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1. Introduction

Let H be a real Hilbert space, with an inner product 〈·, ·〉, induced norm ‖ · ‖, and iden-
tity operator I. The study of the existence and approximation of solutions to nonlinear
equations is an important topic and an active field of research in nonlinear analysis. How-
ever, nonlinear equations, even with strong restrictive conditions imposed, may not have a
solution. An important case is the question raised by L. Nirenberg.

Let D ⊂ H. A self-mapping T : D → D is said to be expansive (expanding) if

‖x− y‖ ≤ ‖Tx− Ty‖, ∀x, y ∈ D.

Nirenberg’s question states: “Is any continuous expansive mapping T : H → H such
that T(H) has nonempty interior, surjective?” [1]. This question can be formulated as
whether for every continuous expansive mapping T and every u ∈ H, does the equation
T(x) = u have a solution? In spite of the strong conditions in Nirenberg’s question, one
may think that the answer is positive; however, recently, Ives and Preiss [2] answered
this question negatively. Indeed, they provided a counterexample in L2(0,+∞), which
gives a negative answer to Nirenberg’s problem even in general separable Hilbert spaces.
This question had been already asked for more general spaces, such as Banach spaces,
where Morel and Steinlein [3] constructed a counterexample in l1. In any case, before this
negative answer, many attempts to solve this question ended up giving affirmative answers
to Nirenberg’s question under additional conditions. Among them, we point out [4], where
the interior of the range of the expansive mapping is assumed to be unbounded. For more
results, see [5–8].

From a variational point of view, one can find a correspondence between expansive
mappings and nonexpansive operators. We will get back to this correspondence, but before
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going further. Let us review briefly some classical results on nonexpansive mappings and
their variational analysis. A mapping T : D ⊂ H → H is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ D,

where D is a nonempty subset of H. Nonexpansive mappings are generalizations of
contractions (with a Lipschitz constant k < 1); however, their behaviors can be extremely
different. One of the basic problems for nonlinear mappings concerns the following:

find x ∈ D such that T(x) = x.

Every solution to the above problem is called a fixed point of T, and the set of all
fixed points of T is denoted by Fix (T). If T is nonexpansive, then Fix (T) is closed and
convex. The most important properties of contractions are described by the celebrated
Banach contraction principle:

Theorem 1 ([9]). Let D ⊂ H, and let T : D → D be a contraction. Then, (i) T has a unique fixed
point, say p, and (ii) for each x ∈ D, limn→+∞ Tn(x) = p.

This theorem does not hold for nonexpansive mappings without any additional
conditions. The following theorem, which extends the first part of Banach’s contraction
principle, was independently proved in 1965 by Browder [10], Kirk [11] and Göhde [12].
We state the theorem here in Hilbert space to stay in the framework of our paper; however,
the theorem is proved in more general Banach spaces.

Theorem 2. Suppose that T : D → D is a nonexpansive mapping, where D is a nonempty, closed
and convex subset of H. Then, T has a fixed point, and the set of all fixed points of T, which may
not be a singleton, is closed and convex.

The second part of Banach’s contraction principle does not hold for nonexpansive
mappings either. Indeed, according to Banach’s contraction principle, all orbits of a con-
traction T converge to the unique fixed point of T, while orbits of a nonexpansive mapping
may not converge at all. Baillon, in 1975, proved that the Cesaro means of the Picard iterates
of any nonexpansive mapping T always converge weakly to a fixed point of T, provided
that Fix (T) 6= ∅.

Theorem 3. Let D be a nonempty, closed, and convex subset of H, and T be a nonexpansive
mapping from D into itself. If the set Fix (T) is nonempty, then for each x ∈ D, the Cesaro means

Sn(x) =
1
n

n−1

∑
k=1

Tkx,

converge weakly to some y ∈ Fix(T).

For more details, we refer the reader to [13] and the beautiful books by Goebel and
Kirk [14], and by Goebel and Reich [15].

If D is not convex, then Fix(T) may be empty, and then Baillon’s proof is not applicable
anymore. To avoid the convexity assumption on D, Djafari Rouhani [16,17] introduced the
notions of nonexpansive and almost-nonexpansive sequences and curves.

In this survey, after reviewing some backgrounds on nonexpnasive curves and related
notions, we take an expansive-type variational approach to problems of the form

find x ∈ D such that 0 ∈ A(x),

where A : D ⊂ H ⇒ H is a (possibly multivalued) nonlinear operator.
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Section 3, briefly, provides some intuition and backgrounds on the celebrated steepest-
descent method and its monotone generalizations. In Section 4, we review some definitions
and results on expansive curves. Applying the results in Section 4, Section 5 describes the
asymptotic behavior of an expansive-type quasi-autonomous system. In Section 6, we recall
discrete versions of the definitions and propositions in Section 4 and apply them to study
the asymptotic behavior of an almost-nonexpansive sequence. Section 7 studies the periodic
behavior of the expansive sequence described in Section 6. Section 8 is devoted to the study
of continuous- and discrete-time non-monotone expansive-type dynamics. As will be seen
later, the system considered in Section 5 is “strongly ill-posed”. In Section 9, we introduce
new well-posed expansive-type systems, which yield weak and strong convergence to
zeros of any maximal monotone operator.

Notation 1. Let u be a curve in H, and C ⊂ H.

(i) Convergence in weak and strong topologies are, respectively, denoted by→ and ⇀.
(ii) conv(C) denotes the closed convex hull of C.
(iii) ωw(u) denotes the set of all sequential weak limit points of u.
(iv) L(u) = {q ∈ H : limt→+∞ ‖u(t)− q‖ exists}.
(v) The weighted average of u is σT := 1

T
∫ T

0 u(t)dt.

2. Nonexpansive and Almost-Nonexpansive Curves

We recall the following definition from [17]:

Definition 1. (i) The curve u(t) in H is nonexpansive if for all r, s, h ≥ 0, we have ‖u(r + h)−
u(s + h)‖ ≤ ‖u(r)− u(s)‖.

(ii) u(t) is an almost-nonexpansive curve if for all r, s, h ≥ 0, we have ‖u(r + h)− u(s +
h)‖2 ≤ ‖u(r)− u(s)‖2 + ε(r, s), where limr,s→+∞ ε(r, s) = 0.

The following concept introduced in [18] will play an important role:

Definition 2. Given a bounded curve u(t) in H, the asymptotic center c of u(t) is defined as
follows: for every q ∈ H, let φ(q) = lim supt→+∞ ‖u(t)− q‖2. Then, φ is a continuous and
strictly convex function on H, satisfying φ(q) → +∞ as ‖q‖ → +∞. Therefore, φ achieves its
minimum on H at a unique point c called the asymptotic center of the curve u(t).

To the best of our knowledge, Edelstein [18] was the first one who applied the tech-
nique of an asymptotic center to fixed-point theory. Combining the notion of nonexpansive
curves and the concept of an asymptotic center, Djafari Rouhani proved theorems regard-
ing the asymptotic behavior of nonexpansive and almost-nonexpansive curves without
assuming the existence of a fixed point.

Theorem 4 ([17]). Let u(t) be an almost-nonexpansive curve in H. Then, the following are equivalent:

(i) L(u) 6= ∅.
(ii) lim infT→+∞ ‖σT‖ < +∞.
(iii) σT converges weakly to p ∈ H.

Moreover, under these conditions, we have:

• conv(ωw(u)) ∩ L(u) = {p}.
• p is the asymptotic center of the curve u(t).

Browder and Petryshyn [19] introduced the notion of asymptotically regular mappings.
A mapping T : D → D is (weakly) asymptotically regular on D if

(Tn+1x− Tnx ⇀ 0) Tn+1x− Tnx → 0, ∀x ∈ D.
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They also showed that if T : D → D is nonexpansive, then for every 0 < λ < 1,
Tλ = λI + (1− λ)T is asymptotically regular, and Fix (Tλ) = Fix (T). Djafari Rouhani
extended the notion of asymptotically regular mappings to curves in H:

Definition 3. (i) The curve u(t) in H is asymptotically regular if for all h > 0, u(t + h)− u(t)→ 0
as t→ +∞.

(ii) u(t) is a weakly asymptotically regular curve in H if u(t + h)− u(t) ⇀ 0 as t→ +∞.

The following theorem provides sufficient conditions for the weak convergence of
asymptotically regular almost-nonexpansive curves:

Theorem 5 ([17]). Let u(t) be a weakly asymptotically regular almost-nonexpansive curve in H.
Then, the following are equivalent:

(i) L(u(t)) 6= ∅.
(ii) lim inft→+∞ ‖u(t)‖ < +∞.
(iii) u(t) converges weakly to p ∈ H.

3. A Steepest-Descent-like Method

For a smooth function φ : H → R, the gradient operator ∇φ shows the direction of
steepest ascent of a particle traveling along the graph of φ, hence −∇φ shows the direction
of steepest descent. If we consider the curve u(t) as the position of a particle in time t, then
the above discussion shows that if the velocity vector u̇(t) equals the value of −∇φ at u(t),
then u(t) travels along the steepest-descent direction on the graph of φ. In this case, if φ
has a minimum point, then it may happen that u(t) goes to a minimum point of φ. This
leads to one of the most celebrated methods in optimization:

Let φ be convex with a nonempty set of minimizers. Then, every solution trajectory to
the following system

u̇(t) = −∇φ(u(t)), (1)

converges weakly to a minimizer of φ. This method is called the steepest-descent method.
A counterexample due to Baillon [20,21] shows that, in general, solutions to the above
system may not be strongly convergent in H; see also [22] (Proposition 3.3). Generalizations
of this method to nonsmooth and monotone cases were studied by several authors in the
1970s. If A−1(0) is nonempty, Baillon and Brézis [23,24] proved the weak convergence of
the mean of solutions to the following system:

− u̇(t) ∈ Au(t), (2)

where A is a maximal monotone operator in H and u(0) = u0 ∈ D(A) is arbitrary.
Bruck [25] established the weak convergence of solutions to (2) with an additional condition
on A, which is called demipositivity. Motivated by the approach of nonexpansive curves,
Djafari Rouhani studied the convergence analysis of a quasi-autonomous version of (2)
without assuming A−1(0) to be nonempty.

Theorem 6 ([17]). If u is a weak solution (for the notion of weak and strong solutions, see [26]) of
the system {

−u̇(t) ∈ Au(t) + f (t),
u(0) = u0 ∈ D(A),

(3)

on every interval [0, T], and satisfies supt>0 ‖u(t)‖ < +∞, and if f − f∞ ∈ L1((0,+∞); H)

for some f∞ ∈ H, then σT = (1/T)
∫ T

0 u(t)dt converges weakly to the asymptotic center of the
curve u(t).

The following theorems, respectively, study the weak and strong convergence of
trajectories of (3).
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Theorem 7 ([17]). If u is a weak solution of the system (3) on every interval [0, T], and satisfies
supt>0 ‖u(t)‖ < +∞ and for all h ≥ 0, u(t + h)− u(t) ⇀ 0 as t → +∞, and if f − f∞ ∈
L1((0,+∞); H) for some f∞ ∈ H, then u(t) converges weakly as t → +∞ to the asymptotic
center of the curve u(t).

Theorem 8 ([17]). If u is a weak solution of the system (3) on every interval [0, T], and satis-
fies limt→+∞〈u(t), u(t + h)〉 = α(h) exists uniformly in h ≥ 0, then σT = (l/T)

∫ T
0 u(t)dt

converges strongly as T → +∞ to the asymptotic center of the curve u(t).

4. Expansive Curves and Autonomous Systems

Now, we are in a position to go back to expansive mappings. In general, contrary to
nonexpansive mappings, an expansive mapping may not be continuous. As we have seen,
the set of fixed points of a nonexpansive mapping may be empty, but it always remains
closed and convex. Djafari Rouhani [27] provided examples to show that there are expan-
sive self-mappings of the closed unit ball of H, namely empty, nonconvex, or nonclosed
sets of fixed points. The first mean ergodic theorem for expansive mappings was proved by
Djafari Rouhani [27]. A continuous time approach to the orbits of an expansive mapping
was considered by Djafari Rouhani, and introduced as the notion of expansive curves.

Definition 4. An expansive curve u in H is a curve satisfying ‖u(t + h)− u(s + h)‖ ≥ ‖u(t)−
u(s)‖ for all s, t, h ≥ 0.

Expansive curves inherit many properties of orbits of expansive mappings, includ-
ing the lack of convexity and lack of closedness of the set of their fixed points. In any
case, the following two sets, which can be defined for any curve, are closed and convex
(or empty) sets.

F1(u) = {q ∈ H : ‖u(t)− q‖ is nonincreasing; }
E1(u) = {q ∈ H : ‖u(t)− q‖ is nondecreasing.}

The following theorem describes the ergodic, weak, and strong convergence of expan-
sive curves in H:

Theorem 9 ([27]). Let u be an expansive curve in H and σT = 1
T
∫ T

0 u(t)dt for T > 0.

(i) If lim infT→+∞ ‖σT‖ < +∞ and ‖u(t)‖ = o(
√

t), then the weak limit q of any weakly
convergent subsequence of σT belongs to E1.

(ii) If in addition to (i), lim inft→+∞ ‖u(t)‖ < +∞, then u is a bounded curve and σT converges
weakly to the asymptotic center p of u(t). Moreover we have p = limt→+∞ PE1 u(t).

(iii) If in addition to (ii), u is weakly asymptotically regular, then u(t) converges weakly to p as
t→ +∞.

(iv) If limt→+∞ ‖u(t)‖ exists, then σT converges strongly to the asymptotic center p of u(t), and more-
over in addition to p = limt→+∞ PE1 u(t), we have p = PK0, where Kt = conv{u(s); s ≥ t}
and K = ∩t≥0Kt.

Now, let A be a monotone operator in H. If u is weak solution of{
u̇(t) ∈ Au(t),
u(0) = u0,

(4)

on [0, T] for every T > 0, then u is an expansive curve in H [27] (Lemma 5.3); hence,
Theorem 9 describes the asymptotic behavior of any weak solution to (4). Unfortunately,
the system (4) is “strongly ill-posed”. For example, consider the simple linear case of
A = −∆ with Dirishlet boundary conditions, which yields the heat equation with final
Cauchy data and is not solvable in general. In Section 9, we try to fix this problem.
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5. Almost-Expansive Curves and Quasi-Autonomous Evolution Systems

By introducing an expansive counterpart to the notion of almost-nonexpansive curves,
we will be able to study the asymptotic behavior of solutions to (4) for the quasi-autonomous
case. Before going further, let us first recall the definition of an almost-expansive curve and
a description of its asymptotic behavior from [28].

Definition 5. The curve u in H is called almost expansive if

lim sup
s,t→+∞

[
sup
h≥0

(‖u(s)− u(t)‖2 − ‖u(s + h)− u(t + h)‖2)
]
≤ 0,

where for every ε > 0, there exists t0 ≥ 0, such that for all s, t ≥ t0, and for all h ≥ 0, we have

‖u(s)− u(t)‖2 ≤ ‖u(s + h)− u(t + h)‖2 + ε.

We note that if u is bounded, then this definition is equivalent to

lim sup
s,t→+∞

sup
h≥0

(‖u(s)− u(t)‖ − ‖u(s + h)− u(t + h)‖) ≤ 0.

The following theorem describes the ergodic, weak, and strong convergence of almost-
expansive curves in H.

Theorem 10 ([27]). Let u be an almost expansive curve in H.

(i) If lim infT→+∞ ‖σT‖ < +∞ and ‖u(t)‖ = o(
√

t), then either the weak limit q of any weakly
convergent subsequence σTn of σT belongs to L(u) or ‖u(t)‖ → +∞ as t→ +∞.

(ii) If in addition to (i), lim inft→+∞ ‖u(t)‖ < +∞, then u is bounded and σT converges weakly
as T → +∞ to the asymptotic center p of u.

(iii) Assuming the conditions in (ii), u(t) converges weakly as t→ +∞ to the asymptotic center p
of u if, and only if, u is weakly asymptotically regular.

(iv) If 0 ∈ L(u), then σT converges strongly as T → +∞ to the asymptotic center p of u. Moreover,
we have p = PK0, where Kt = conv{u(s); s ≥ t} and K = ∩t≥0Kt.

(v) If u is asymptotically regular, then limt→+∞ u(t) = p = PK0, where p is the asymptotic
center of u and Kt = conv{u(s); s ≥ t} and K = ∩t≥0Kt.

The following proposition relates the asymptotic behavior of expansive-type evolution
equations to that of almost-expansive curves.

Proposition 1 ([28]). If u is a weak solution of{
u̇(t) + f (t) ∈ Au(t),
u(0) = u0,

(5)

on [0, T] for every T > 0, and if supt≥0 ‖u(t)‖ < +∞ and

lim
s,r→+∞

∫ +∞

s
‖ f (θ + (r− s))− f (θ)‖dθ = 0,

then the curve u is almost expansive in H.

Therefore, similar to the expansive case, one can apply the results on the asymptotic
behavior of almost-expansive curves to describe the asymptotic behavior of solutions to (5).

Theorem 11 ([28]). Assume u is a weak solution of (5) on every interval [0, T] and supt≥0 ‖u(t)‖
< +∞. Assume f − f∞ ∈ L1((0,+∞); H) for some f∞ ∈ H. Then, the following hold:

(i) σT ⇀ p as T → +∞, where p is the asymptotic center of u.
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(ii) u(t) ⇀ p as t→ +∞, if and only if u is weakly asymptotically regular.
(iii) If limt→+∞ ‖u(t)‖ exists, then limT→+∞ σT = p = PK0, where K is as defined above.
(iv) limt→+∞ u(t) = p = PK0 if and only if u is asymptotically regular.

6. Expansive-Type Difference Equations

As we have already explained, the dissipative systems of the form (3) have a unique
weak solution, whereas for solutions to (4), neither existence nor uniqueness is guaranteed.
A similar situation occurs for the backward discretization of (4):

un+1 − un ∈ λn Aun+1.

Hence, we consider the following forward discretization:

un+1 − un ∈ λn Aun, (6)

which is always well defined.
Similar to the continuous case, by introducing the notion of almost-expansive se-

quences and studying their asymptotic behavior under some suitable conditions, we de-
scribe the asymptotic behavior of the solution to (6).

Definition 6. A sequence un in H is said to be almost-expansive if for all i, j, k ≥ 0, we have

lim sup
i,j→∞

[
sup
k≥0

(‖ui − uj‖2 − ‖ui+k − uj+k‖2)
]
≤ 0.

i.e., ∀ε > 0, ∃N0 such that ∀i, j ≥ N0, ∀k ≥ 0, ‖ui − uj‖2 ≤ ‖ui+k − uj+k‖2 + ε.

We note that if un is bounded, then this definition is equivalent to

lim sup
i,j→∞

[
sup
k≥0

(‖ui − uj‖ − ‖ui+k − uj+k‖)
]
≤ 0.

The sequence of averages of un is denoted by sn and defined by sn = 1
n ∑n−1

k=0 uk.
The following theorem provides a discrete version of Theorem 10.

Theorem 12 ([27]). Let un be an almost expansive sequence in H.

(i) If lim infn→+∞ ‖sn‖ < +∞ and ‖un‖ = o(
√

t), then either the weak limit q of any weakly
convergent subsequence snk of sn belongs to L(un) or ‖un‖ → +∞ as n→ +∞.

(ii) If in addition to (i), lim infn→+∞ ‖un‖ < +∞, then un is bounded and sn converges weakly
as n→ +∞, to the asymptotic center p of un.

(iii) Assuming the conditions in (ii), un converges weakly as n→ +∞ to the asymptotic center p
of un, if and only if un is weakly asymptotically regular.

(iv) If 0 ∈ L(un), then sn converges strongly as n → +∞ to the asymptotic center p of un.
Moreover, we have p = PK0, where Kn = conv{uk; k ≥ n} and K = ∩n≥0Kn.

(v) If un is asymptotically regular, then limn→+∞ un = p = PK0, where p is the asymptotic
center of un, and K is defined above.

We still need an additional condition for the sequence un governed by (6) to be
almost expansive.

Proposition 2 ([29]). Let λn be a nondecreasing sequence of positive numbers, such that

lim sup
j ≥ i

i, j→ +∞

+∞

∑
l=i

(λ(j−i)+l

λl
− 1
)
= 0. (7)
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If un is a bounded solution to (6), then un is almost expansive.

Note that the condition (7) in the above proposition is in particular satisfied if
supn≥1 λn ≤ λ for some λ > 0, and λ

an+1 ≤ λn for some an ∈ l1. For example, the se-

quence λn = n2

1+n2 satisfies the conditions of the above proposition. Now, we are in a
position to apply our results on almost-expansive sequences to describe the asymptotic
behavior of the sequence un governed by (6).

Theorem 13 ([29]). Assume that λn is a nondecreasing sequence satisfying the condition (7),
and un is a bounded solution to (6). Then, the following hold:

(i) sn ⇀ p, as n→ +∞, where p is the asymptotic center of un.
(ii) un ⇀ p, as n→ +∞ if and only if u is weakly asymptotically regular.
(iii) If limn→+∞ ‖un‖ exists, then limn→+∞ sn = p = PK0, where K is as defined above.
(iv) limn→+∞ un = p = PK0 if and only if un is asymptotically regular.

In the following theorem, by assuming the zero set of A to be nonempty, we can obtain
stronger results:

Theorem 14 ([29]). Let un be the sequence generated by (6), where A−1(0) 6= ∅ and
lim infn→+∞ λn ≥ λ for some λ > 0. If un is bounded, then there exists some p ∈ A−1(0),
such that un ⇀ p as n→ +∞. Otherwise, ‖un‖ → +∞ as n→ +∞.

Note that if the step size λn goes to infinity as n → +∞, then the existence of a
bounded solution to (6) implies that A−1(0) 6= ∅. In fact, let un be a bounded solution
to (6) and bn = un+1−un

λn
. Clearly, bn ∈ Aun and bn → 0. Since un is bounded, there exist

some q ∈ H and a subsequence unk , such that unk ⇀ q as k→ +∞. Now, the maximality of
A implies that q ∈ A−1(0).

7. Periodic Solutions in Discrete Time

In this section, we will need the following extended version of expansive mappings

Definition 7. The mapping T : D(T) ⊂ H → H is said to be α-expansive if

α‖x− y‖ ≤ ‖Tx− Ty‖, ∀x, y ∈ D(T).

If α = 1, we say that T is expansive.

Clearly, letting α = 1, the above definition coincides with the definition of an ex-
pansive mapping, and if T : H → H is α-expansive, then T−1 exists and it is 1

α -Lipschitz
continuous. The following theorem provides sufficient conditions for the system (6) to have
a periodic solution.

Theorem 15 ([29]). Suppose that A is a single-valued and maximal strongly monotone operator in
H. If λn is a periodic sequence with period N, then there exists an N-periodic solution to (6).

The above theorem does not hold for a general maximal monotone operator A;
not even for subdifferentials of proper, convex and lower semicontinuous functions, nor for
inverse strongly monotone operators. To see this, let A : R→ R be the constant function
A ≡ 1, and λn ≡ 1. Then, (6) reduces to un+1 = un + 1, which shows that the sequence un
tends to +∞, as n → +∞, for all u0 ∈ R. Therefore, it does not have a periodic solution.
However, assuming (6) has a periodic solution, is it possible that (6) has another solution
(by starting from a different initial point) that behaves differently? The following theorem
answers this question.
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Theorem 16 ([29]). Assume that A is a single-valued and maximal monotone operator in H,
and the sequence λn is periodic with period N. If (6) has an N-periodic solution wn, then every
bounded solution to (6) is also periodic with period N and differs from wn by an additive constant.

In general, the existence of periodic solutions does not imply the boundedness of all
solutions to (6). For this, let D = [0, 1], A = (I − PD), and λn ≡ 1. Then, (6) reduces to
un+1 = 2un − PDun. If we choose u0 = 0, then un ≡ 0, which is a periodic solution with
period N for all N ∈ N. However, if we choose u0 = 2, then un+1 = 2un − 1, which clearly
goes to +∞, as n→ +∞.

8. A Gradient System of Expansive Type

In this section, we consider a particular case of non-monotone operators. This case is
motivated by the prominent example of a maximal monotone operator that is the subdiffer-
ential of a proper, convex, and lower semicontinuous function. A quasiconvex function is
an extension of a convex function, which has found many applications in economics [30].
Unlike the convex case, quasiconvex functions do not have a convex epigraph, but have
convex sublevel sets. This is stated formally in the following definition:

Definition 8. (i) A function φ : H → (−∞,+∞] is quasiconvex if

φ(λx + (1− λ)y) ≤ max{φ(x), φ(y)}, ∀x, y ∈ H and ∀λ ∈ [0, 1].

(ii) A function φ : H → (−∞,+∞] is strongly quasiconvex if there is α > 0 such that

φ(λx + (1− λ)y) ≤ max{φ(x), φ(y)} − αλ(1− λ)‖x− y‖2, ∀x, y ∈ H and ∀λ ∈ [0, 1].

The notion of a subdifferential has been generalized for nonconvex functions by many
authors. Nevertheless, in any circumstance, the subdifferential operator of a quasiconvex
function is not monotone. However, in the case where the quasiconvex function φ : H → R
is Gâteaux differentiable, then the following characterization holds:

φ is quasiconvex on H ⇔ (∀x, y ∈ H, φ(y) ≤ φ(x)⇒ 〈∇φ(x), x− y〉 ≥ 0).

This characterization will be useful in the rest of this section to make up for the lack
of monotonicity.

We consider the expansive system governed by the non-monotone operator∇φ, where
φ : H → R is a differentiable quasiconvex function. Indeed, as in [31], we consider the
following differential equation

u̇(t) = ∇φ(u(t)) + f (t), t ∈ [0,+∞), (8)

where φ : H → R is a differentiable quasiconvex function, such that ∇φ is Lipschitz
continuous and f ∈W1,1((0,+∞); H). The Cauchy–Lipschitz theorem implies the existence
of a unique solution of the system (8) with an initial condition, where ∇φ is Lipschitz
continuous. In order to study the asymptotic behavior of solutions to systems of the
form (8), the authors in [31] introduced the following set for a function φ along a curve u:

Lφ(u) = {y ∈ H : ∃T > 0 s.t. φ(y) ≤ φ(u(t)) ∀t ≥ T}.

Denoting the set of all global minimizers of φ by Argmin φ, then Argmin φ ⊂ Lφ(u).
The following proposition shows that if u is a solution to (8), then Lφ(u) ⊂ L(u).
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Proposition 3 ([31]). Let u(t) be a solution to (8). For an arbitrary interval [a, b], where
b ≥ a ≥ 0, and each y ∈ Lφ(u), we have

‖u(a)− y‖ ≤ ‖u(b)− y‖+
∫ b

a
‖ f (t)‖dt,

and therefore limt→+∞ ‖u(t)− y‖ exists (it may be infinite).

Proposition 4 ([31]). Let u(t) be a solution to (8). If lim inft→+∞ ‖u(t)‖ < +∞, then

(i) limt→+∞∇φ(u(t)) = 0.
(ii) limt→+∞ φ(u(t)) exists and is finite.
(iii) Lφ(u) 6= ∅.
(iv) u is bounded.

The following theorem describes the asymptotic behavior of solutions to (8).

Theorem 17 ([31]). Let u(t) be a solution to (8). If lim inft→+∞ ‖u(t)‖ < +∞, then there exists
some p ∈ (∇φ)−1(0), such that u(t) ⇀ p as t→ +∞, and if p /∈ Argmin φ, the convergence is
strong. If u(t) is unbounded, then ‖u(t)‖ → +∞ as t→ +∞.

Note that the above theorem shows that if (∇φ)−1(0) = ∅, then for any solution to (8),
we have limt→+∞ ‖u(t)‖ = +∞.

The following two theorems provide sufficient conditions for the strong convergence
of solutions to (8).

Theorem 18 ([31]). With either one of the following assumptions, bounded solutions to (8) converge
strongly to some point in (∇φ)−1(0):

(i) Sublevel sets of φ are compact.
(ii) int Lφ(u) 6= ∅.

Theorem 19 ([31]). Assume that φ : H → R is a strongly quasiconvex function and u(t) is a
bounded solution to (8). Then, Argmin φ is a singleton and u(t) converges strongly to the unique
minimizer of φ.

For a differentiable quasiconvex function φ : H → R whose gradient ∇φ is Lipschitz
continuous with Lipschitz constant K, as in Section 6, we consider the forward finite-
difference discrete version of (8), which yields a well-defined sequence:

un+1 − un = λn∇φ(un) + fn, (9)

where the sequence fn belongs to l1 and λn ≥ ε for some ε > 0.
In order to study the asymptotic behavior of un, we define the following discrete

version of Lφ(u):

Lφ(un) = {y ∈ H : ∃N > 0 s.t. φ(y) ≤ φ(un) ∀n ≥ N}.

The following proposition is a discrete version of Proposition 3.

Proposition 5 ([31]). Let un be the sequence generated by (9). For each y ∈ Lφ(un), and k < m,
we have

‖uk − y‖ ≤ ‖um − y‖+
m−1

∑
n=k
‖ fn‖, (10)

and consequently limn→+∞ ‖un − y‖ exists (it may be infinite).
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Proposition 6 ([31]). Let un be a solution to (9), such that lim infn→+∞ ‖un‖ < +∞. Then,
Lφ(un) is nonempty if and only if limn→+∞ φ(un) exists, and in this case un is bounded.

If φ is convex, we can omit the Lipschtz continuity condition on ∇φ in Proposition 6.

Proposition 7 ([31]). Assume that un is a solution to (9), such that lim infn→+∞ ‖un‖ < +∞.
If either one of the following conditions is satisfied, then Lφ(un) is nonempty.

(i) φ is convex and the sequence of step sizes λn is bounded above.
(ii) lim supn→+∞ λn < 2

K .

In the continuous case, we showed that if lim inft→+∞ ‖u(t)‖ < +∞, then Lφ(u) 6= ∅.
However, in the discrete case, it remains an open problem whether without any additional
assumption that lim infn→+∞ ‖un‖ < +∞ implies that Lφ(un) is nonempty.

The following theorems describe the weak and strong convergence of solutions to (9).

Theorem 20 ([31]). Assume that un is the sequence given by (9), and Lφ(un) 6= ∅. If
lim infn→+∞ ‖un‖ < +∞, then there is some p ∈ (∇φ)−1(0), such that un ⇀ p as n → +∞,
and if p /∈ Argmin φ, the convergence is strong. If un is not bounded, then ‖un‖ → +∞, as
n→ +∞.

Theorem 21 ([31]). Let un be a bounded sequence, which satisfies (9), and let L(un) 6= ∅. If either
one of the following assumptions holds, then un converges strongly to some point in (∇φ)−1(0):

(i) Sublevel sets of φ are compact.
(ii) int Lφ(un) 6= ∅.

Example 1. Assume that φ : R → R is defined by φ(x) = arctan(x3) and consider (9) with
λn = 2

3 n and fn ≡ 0. Then, it is easy to see that all the assumptions of Theorem 21 are satisfied.
In Table 1, we compare 1000 iterations un generated by (9) starting from two different initial
points, namely u0 = −0.5 and u0 = 1. The numerical results show that for u0 = −0.5,
un → 0 ∈ (∇φ)−1(0), and for u0 = 1, un slowly goes to infinity.

Table 1. Comparing 1000 iterations un with different initial points.

n un un

0 −0.5 1
1 −0.00769231 2
10 −0.00404869 3.63765
20 −0.00171074 4.68854
30 −0.0008858 5.46951
40 −0.000533135 6.11128
50 −0.000354164 6.66517
60 −0.000251763 7.15741
70 −0.000187942 7.60348
80 −0.000145564 8.01339
90 −0.000116023 8.39404

100 −0.0000946225 8.7504
1000 −9.94968 ×10−7 21.8786

9. Some New Results

As we have seen in Section 4, given a maximal monotone operator, expansive systems
of the form (4) may be “strongly ill-posed” in general. In this section, we consider a special
class of maximal monotone operators that induces well-posed expansive evolution systems.
Motivated by this, we propose an expansive-type approach for the approximation of zeros
of any maximal monotone operator.
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9.1. Weak Convergence

We start with the following definition:

Definition 9. Let λ > 0. The operator A : H → H is said to be λ-inverse strongly monotone if

λ‖A(x)− A(y)‖2 ≤ 〈A(x)− A(y), x− y〉, ∀x, y ∈ H.

Clearly, a λ-inverse strongly monotone operator is 1
λ -Lipschitz.

Let A : H → H be a λ-inverse strongly monotone operator, such that A−1(0) 6= ∅.
Consider the following differential equation:{

u̇(t) = Au(t),
u(0) = x ∈ H.

(11)

Since A is Lipschitz, then the Cauchy–Lipschitz theorem guarantees that there exists a
unique solution to (11). The following Lemma is due to Z. Opial [32], and is an effective
tool in the convergence analysis of curves in the weak topology.

Lemma 1. Let u : [0,+∞)→ H, and let S ⊂ H be nonempty. Assume that

(i) For every y ∈ S, limt→+∞ ‖u(t)− y‖ exists;
(ii) Every sequential weak limit point of u belongs to S.

Then, there exists p ∈ S, such that u(t) ⇀ p as t→ +∞.

Theorem 22. Assume that u is a strong solution to (11). If u is unbounded, then ‖u(t)‖ → +∞,
as t→ +∞. If u is bounded, then there exists some p ∈ A−1(0), such that u(t) ⇀ p as t→ +∞.

Proof. Let y ∈ A−1(0) and hy(t) = 1
2‖u(t)− y‖2. By the monotonicity of A we have:

ḣy(t) = 〈u̇(t), u(t)− y〉 = 〈Au(t), u(t)− y〉 ≥ 0.

Hence, hy(t) is nondecreasing. If u(t) is unbounded then hy(t)→ +∞ is as t→ +∞,
which implies that ‖u(t)‖ → +∞ is as t → +∞. If u(t) is bounded, then limt→+∞ hy(t)
exists. Multiplying both sides of (11) by u(t)− y and then using the fact that A is λ-inverse
strongly monotone, we obtain:

ḣy(t) = 〈u̇(t), u(t)− y〉 = 〈Au(t), u(t)− y〉 ≥ λ‖Au(t)‖2. (12)

Replacing Au(t) with u̇(t) in (12) and then integrating both sides of (12) on [0, t],
we obtain:

λ
∫ t

0
‖u̇(τ)‖2dτ ≤ hy(t)− hy(0).

Since limt→+∞ hy(t) exists, the above inequality implies that u̇ ∈ L2([0,+∞), H). On
the other hand, since u is bounded and A is Lipschitz, (11) yields u̇ and is bounded,
and hence u is Lipschitz. Now, since u̇ is the composition of two Lipschitz mappings,
u̇ is Lipschitz too. This implies that u̇ is uniformly continuous. This together with u̇ ∈
L2([0,+∞), H) yields limt→+∞ u̇(t) = 0 and hence by (11), limt→+∞ Au(t) = 0. Now, let q
be a weak cluster point of u(t). There exists a sequence tn ⊂ [0,+∞), such that tn → +∞
as n → +∞, and u(tn) ⇀ q as n → +∞. From the maximality of A, we have q ∈ A−1(0).
Now an easy application of Opial’s Lemma concludes the proof.

Let A be an arbitrary maximal monotone operator, and λ > 0. The resolvent of
A of index λ is the single-valued operator JA

λ = (I + λA)−1, which is nonexpansive
and everywhere defined. The Yosida approximation of A of index λ is Aλ = 1

λ (I − JA
λ ).

A straightforward calculation shows that the Yosida approximation of index λ is λ-inverse
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and strongly monotone, and A−1
λ (0) = A−1(0). Therefore, the Cauchy–Lipschitz theorem

implies that the differential equation

u̇(t) = Aλ(u(t)), (13)

with an initial condition u(0) = u0 ∈ H is well defined. Therefore, by Theorem 22, if uλ(t)
is a solution to (13) that remains bounded, then uλ(t) converges weakly to a zero of A,
otherwise uλ(t) goes to infinity in the norm as t→ +∞.

9.2. Strong Convergence via Tikhonov Regularization

In this subsection, we propose well-posed dynamics that approximate zeros of an
arbitrary maximal monotone operator A in strong topology. For this purpose, let us assume
that α : [0,+∞) → (0,+∞) is absolutely continuous on every finite interval, and define
At = A + α(t)I. Hence, At is onto, and due to the strong monotonicity of At, the zero set
of At is a singleton. Let ξ(t) denote the unique zero of At. We call ξ(t) the central path of
A corresponding to α(t).

Lemma 2 ([33]). Let A be a maximal monotone operator, let α(t) be a positive function, and let ξ(t)
be the central path corresponding to A and α(t). If A−1(0) 6= ∅, then ξ(t) is bounded. Moreover,
if limt→+∞ α(t) = 0, then ξ(t) converges strongly to the least norm element in A−1(0).

Since ξ(t) = JA
1

α(t)
(0), by the resolvent identity, we have

‖ξ(t + δ)− ξ(t)‖ =
∥∥∥∥JA

1
α(t)

((
1− α(t)

α(t + δ)

)
ξ(t)

)
− JA

1
α(t)

(0)
∥∥∥∥ ≤ ∥∥∥∥(1− α(t)

α(t + δ)

)
ξ(t)

∥∥∥∥.

If A−1(0) 6= ∅, then Lemma 2 implies that ξ(t) is bounded. The boundedness of
ξ(t) and the absolute continuity of α(t) on every finite interval together with the above
inequality implies that ξ(t) is absolutely continuous on every finite interval, since α(t) does
not take the value zero, therefore it is bounded away from zero. Hence, ξ(t) is almost
everywhere differentiable. Dividing both sides of the above inequality by δ and then letting
δ→ 0, we obtain

‖ξ̇(t)‖ ≤ |α̇(t)|
α(t)

‖ξ(t)‖, a.e. t ≥ 0. (14)

Theorem 23. Let α : [0,+∞) → (0,+∞) be absolutely continuous on every finite interval,
such that

(i) limt→+∞ α(t) = 0;

(ii) limt→+∞
α̇(t)
α(t)2 = 0;

(iii)
∫ +∞

0 α(t)dt = +∞.

Let A : H ⇒ H be maximal monotone with a nonempty zero set. Then, every bounded (possible)
solution to the following differential equation{

u̇(t) = A(u(t)) + α(t)u(t),
u(0) = u0 ∈ H,

(15)

converges strongly to the zero of A with minimal norm.

Proof. Let h(t) = 1
2‖u(t)− ξ(t)‖2. We have

ḣ(t) = 〈u̇(t)− ξ̇(t), u(t)− ξ(t)〉,
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hence

ḣ(t) + 〈ξ̇(t), u(t)− ξ(t)〉 = 〈A(u(t))− A(ξ(t)), u(t)− ξ(t)〉+ α(t)‖u(t)− ξ(t)‖2,

By applying the Cauchy–Schuartz inequality and the monotonicity of A, we obtain

2α(t)h(t) ≤ ḣ(t) + M‖ξ̇(t)‖, (16)

where M = supt>0 ‖u(t) − ξ(t)‖. Multiplying both sides of (16) by e−E(t), where
E(t) =

∫ t
0 α(τ)dτ, we get:

−M
‖ξ̇(t)‖

α(t)
α(t)e−E(t) ≤ e−E(t) ḣ(t)− α(t)e−E(t)h(t),

Then,

M
‖ξ̇(t)‖

α(t)
d
dt

(
e−E(t)

)
≤ d

dt

(
e−E(t)h(t)

)
.

Integrating the above inequality on [s, t], we get

m(s)
(

e−E(t) − e−E(s)
)
≤ e−E(t)h(t)− e−E(s)h(s),

where m(s) = M inft≥s
‖ξ̇(t)‖

α(t) . Letting t → +∞ in the above inequality, since h(t) is
bounded and limt→+∞ E(t) = +∞, we obtain

e−E(s)h(s) ≤ e−E(s)m(s) ≤ e−E(s)M
‖ξ̇(s)‖

α(s)
.

Multiplying the above inequality by eE(s), and applying (14), we obtain

h(s) ≤ M
|α̇(s)|
α(s)2 ‖ξ(s)‖.

Now, letting s→ +∞, we conclude the result by applying (ii) and Lemma 2.

Remark 1. By applying a nonautonomous version of the Cauchy–Lipschitz theorem, the following
Tikhonov regularization system has a unique solution.{

u̇ = Aλ(u(t)) + α(t)u(t),
u(0) = u0 ∈ H.

(17)

Therefore, by Theorem 23, the system (17) provides a continuous time-expansive method to approxi-
mate the zero with the least norm of any maximal monotone operator A.
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