0

)
k

of
(

xm
i0

)
such that xmk

i0
6= 0, for every k ∈ N. Let us now, for every k ∈ N, denote

rk = max
{

r ∈ Z+
0 : 3r|xmk

i0

}
.

Since
card

{
xmk

i0
: k ∈ N

}
≤ card

{
xm

i0 : m ∈ N
}
< ℵ0,

the following maximum
q = max{3rk : k ∈ N} ∈ Z+

0 (6)
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surely exists. Furthermore, by the property (b), for every i > i0 there exists mi0i ∈ N such that

xm
i0 = 3i−i0 xm

i , for every m ≥ mi0i.

Hence, for every i > i0 there exist ki ∈ N such that

0 6= x
mki
i0

= 3i−i0 x
mki
i .

Let r0 ∈ N such that 3r0 > q. Then for i = i0 + r0 > i0 there exists ki0+r0 ∈ N such that

0 6= x
mki0+r0
i0

= 3r0 x
mki0+r0
i0+r0

.

Hence, 3r0 |x
mki0+r0
i0

and this is a contradiction to the equality (6). Thus, the 1st finite coarse shape
group π̌~

1 (X0, ?) is trivial.
Let us now describe π̌~

1 (X, ?). Since π1
(

P2, ?
) ∼= Z2, from Theorem 1 and Example 5.1 [6]

we infer that
π̌~

1 (X, ?) ∼= lim
←

(
π̌~

1

(
P2, ?

)
, π̌~

1 ([pii+1]),N
)
∼=

∼= lim
←

(
∏
n∈N

f
π1

(
P2, ?

)/⊕
n∈N

π1

(
P2, ?

)
, π̌~

1 ([pii+1]),N
)
∼= lim
←

(
∏
n∈N

fZ2

/⊕
n∈N

Z2, p′ii+1,N
)

,

where p′ii+1 denotes the multiplication by 3(mod 2) ≡ 1. Hence, the 1st finite coarse shape group

of (X, ?) is a subgroup of the direct product of groups ∏
n∈N

Z2

/⊕
n∈N

Z2, i.e.,

π̌~
1 (X, ?) 6 ∏

p∈N

(
∏
n∈N

Z2

/⊕
n∈N

Z2

)
.

Every sequence (αn) of zeros and ones determines an element

x = (xi|i ∈ N) ∈ lim
←

(
∏
n∈N

Z2

/⊕
n∈N

Z2, p′ii+1,N
)

which, due to the fact that p′ii+1 is the multiplication by 1, must be of the form

xn
i = αn, for all i, n ∈ N.

Thus,
x = x′ ⇐⇒ αn = α′n, for almost all n ∈ N,

i.e.,

π̌~
1 (X, ?) ∼=

(
∏
n∈N

Z2

/⊕
n∈N

Z2

)
.

Finally, since π1
(

P2, P1, ?
)
= 0, it is obvious that π̌~

1 (X, X0, ?) is trivial. This means that
the finite coarse shape group sequence of the pointed pair (X, X0, ?) at the term π̌~

1 (X, ?) is of
the form

0 −→6= 0 −→ 0

and so cannot be exact.

Another consequence of Example 1 is explained in the following remark.

Remark 2. Example 1 and Example 5.2, [6] together prove that finite coarse shape groups, in gen-
eral, differ from both shape and coarse shape groups. In fact, the 1st finite coarse shape group
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π̌~
1 (X, ?), where X is the metric continuum defined in Example 1, is uncountable, while the corre-

sponding shape group π̌1(X, ?) is isomorphic to the finite group Z2 (Example 2.3.3, [3]). On the
other hand, in Example 5.2, [6] the authors have proved that the 1st finite coarse shape group
π̌~

1 (D, ?) of the pointed dyadic solenoid (D, ?) = lim
←

((Xi, ?), pii+1,N), where Xi = S1 and

pii+1(z) = z2, for every i ∈ N, is trivial, while the corresponding coarse shape group π̌∗1 (D, ?) is
uncountable.

4. Conclusions

The finite coarse shape theory is a recently introduced theory that provides a categor-
ical framework for the classification of topological spaces. The standard shape category
Sh of topological spaces can be considered as a proper subcategory of the finite coarse
shape category Sh~, while Sh~ is a proper subcategory of the coarse shape category Sh∗. In
reference [6] the authors introduced the notions of the k-th finite coarse shape group π̌~

k (X, x0)
of a pointed topological space (X, x0) and, analogously, the k-th relative finite coarse shape
group π̌~

k (X, X0, x0) of a pointed topological pair (X, X0, x0). The existence of a k-th (relative)
finite coarse shape group functor π̌~

k from the corresponding finite coarse shape category to
the category Grp (Set?) implies that the (relative) finite coarse shape groups are invariants
of the finite coarse shape theory.

In this paper, the authors introduced the notion of finite coarse shape group sequence of
a pointed topological pair (X, X0, x0) and investigated its properties. We have shown that
such a sequence forms a chain (Theorem 3) that is not exact at each term (Example 1).
Furthermore, (Example 1), together with Example 5.2, [6], shows that finite coarse shape
groups, in general, differ from both shape and coarse shape groups. This result is very
important because it shows that finite coarse shape groups are not only technically but also
essentially completely new objects that can be a useful tool for comparing the shape
properties of various topological spaces, especially stable spaces.
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5. Jelić, I.; Koceić-Bilan, N. The finite coarse shape—Inverse systems approach and intrinsic approach. Glas. Mat. 2022, 57, 89–117.

[CrossRef]
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