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Abstract: Hořava has proposed a renormalizable gravity theory with higher spatial derivatives in
four dimensions. This theory may be regarded as a UV complete candidate for general relativity.
After the proposal of this theory, Kehagias and Sfetsos have found a new asymptotically flat black
hole solution in Hořava–Lifshitz gravity. In recent times, a new test of gravity theory is suggested
that assumes the deflection of the massive body around a black hole. In this paper, we will study
the effect of the Hořava–Lifshitz parameters on the black hole deflection angle and emphasize those
features that permit a comparison of Hořava–Lifshitz to Einstein gravity.
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1. Introduction

Recently, Hořava [1] has proposed a renormalizable gravity theory with higher spatial
derivatives in four dimensions. This theory may be regarded as a UV complete candidate
for general relativity. It has received utmost attention, and since it was formulated, various
properties and characteristics have been put forth. Jafarzade et al. [2] studied the Van der
Waals fluid behavior in the Horava–Lifshitz (HL) black hole and hence modified the solution
of the black hole with a cosmology ansatz. They considered the cosmological constant as
the thermodynamical pressure and its conjugate quantity as the thermodynamical volume
and observed that stability existed only in a special region of the black hole. The HL theory
comes back to Einstein gravity with a non-vanishing cosmological constant in IR, but it has
improved UV behaviors. In this theory, we ignore the local Lorentz symmetry incorporated
in Einstein’s GTR and consider different kinds of temporal and spatial scaling at short
distances. Quantum field theory has considerable experimental success, but it predicts
infinite values for physical quantities from the theoretical point of view. This QFT of gravity
with a dynamical critical exponent equal to z = 3 in the UV was further discussed in [3].
It was observed therein that the Newton constant, cosmological constant as well as the
effective speed of light all arise from deformations of the nonrelativistic z = 3 theory at
meager distances. Hořava [4] further extended the definition of spectral dimension to
theories on smooth spacetimes by considering anisotropic scaling. It is observed that the
spectral dimension of spacetime in quantum gravity, dominated by a Lifshitz point, is
given by ds = 1 + D

z (where z is the dynamical critical exponent in D + 1 dimensions).
The author [5] studied nonrelativistic Yang–Mills gauge theories in (D + 1) dimensions,
which in the large-N limit can have weakly curved gravity duals. The standard spherically
symmetric Schwarzschild-(A)dS black hole solutions have also been observed in relation to
the Hořava–Lifshitz theory.
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Xu et al. [6] studied the evaporation process in HL gravity for various spacetime
dimensions in a spherically symmetric neutral AdS black hole. Myung [7] investigated
Lifshitz black holes under Hořava–Lifshitz gravity. By comparing a Lifshitz black hole
with the 3D new massive gravity, the author found that all these black hole solutions have
single horizons and are very much akin to each other as related to their thermodynamical
property. Myung et al. [8] investigated black holes in Hořava–Lifshitz gravity considering a
parameter λ. It was observed that for 1/3 ≤ λ < 3 they behave as Lifshitz black holes with
a dynamical exponent 0 < z ≤ 4, while for λ > 3 they behave as an RN-type black hole
where the spacetimes are asymptotically flat. Sadeghi et al. [9] investigated the entropy
and Hawking temperature for two kinds of Hořava–Lifshitz black holes, Kehagias–Sfetsos
(KS) and Lu–Mei–Pope. The Hawking temperature as well as the entropy was obtained
in 4D spacetime by considering the effect of the back reaction on the surface gravity.
Kiritsis et al. [10] found that the generic solution for Hořava–Lifshitz “Black Holes” has
conventional (AdS, dS or flat) asymptotics with the universal 1/r tail.

Rindler et al. [11] studied the effect of the Λ (cosmological constant) on the bending
of light around a spherically symmetric concentrated mass. It was found that when
the Schwarzschild–de Sitter geometry is taken into consideration, Λ does contribute to
the bending, even though this term gets canceled out in the photon geodesic equation.
Rahaman et al. [12] constructed a new class of thin-shell wormholes from black holes
in Hořava–Lifshitz gravity by employing the asymptotically flat Kehagias–Sfetsos (KS)
solution for various values of the coupling constant ω and the mass M. It is observed that
the radius of the outer event horizon in the KS case is less than that in the Schwarzschild
case. Manna et al. [13] recently investigated the three classical tests of GR, the deflection of
light, the precession of perihelion and time delay in Einstein-AEther gravity. Such Einstein-
AEther gravity has two static and spherically symmetric charged black hole solutions
which correspond to different constraints on the coupling constants. Sultana [14] examined
the cosmological constant Λ and its effects on the deflection angle for null geodesics in the
equatorial plane of Kerr–de Sitter spacetime when φ = 0. It is seen that the cosmological
constant contributes to the expression of the deflection angle.

According to the GTR, the gravitational field of a massive object causes light rays to
bend, which passes by it. It influences the motion as well as the spectral properties of light
by directly acting on a dynamic spacetime continuum though which light propagates. The
deflection of light by mass was first calculated by German astronomer Johann Georg von
Soldner in 1801 [15]. The author showed that rays from a distant star, while passing the
Sun’s surface, would be deflected by an angle of around 0.9 arc seconds, or one-quarter
of a thousandth degree. The gravitational deflection of light was predicted by Einstein
in his general theory of relativity, in the early 20th century. Einstein calculated that the
deflection predicted by his theory would be twice the Newtonian value. There are several
methods such as null geodesics (under both strong field and weak field approximations)
and material medium methods to calculate the deflection of a light ray as it passes around a
gravitational mass. Jusufi et al. [16] investigated weak gravitational lensing for a wormhole
and a black hole in the presence of massive gravity. It is found that the black hole solution
is dependent on the parameter λ, scalar charge S and mass M. Further, it is observed
that as S vanishes, the Schwarzschild geometry is recovered. Conformal Weyl gravity
is considered as a possible alternative to the standard second-order Einstein GTR. The
bending angle of light associated with the metric of a centrally concentrated spherically
symmetrical distribution of matter in a Schwarzschild–deSitter background was examined
by Sultana et al. [17].

The gravitational deflection can be used to study various modified gravities. There are
many other works related to this issue, such as in [18] where the authors observed that in the
case of a Schwarzschild black hole, two infinite sets of relativistic images are formed, apart
from the primary and secondary ones. Tsukamoto [19] reexamined the deflection angle in
the Ellis wormhole spacetime and also obtained the value for the RN spacetime. A strong
gravitational field deflection limit for photons in a Schwarzschild black hole was studied
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by Lu et al. [20]. Strong deflection gravitational lensing nearby the event horizon of a BH
provides some clues of the quantum effects in the central core. Zhao et al. [21] estimated
the observables of the strong deflection lensing for the supermassive black hole in the
Galactic Center. Gravitational lensing in the KS spacetime using the framework of Hořava–
Lifshitz gravity was investigated by Horváth [22]. Weak and strong deflection limits for
the deflection angle were found by Eiroa et al. [23]. The positions and magnifications of
the images were calculated and the results were compared with those corresponding to
the Schwarzschild and RN spacetimes. Zhao et al. [24] observed that the Lee–Wick BH
can be distinguished from the Schwarzschild BH through the effects of lensing when the
UV scale is not very large. Strong deflection gravitational lensing was further studied
by Zhu et al. [25] in the presence of a Lee–Wick ultracompact object. They obtained
its observables and estimated them for the supermassive BHs Sgr A∗ and M87∗. Strong
deflection gravitational lensing through an Einstein–Lovelock ultracompact object was
investigated by Gao et al. [26]. They found that the relativistic images inside the photon
sphere are absent for an Einstein–Lovelock BH. Zhao et al. [27] observed the gravitational
lensing caused by a charged Galileon BH and hence calculated the time delays and angular
separations between the relativistic images of the charged Galileon BH.

In the field of weak deflection gravitational lensing, there is another method to calcu-
late the deflection angle and observables, such as Keeton and Petters’ formalism [28–30].
The strong and weak deflection gravitational lensings of the regular black hole were inves-
tigated by Liu et al. [31]. The authors found that its weak deflection lensing is the same as
that of a Reissner–Nordström black hole. Lu et al. [32] considered the supermassive black
holes Sgr A∗ and M87∗ in the Galactic Center and at the center of M87 as lenses and hence
observed the weak and strong deflection gravitational lensing. The authors also observed
in [33] that the time delay in weak deflection lensing depends strongly on the phantom
hair, but the delay in the strong deflection lensing depends on the hair and strength of the
coupling. Gao et al. [34] investigated the strong and weak deflection gravitational lensing
in the Einstein-scalar-Gauss–Bonnet gravity by the hairy black holes, using five types of
coupling functions. Lu et al. [35] further investigated strong and weak deflection gravi-
tational lensing by the quantum deformed Schwarzschild BH. Considering Sgr A∗ as the
lens, they measured the angular difference, angular separation, time delay and the fluxes
difference. Wang et al. [36] considered a supermassive BH in the Galactic Center as the
lens and evaluated the weak and strong deflection lensing observables. These signatures
are compared with those of the Schwarzschild, RN, tidal RN and charged Galileon BHs.
A test of f (T) gravity by studying the gravitational time advancement was performed
by Deng [37]. The author used dual-way light propagation between an observer and a
distant spacecraft and hence measured the light traveling time as the observer’s proper
time. Zhang et al. [38] investigated strong and weak deflection gravitational lensing by a
black-bounce-RN spacetime and obtained their lensing observables. Further studies on
deflection gravitational lensing were conducted by various authors in [39,40].

Harko et al. [41] investigated the possibility of observational constraints on Hořava
gravity. Classical tests of GR are considered for the spherically symmetric black hole
Kehagias–Sfetsos solution of HL gravity. Such gravitational effects can be studied in the
framework of the vacuum solution of HL gravity. The HL theory is invariant in time and
space and hence exhibits a broken Lorentz symmetry at a short distance. Moreover, at
large distances, the higher derivative terms have no contribution, and the theory reduces
to the standard GR theory. In this present study, we would like to investigate the total
deflection angle when the HL parameters are φ → ∞ or ω → ∞; the latter however is
the Schwarzschild case. The impact of the relativistic gravitational deflection of light was
studied by Turyshev [42], on the accuracy of the future Space Interferometry Mission
(SIM). The deflection angles caused by the monopole, quadrupole and octupole compo-
nents of gravitational fields, for a number of massive celestial bodies in the solar system,
are measured.
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We organize our paper as follows. In Section 2, we briefly discuss the HL black holes.
The deflection of the massive body is studied in detail in Section 3. The concluding remarks
are in Section 4. Throughout the paper, the geometrized units G = c = 1 are considered.

2. Hořava–Lifshitz Black Holes

Hořava–Lifshitz gravity (also known as Hořava gravity) is a quantum gravity theory
proposed by Peter Hořava in 2009 [3]. The problem that arises out of different concepts of
time in quantum field theory and GR is solved, where the quantum concept is considered
more fundamental. This relativistic concept of time emerges at large distances with its
Lorentz invariance. Hence, space and time are anisotropic at a high energy level. Hořava–
Lifshitz gravity indeed explains the current acceleration and major cosmic issues and
is hence considered a very interesting proposal of modified gravity theory. In terms of
the AdS/CFT correspondence [43], Hořava–Lifshitz black holes are very useful to model
holographic superconductors considering the symmetry of Lifshitz scaling. It is useful to
study the stability of HL black holes in the context of AdS/CFT. Uncharged topological
black holes in HL theory are stable, as compared to their counterparts in Einstein gravity.
Black hole thermodynamics in HR gravity has been discussed by Cai et al. [44]. The
mass, entropy of the black holes and λ, the dynamical coupling constant, are obtained in
HR gravity. It is observed that such black holes are thermodynamically stable in some
parameter space, whereas in some other parameter space they are unstable. The relation
between the horizon area of the black holes and entropy is also deduced.

The Hořava–Lifshitz action [45] defines a nonrelativistic and renormalizable gravita-
tion theory given by

S =
∫ √

−gN

[
2
σ2

(
KijKij − λgK2

)
+ εijk σ2µ

2ν2
g

Ril∇jRl
σ −

σ2µ2

8
RijRij

+

(
4λg − 1

4
R2 −ΛW R + 3Λ2

W

)
σ2µ2

8(3λg − 1)
− σ2

2ν4
g

CijCij

]
dtdx3 (1)

where N is the lapse function; σ, λg, νg, µ, ΛW are the constant parameters; the Cotton

tensor denoted by Cij = εikl∇k(Rj
l −

1
4 Rδ

j
l ); Rijkl is the 3D curvature tensor; and the

extrinsic curvature is defined by Kij =
1

2N (ġij∇i Nj −∇jNi), the dot being the derivative
with respect to t.

We consider a static and spherically symmetric solution given by

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdφ2), (2)

where the functions ν(r) and λ(r) are the metric potentials.
Now, by imposing λg = 1, which reduces to the Einstein–Hilbert action in the infra-

red limit, one obtains the following solution of the vacuum field equations in Hořava
gravity [46]:

eν(r) = e−λ(r) = 1 + (ω−ΛW)r2 −
√

r[ω(ω− 2ΛW)r3 + β] (3)

Here, β is an integration constant and ΛW and ω are constant parameters. Now, the
Kehagias–Safetsos (KS) black hole solution [47] is obtained by considering β = 4ωM and
ΛW = 0 as

eν(r) = 1 + ωr2 −ωr2

√
1 +

4M
ωr3 (4)

By considering β = − α2

ΛW
and ω = 0, the solution given by Equation (3) reduces to the

Lu, Mei and Pope (LMP) solution [48], given by
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eν(r) = 1−ΛWr2 − α2
√
−ΛW

√
r (5)

The Kehagias–Sfetsos solution is the only asymptotically flat solution in the family
of solutions (2). We shall use the Kehagias–Sfetsos solution for analyzing the behavior of
massive and massless test particles around Hořava–Lifshitz black holes. It is to be noted
that there is an outer (event) horizon and an inner (Cauchy) horizon of Kehagias–Sfetsos

black hole solutions at r where f (r) ≡ eν(r) = 1 + ωr2 −ωr2
√

1 + 4M
ωr3 = 0,

r± = M

[
1±

√
1− 1

2ωM2

]
. (6)

Equation (4) implies that if one takes 4M
ωr3 << 1, then

eν(r) = 1− 2M
r

(7)

In other words, either large distance or ωM2 >> 1, Hořava–Lifshitz black holes
approach Schwarzschild black hole.

3. Outline of the Study of Deflection of Massive Body

For the study of deflection of massive body, at first one requires constructing Jacobi
metric, which can be achieved from standard spacetime metric.

To find the Jacobi metric from the fundamental tensor

ds2 = c2V2(x)dt2 − gij(x)dxidxj, (8)

we can write the Lagrangian for a massive particle corresponding to this metric as

L(x, ẋ) = m
√

c2V2(x)ṫ2 − gij ẋi ẋj. (9)

(Here, V is the potential energy). The action for a massive particle

S = −m
∫

Ldt, (10)

yields the canonical momentum conjugate as

H
c

=
E
c
=

∂L
∂ṫ

=
mc2V2(x)ṫ√

c2V2(x)ṫ2 − gij ẋi ẋj
;

pi
c

=
∂L
∂ẋi =

−mgij ẋj√
c2V2(x)ṫ2 − gij ẋi ẋj

(11)

The above equations yield the relativistic energy equation in curved spacetime

E2

c2 −m2c2V2(x) = V2(x)gij(x)pi pj or,
c2V2gij(x)

E2 −m2c4V2(x)
pi pj = 1 (12)

With pi = ∂iS, this provides the Hamilton Jacobi equation for the geodesics as

V2gij∂iS∂jS
E2 −m2V2 = 1, (13)

with Jacobi metric Jij given by

Jij(x) =
V2(x)gij(x)

E2 −m2V2(x)
. (14)
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For massless particle, i.e., when m = 0, the Jacobi metric assumes the form

Jij =
E2

V2 gij. (15)

This is known as optical or fermat metric [49]. In Jacobi metric approach, energy plays a
role of supplementary parameter as Jacobi metric comprises kinetic energy explicitly.

For a general static spherically symmetric metric

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2θdφ2), (16)

the Jacobi metric assumes the form

Jijdxidxj = (E2 −m2 A)

[
B
A

dr2 +
C
A
(dθ2 + sin2θdφ2)

]
. (17)

(Here, A = eν(r), B = eλ(r), C = r2 defined in Equation (3)). As usual, we study the motion
of the massive particle in the equational plane θ = π/2. As a result, Jacobi metric takes the
form as

ds2 = (E2 −m2 A)

(
B
A

dr2 +
C
A

dφ2
)

. (18)

Due to axial symmetry, the angular momentum (J) for the motion is conserved which is
given as

J = (E2 −m2 A)
C
A

dφ

ds
= constant. (19)

Moreover, from Jacobi metric (17), we find

(E2 −m2 A)2 B
A

(
dr
ds

)2
= E2 − A

(
m2 +

J2

C

)
. (20)

Now, finally, we obtain the trajectory (by using U = 1
r ) as,(

dU
dφ

)2
=

C2U4

AB

[(
α

β

)2
− A

(
1
β2 +

1
C

)]
. (21)

Here, the quantities β = J
m and α = E

m represent the angular momentum and angular
energy per unit mass, respectively.

Let a massive particle having mass m come from an asymptotically flat region. Fol-
lowing geodesic path, the particle with velocity v reaches near the black hole at a minimal
distance b and continues the journey up to the viewer at far distance, and then its energy is

E =
m√

1− v2
[assuming c = 1]. (22)

In a similar manner, the particle’s angular momentum is

J =
mvb√
1− v2

. (23)

Hence, the Jacobi metric assumes the form as

ds2 = m2
(

1
1− v2 − A

)[
B
A

dr2 +
C
A

dφ2
]

. (24)
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Hence, the trajectory of the massive particle can be written as(
dU
dφ

)2
=

C2U4

AB

[
1

v2b2 − A
(

1− v2

v2b2 +
1
C

)]
≡ f (U). (25)

For v→ 1, this equation transforms to null geodesic equation.
The conditions for circular orbit are

f (U) = 0 and f ′(U) = 0. (26)

at some U = Uc.
One can rewrite this equation as

d2U
dφ2 + U = F(U), where F(U) = U +

1
2

d f
dU

. (27)

Now, employing our black hole solution, we try to solve this equation by using standard
perturbation theory.

Following the Rindler–Ishak method [11], one can calculate the deflection angle of
massive particles. Such gravitational deflection of a massive particle in Schwarzschild–de
Sitter spacetime has been observed via the Rindler–Ishak method in the presence of a weak
field [50]. Figure 1 indicates that the angle between radial direction (xi) and direction of the
particle motion (yi) is ψ, where

cos ψ =
gijxiyj√

gijxixj
√

gijyiyj
. (28)

Here, gij is the Hořava–Lifshitz black hole spacetime. Here, we assume t = constant,
θ = π/2 surface.

Figure 1. Schematic diagram of the orbital motion of the massive particle (here in the weak field limit,
i.e., closest approach ≈ impact parameter, b).

Note that

xi = (dr, dφ) = (γ, 1)dφ, and yi = (dr, 0) = (1, 0)dr,
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where γ = dr
dφ .

Now, Equation (27) assumes the form

cos ψ =
|γ|√

γ2 +
gφφ

grr

or tan ψ =

√
gφφ

grr

|γ| . (29)

According to Figure 1, one can note that one side of gravitational deflection angle is

ε = ψ(φ)− φ (30)

Hence, 2ε is the total deflection angle.

4. Deflection of Massive Body around Hořava–Lifshitz Black Holes

Now, we try to calculate the deflection of massive body around Hořava–Lifshitz black
holes. Using Kehagias–Safetsos (KS) black hole solution (4) in Equation (27), we obtain the
trajectory of the massive particle as

d2U
dφ2 + U = −

(
ω

U
− ω

U

√
1 +

4MU3

ω

)
+

 ω

U3 +
3M√

1 + 4MU3

ω

− ω

U3

√
1 +

4MU3

ω

(1− v2

v2b2 + U2
)

. (31)

First, as a zeroth approximation, when the terms on the right-hand side of the above
differential equation are neglected, the solution is given as

U =
sinφ

b
(32)

where b is the impact parameter. This is the solution when the path of the particle is a
straight line path devoid of deflection, in the absence of the gravitating black hole. For the
next approximation, we replace U on the right-hand side of Equation (30) with the zeroth
solution in Equation (31); hence, we derive the following equation.

d2U
dφ2 + U = −

(
ωb

sinφ
− ωb

sinφ

√
1 +

4Msin3φ

ωb3

)

+

 ωb3

sin3φ
+

3M√
1 + 4Msin3φ

ωb3

− ωb3

sin3φ

√
1 +

4Msin3φ

ωb3

(1− v2

v2b2 +
sin2φ

b2

)
(33)

Expanding the RHS of Equation (32) and neglecting higher-order terms (0( M
ωb3 )), we

obtain

d2U
dφ2 + U =

3M
2b2 −

3M
2b2 cos2φ +

M(1− v2)

b2v2 − 9M2

4ωb4 +
3M2

ωb4 cos2φ− 3M2

4ωb4 cos4φ

−9M2(1− v2)

2ωb5v2 sinφ +
3M2(1− v2)

2ωb5v2 sin3φ. (34)

The solution of the differential Equation (33) is obtained as a combination of the
particular solution and the approximation Equation (31), as

U(φ) =
sinφ

b
+

2M
b2 +

M(1− v2)

b2v2 − 16M2

5ωb4 −
75M2(1− v2)

16ωb5v2 +
9M2(1− v2)φcosφ

2ωb5v2 . (35)

Hence, we finally obtain
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ψ(φ) = tan−1

[(
2M

b
+

M(1− v2)

bv2 − 16M2

5ωb3 −
75M2(1− v2)

16ωb4v2 +
9M2(1− v2)φcosφ

2ωb4v2 + sinφ

)

×
(

1−
(

M
b2v2 +

M(1− v2)

2b2v4 − 8M2

5ωb4v2 −
75M2(1− v2)

32ωb5v4 +
9M2(1− v2)φcosφ

4ωb5v4 +
sinφ

2bv2

)

×
(

16M2v2

5ωb2 +
75M2(1− v2)

16ωb3 − 9M2(1− v2)φcosφ

2ωb3 −Mv2 − bv2sinφ

))]
. (36)

When φ = 0,

U(φ = 0) =
2M
b2 +

M(1− v2)

b2v2 − 16M2

5ωb4 −
75M2(1− v2)

16ωb5v2 . (37)

Thus, at φ = 0,

ψ(0) = tan−1

[(
2M

b
+

M(1− v2)

bv2 − 16M2

5ωb3 −
75M2(1− v2)

16ωb4v2

)

×
(

1−
(

M
b2v2 +

M(1− v2)

2b2v4 − 8M2

5ωb4v2 −
75M2(1− v2)

32ωb5v4

)(
16M2v2

5ωb2 +
75M2(1− v2)

16ωb3 −Mv2
))]

. (38)

From Equation (35) and above, we find

ε = tan−1

[(
2M

b
+

M(1− v2)

bv2 − 16M2

5ωb3 −
75M2(1− v2)

16ωb4v2 +
9M2(1− v2)φcosφ

2ωb4v2 + sinφ

)

×
(

1−
(

M
b2v2 +

M(1− v2)

2b2v4 − 8M2

5ωb4v2 −
75M2(1− v2)

32ωb5v4 +
9M2(1− v2)φcosφ

4ωb5v4 +
sinφ

2bv2

)

×
(

16M2v2

5ωb2 +
75M2(1− v2)

16ωb3 − 9M2(1− v2)φcosφ

2ωb3 −Mv2 − bv2sinφ

))]
− φ. (39)

Equation (39) gives the analytical expression of the gravitational deflection angle of
the relativistic massive particle.

When φ = 0, ε = ψ(0), i.e., then

ε = tan−1

[(
2M

b
+

M(1− v2)

bv2 − 16M2

5ωb3 −
75M2(1− v2)

16ωb4v2

)

×
(

1−
(

M
b2v2 +

M(1− v2)

2b2v4 − 8M2

5ωb4v2 −
75M2(1− v2)

32ωb5v4

)(
16M2v2

5ωb2 +
75M2(1− v2)

16ωb3 −Mv2
))]

. (40)

5. Conclusions and Discussions

We have found the expressions of the deflection angle of the asymptotically flat black
hole solution in Hořava–Lifshitz gravity. We have started by showing the trajectory curves
as a function of the impact parameter b, coupling constant ω, velocity of the particle v
and black hole mass M. After that, we gave our attention to analyzing the impact of the
aforementioned parameters on the deflection angle of the particle trajectory. Because our
intention was to compare the deflection of a massive particle in Hořava–Lifshitz gravity
with Einstein gravity, we compare our results graphically between the two gravity theories.
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Note that as ω → ∞, the black hole solution in Hořava–Lifshitz gravity comes back to the
Schwarzschild black hole solution, i.e., the black hole solution in Einstein gravity. Therefore,
we try to explore graphically the Hořava–Lifshitz case and Einstein case. In Figure 2, we
have shown the trajectory of the massive particle for different values of impact parameter
b. The left panel shows the Hořava–Lifshitz case and the right panel shows the Einstein
case. Figure 2 indicates that the flatness of the trajectory curve of the particle which is
traveling under the gravitational field of the black hole in Hořava–Lifshitz gravity is more
than the particle under the black hole in Einstein gravity. This implies that the gravitational
field of the black hole in Hořava–Lifshitz gravity is less than the black hole in Einstein
gravity. Figure 3 implies that the angle between the radial direction and the direction of
particle motion is decreasing with the impact parameter in both Hořava–Lifshitz gravity
and Einstein gravity. In Figure 4, one can note that the angle between the radial direction
and the direction of the particle motion is decreasing with the mass of the black hole
in Hořava–Lifshitz gravity, whereas it is increasing in Einstein gravity. From Figure 5,
we see that the angle between the radial direction and the direction of particle motion is
decreasing with the velocity of the test particle in both Hořava–Lifshitz gravity and Einstein
gravity. Figures 6–8 reveal that the total deflection in Einstein gravity either for a general
value of φ or a specific value of φ, say, φ = 0, is more than Hořava–Lifshitz gravity. In
Figure 9, we have shown a variation in the total deflection 2ε(0) at φ = 0 with respect to
that of the coupling constant ω for different values of the impact parameter b. Note that
the total deflection 2ε(0) at φ = 0 is increasing with respect to the coupling constant ω.
The graphical representation of the variation in the total deflection angle throughout the
spacetime as well as for a particular value at φ = 0 are given in Figures 10–12. These figures
exhibit the impact of the parameters on the deflection angle of the particle trajectory around
the black hole in both gravity theories. Astronomical observations require a relativistic
description of the propagation of light as well as the exact relativistic treatment of the
massive celestial bodies and their dynamics.

The present study of the gravitational deflection of a massive body is indeed very
useful for many practical purposes which include spacecraft navigation, geodesic study and
time transfer. However, weak deflection itself cannot provide sufficient bounds on these
parameters and the geodesic motion of stars around this BH, which is also confirmed by
various studies. The authors [51] studied the direct detection of the in-plane Schwarzschild
precession around Sgr A∗ in the Galactic Center which is fully consistent with GR. Moreover,
when the minimal resolution length of the Generalized Uncertainty Principle (GUP) black
hole approaches the critical value, it becomes easily unbound due to any disturbance
[52]. The authors [53] studied the periastron precession for massive objects orbiting the
Lee–Wick black holes and obtained the initial bound on the UV scale of the orbit of the S2
star around Sgr A∗. The preliminary bounds on the charge and bounce parameter were
also studied by [54], where the authors used the precession of the S2 star around Sgr A∗

detected by gravity.
The gravitational deflection of light in the Sagittarius A∗ system has been the subject

of ongoing research to test the predictions of both Einstein gravity and Hořava–Lifshitz
gravity. In Hořava–Lifshitz gravity, the deflection of light can differ from that predicted
by Einstein gravity due to the anisotropic scaling between space and time. The precise
deflection of light in the Sgr A∗ system would depend on the mass and distribution of
the massive objects in the system, as well as the distance and trajectory of the light source.
This massive object of our study can be a black hole, wormhole or any compact object. It
is also observed that the deflection angle in HL gravity could be larger or smaller than
that predicted by Einstein gravity, depending on the parameters of the theory. Further,
the deflection angle in this theory could be significantly different from that predicted by
Einstein gravity, with the magnitude of the deviation depending on the mass and distance
of the massive object. However, it is worth noting that the effects of HL gravity on the
gravitational deflection of light in the Sgr A∗ system may be small and difficult to observe
with the current technology. More detailed calculations and models of the system would
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be needed to make precise estimations of the deflection in the context of HL gravity. One
may further extend our study to investigate the behavior of the HR parameters in the
propagation of electro-magnetic signals between any two regions of spacetime.
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Figure 2. (left) Trajectory of the particle is shown, i.e., U(φ) against φ for different values of the
impact parameter b. (right) U(φ) is shown against φ for different values of the impact parameter b,
for Schwarzschild case.
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Figure 3. (left) The variation in the angle between radial direction and direction of the particle motion
is shown, i.e., ψ(φ) against φ for different values of the impact parameter b. (right) ψ(φ) is shown
against φ for different values of the impact parameter b for Schwarzschild case.
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Figure 4. (left) The variation in the angle between radial direction and direction of the particle motion
is shown, i.e., ψ(φ) is shown against φ for different values of M of the gravitating body. (right) ψ(φ)

is shown against φ for different values of M of the gravitating body, for Schwarzschild case.
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Figure 5. (left) The variation in the angle between radial direction and direction of the particle motion
is shown, i.e., ψ(φ) is shown against φ for different values of v. (right) ψ(φ) is shown against φ for
different values of v, for Schwarzschild case.
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Figure 6. (left) Total deflection 2ε(φ) is shown against φ for different values of the impact parameter
b. (right) Total deflection 2ε(φ) is shown against φ for different values of the impact parameter b, for
Schwarzschild case.
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Figure 7. (left) Total deflection for a specific value of φ, say, φ = 0, i.e., 2ε(0) is shown against the
impact parameter b for different values of v. (right) Total deflection 2ε(0) at φ = 0 is shown against
the impact parameter b for different values of v, for Schwarzschild case.
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Figure 8. (left) Total deflection for a specific value of φ, say, φ = 0, i.e., 2ε(0) is shown against v for
different values of the impact parameter b. (right) Total deflection 2ε(0) at φ = 0 is shown against v
for different values of the impact parameter b, for Schwarzschild case.
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Figure 9. The variation in the total deflection 2ε(0) at φ = 0 with respect to the coupling constant ω

for different values of the impact parameter b.
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Figure 10. (left) The variation in total deflection 2ε is shown with respect to b and φ. (right) Total
deflection 2ε is shown with respect to b and φ, for Schwarzschild case.
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Figure 11. (left) The variation in total deflection 2ε(0) at φ = 0 is shown with respect to b and v.
(right) Total deflection 2ε(0) at φ = 0 is shown with respect to b and v, for Schwarzschild case.

Figure 12. (left) The variation in total deflection 2ε(0) at φ = 0 is shown with respect to b and ω.
(right) Total deflection 2ε(0) at φ = 0 is shown with respect to b and ω.
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[CrossRef]
45. Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating Hořava-Lifshitz black hole. Astrophys. Space Sci. 2013, 348,
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