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Abstract: This paper assumes constant-stress accelerated life tests when the lifespan of the test units
follows the XLindley distribution. In addition to the maximum likelihood estimation, the Bayesian
estimation of the model parameters is acquired based on progressively Type-II censored samples.
The point and interval estimations of the model parameters and some reliability indices under
normal operating conditions at mission time are derived using both estimation methods. Using the
Markov chain Monte Carlo algorithm, the Bayes estimates are calculated using the squared error loss
function. Simulating the performances of the different estimation methods is performed to illustrate
the proposed methodology. As an example of how the proposed methods can be applied, we look
at two real-life accelerated life test cases. According to the numerical outcomes and based on some
criteria, including the root of the mean square error and interval length, we can conclude that the
Bayesian estimation method based on the Markov chain Monte Carlo procedure performs better than
the classical methods in evaluating the XLindley parameters and some of its reliability measures
when a constant-stress accelerated life test is applied with progressively Type-II censoring.

Keywords: XLindley distribution; accelerated life tests; reliability analysis; Bayes inference; progressive
Type-II censoring

1. Introduction

Under normal operating conditions, the life test for high-reliability products is fre-
quently time-consuming and expensive because it would take a considerable amount of
time before acquiring a sufficient number of failures for the necessary analysis. To rapidly
and cheaply gather data regarding such products under experimental time constraints,
accelerated life tests (ALTs) are typically conducted. As part of the ALTs, stress variables
are typically set, including the temperature, humidity, voltage, pressure, etc. To determine
the life characteristics of the products, the data gathered throughout the accelerated testing
can be analyzed and extrapolated to the normal operating conditions. Nelson [1], Meeker
and Escobar [2], Tang [3] and Balakrishnan [4] have all offered substantial reviews on past
findings on the topic of ALTs. One of the most often utilized tests in reliability engineering
is the constant-stress ALT (CSALT). As a result of the CSALT, the researchers can divide the
products into several groups and test each group at a specific level of stress. A constant
level of stress is applied during the entire test duration, for example, to semiconductors and
microelectronics, see Luo et al. [5]. There are usually two or more levels at which products
are tested separately. For time saving, tests are even run simultaneously when possible.
Numerous studies have been conducted on the statistical inferences for the CSALT under
various lifetime distributions using both classical and Bayesian approaches. For instance,
when the product lifetime follows the Weibull distribution, Wang [6] discussed the inference
of the CSALT. Lin et al. [7] investigated the inferences of the CSALT for log-location-scale
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lifetime distributions. Sief et al. [8] studied the inference of the CSALT from the generalized
half-normal distribution. Nassar et al. [9] investigated the estimation issues of the Lindley
distribution with the CSALT. See also Hakamipour [10], Kumar et al. [11] and Wu et al. [12]
for more detail.

Although the main objective of the ALTs is to shorten the period of the experiment, the
researchers spend a lot of time waiting for all test units to fail. In such situations, it is crucial
to deal with censored data. In general, censoring means that actual failure times are known
for just a part of the units under investigation. The Type-I, Type-II, and progressive Type-II
censoring (PT-IIC) schemes are the most frequently utilized censoring schemes in ALTs.
The PT-IIC is more powerful than traditional Type-I and Type-I censoring which enables
researchers to withdraw live units at various testing stages. Consider an experiment
in which n identical units are put on a life test with a predetermined censoring plan
(R1, R2, . . . , Rm), where m is the desired number of observed failures. For i = 1, . . . , m− 1,
at the time of the ith failure, Ri units from the remaining units are picked at random
and removed from the test. Immediately, upon the occurrence of the last failure, all
the remaining units Rm are removed and the test is ended, i.e., Rm = n− m− ∑m−1

i=1 Ri.
In engineering experiments, some items must be removed for a more in-depth inspection or
saved for use as test samples in future investigations. In this case, the PT-IIC plan naturally
arises from such experiments. The test procedure of the CSALT in the presence of PT-IIC
data will be discussed in detail in the next section. The PT-IIC scheme has received a lot
of attention in the literature, for example, see Balakrishnan et al. [13], Balakrishnan and
Lin [14], Chen and Gui [15], Wu and Gui [16], Dey et al. [17] and Alotaibi et al. [18]. A good
introduction to the idea of progressive censoring as well as a leading review article is
provided by Balakrishnan [19].

In view of the importance of the CSALT in rapidly ending the life test and the flexibility
of the PT-IIC scheme over the conventional censoring schemes, our main aim in this
paper is to investigate the estimation issues of the XLindley (XL) distribution when the
data are gathered based on the PT-IIC plan with the CSALT. As far as we are aware, no
work has yet addressed the CSALT model when PT-IIC data from the XL distribution are
utilized. Although numerous studies investigated the estimation problems in the presence
of CSALTs, few works studied the estimations of the reliability function (RF) and hazard
rate function (HRF) under normal use conditions. In other words, the majority of the
available studies considered only the estimation problems of the unknown parameters and
say nothing regarding the estimation of the reliability indices under operating settings.
Therefore, we think it is of interest to reliability engineers and other practitioners to identify
the reliability measures under normal operating conditions in the case of the XL distribution.
For more detail about the reliability estimation, see Wang et al. [20], Wang et al. [21] and
Zhuang et al. [22]. In this study, the model parameters are estimated using both classical
and Bayesian approaches and then after some reliability measures are evaluated under
normal use conditions. Using the maximum likelihood method, as a classical approach,
the maximum likelihood estimates (MLEs) of the different quantities are acquired and
the associated approximate confidence intervals (ACIs) are also obtained. On the other
hand, the Bayes estimates are investigated based on the squared error (SE) loss function.
Due to the complex form of the joint posterior distribution, the Markov chain Monte Carlo
(MCMC) procedure is implemented to obtain the required Bayes estimates as well as the
Bayes credible intervals (BCIs). It is important to mention here that the derived estimators
from the two estimation procedures cannot be theoretically compared because of their
complicated structures. To get over this problem, we consider carrying out simulation
research to compare the effectiveness of different estimators (point or interval) based on
some statistical standards. Additionally, two examples are provided to illustrate how
different approaches can be used. The simulation findings show that the MCMC procedure
provides more accurate estimates of the model parameters as well as the RF and HRF under
normal operating settings than those acquired based on the classical maximum likelihood
method. Moreover, the real data analysis demonstrates that the XL distribution can be
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considered as a suitable model to fit constant-stress accelerated data sets, namely the oil of
insulating fluid and transformer life-testing (TLT) data.

The article’s structure is as follows: A description of the model, the test method, and
the assumptions are given in Section 2. The MLEs as well as the ACIs confidence intervals
are covered in Section 3. The Bayes estimation and BCIs of the unknown parameters are
provided in Section 4. Section 5 presents the findings of the simulation research that was
carried out to assess the effectiveness of the various estimators. Finally, two data sets are
examined in Section 6, and some concluding remarks are offered in Section 7.

2. Model Description, Test Procedure, and Assumptions

A special combination of the exponential and Lindley distributions, known as the
XL distribution, was introduced by Chouia and Zeghdoudi [23] as a new variant of the
Lindley distribution. They demonstrated that compared to other one-parameter models
like the Xgamma, exponential, and Lindley distributions, the XL has greater flexibility.
They demonstrated the flexibility and suitability of the XL distribution as a model for
representing time-to-event data in the real world. In addition to having an increasing
hazard function, which is typical in many fields, it also has a single parameter which
considerably reduces the mathematical challenges in reliability estimation. Using an
adaptive Type-II progressive hybrid censoring plan, Alotaibi et al. [24] addressed the
estimation problems, including both classical and Bayesian methods, of the XL distribution.
They also demonstrated that data sets from chemical engineering may be modeled using
the XL distribution rather than some other classical distributions, including gamma and
Weibull distributions. Assume that Y is an experimental unit’s lifetime random variable
that follows the XL distribution with scale parameter α. As a result, the probability density
function (PDF), distribution function (DF), RF and HRF corresponding to Y are expressed,
respectively, by

g(y; α) =
α2e−αy(1 + ᾱ + y)

ᾱ2 , y > 0, α > 0, (1)

G(y; α) = 1− e−αy
(

1 +
αy
ᾱ2

)
, (2)

G(y; α) = e−αy
(

1 +
αy
ᾱ2

)
, (3)

and

H(y; α) =
α2(1 + ᾱ + y)

ᾱ2 + αy
, (4)

where ᾱ = 1 + α.

2.1. Test Procedure

Under CSALT, assume that we have r accelerated stress levels x1 < x2 < · · · < xr,
where the stress level under usual conditions is xu. Let nj, j = 1, . . . , r be r subgroups created
from a total of N identical test items, where n1 + · · ·+ nr = N. Assume that xj is the level
of stress applied to the nj test units. The number of observed failure mj is fixed before
starting the experiment with a prefixed progressive censoring plan (Rj1, Rj2, . . . , Rjmj), with

the awareness that nj = mj + ∑
mj
i=1 Rji. At stress level xj, when the first failure, say Yj1,

occurred, from the remaining surviving items, Rj1 items are randomly removed. Similarly,
at Yj2, Rj1 items are randomly removed from the remaining items, and so on. At the time of
the mth

j failure, say Yjmj , all the remaining items are withdrawn. The PT-IIC data that were
observed under the stress level xi were collected in this manner

yj1 < yj2 < · · · < yjmj , j = 1, . . . , r.

2.2. Basic Assumptions

In the context of CSALT, the following assumptions are applied across the whole paper:
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1. Under the designed stress xu and the accelerated stress levels xj, the lifetime of test
items follows the XL distribution with DF given by

Gj(y; αj) = 1− e−αjy

(
1 +

αjy
ᾱ2

j

)
, y > 0, j = 1, . . . , r.

2. It is assumed that the life-stress model for the scale parameter αj, j = 1, . . . , r of the
XL distribution is log-linear, i.e.,

log(αj) = λ + βxj, j = 1, . . . , r,

where λ and β are unknown parameters depending on the product’s characteristics
and need to be estimated.

Based on the above assumptions, without the normalized constant, we can write the joint
likelihood function of the unknown parameters λ and β, given the observed data, as follows

L(λ, β|y) =
r

∏
j=1

mj

∏
i=1

gj(yji; λ, β)[1− Gj(yji; λ, β)]Rji , (5)

where y = (yj1, . . . , yjmj).

3. Maximum Likelihood Estimation

In this section, the MLEs of the unknown parameters λ and β as well as the RF under de-
signed stress are investigated. Moreover, the ACIs of these different parameters are discussed,
employing the asymptotic properties of the MLEs. Using the aforementioned assumptions
and by substituting the PDF and DF in the joint likelihood function presented in (5) by the
PDF and DF of the XL distribution given by (1) and (2), respectively, we obtain

L(λ, β|y) =
e2mλ+β ∑r

j=1 mjxj

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) exp

−∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

)

×
r

∏
j=1

mj

∏
i=1

1 +
yji eλ+βxj(

1 + eλ+βxj
)2


Rji

, (6)

where m = ∑r
j=1 mj and ∑(j,i) = ∑r

j=1 ∑
mj
i=1. The log-likelihood function of (6) is obtained

as follows:

l(λ, β|y) = 2mλ + β
r

∑
j=1

mjxj − 2
r

∑
j=1

mj log
(

1 + eλ+βxj
)
− ∑

(j,i)
(1 + Rji)yji eλ+βxj

+ ∑
(j,i)

log
(

2 + eλ+βxj + yji

)
+ ∑

(j,i)
Rji log

1 +
yji eλ+βxj(

1 + eλ+βxj
)2

. (7)

The MLEs of the model parameters, indicated by λ̂ and β̂, can be determined by
solving the following non-linear likelihood equations which are obtained by setting the
derivatives of the log-likelihood function in (7) with respect to λ and β to zero

∂l(λ, β|y)
∂λ

= 2m− 2
r

∑
j=1

mje
λ+βxj

1 + eλ+βxj
− ∑

(j,i)
(1 + Rji)yji eλ+βxj + ∑

(j,i)

eλ+βxj

2 + eλ+βxj + yji

+ ∑
(j,i)

Rjiyjie
λ+βxj(1− eλ+βxj)

(1 + eλ+βxj)
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)] = 0 (8)
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and

∂l(λ, β|y)
∂β

=
r

∑
j=1

mjxj − 2
r

∑
j=1

mjxje
λ+βxj

1 + eλ+βxj
− ∑

(j,i)
(1 + Rji)yjixj eλ+βxj + ∑

(j,i)

xje
λ+βxj

2 + eλ+βxj + yji

+ ∑
(j,i)

Rjiyjixje
λ+βxj(1− eλ+βxj)

(1 + eλ+βxj)
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)] = 0 (9)

Because the solutions to the previous equations cannot be found in a closed form, the
Newton–Raphson method is frequently employed in these circumstances to produce the
appropriate MLEs λ̂ and β̂. Based on the estimated values λ̂ and β̂, we can obtain the MLEs
of RF and HRF under normal operating conditions xu at mission time t, respectively, using
the invariance property of the MLEs, as demonstrated below:

Ĝu(t) = e−α̂ut
(

1 +
α̂ut
ˆ̄α2

u

)
and

Ĥu(t) =
α̂2

u(1 + ˆ̄αu + t)
ˆ̄α2

u + α̂ut
,

where α̂u = eλ̂+β̂xu .
After having the point estimates for the various parameters, it is now interesting to

construct the confidence intervals for the unknown parameters λ and β, or any function
of them, such as the RF and HRF. Here, we utilize the asymptotic normality of the MLEs
to obtain the ACIs of the different parameters. According to Miller [25], the asymptotic
distribution of the MLEs can be expressed as (λ̂, β̂) ∼ N[(λ, β), I−1(λ̂, β̂)], where I−1(λ̂, β̂)
is the approximated variance–covariance matrix as presented below:

I−1(λ̂, β̂) =

 − ∂2l(λ,β|y)
∂λ2 − ∂2l(λ,β|y)

∂λ∂β

− ∂2l(λ,β|y)
∂β∂λ − ∂2l(λ,β|y)

∂β2

−1

(λ,β)=(λ̂,β̂)

=

(
σ̂11 σ̂12
σ̂21 σ̂22

)
, (10)

where

∂2l(λ, β|y)
∂λ2 = −2

r

∑
j=1

mje
λ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yji eλ+βxj + ∑

(j,i)

(2 + yji)e
λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjie
λ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1
}

(1 + eλ+βxj)2
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2 ,

∂2l(λ, β|y)
∂β2 = −2

r

∑
j=1

mjx2
j eλ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yjix2

j eλ+βxj + ∑
(j,i)

x2
j (2 + yji)e

λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjix2
j eλ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1
}

(1 + eλ+βxj)2
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2

and
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∂2l(λ, β|y)
∂λ∂β

= −2
r

∑
j=1

mjxje
λ+βxj

(1 + eλ+βxj)2
− ∑

(j,i)
(1 + Rji)yjixj eλ+βxj + ∑

(j,i)

xj(2 + yji)e
λ+βxj

(2 + eλ+βxj + yji)2

− ∑
(j,i)

Rjiyjixje
λ+βxj

{
2eλ+βxj + e2(λ+βxj)

[
6 + 2eλ+βxj − e2(λ+βxj) + 2yji

]
− 1
}

(1 + eλ+βxj)2
[
1 + eλ+βxj

(
2 + yji + eλ+βxj

)]2 .

Therefore, for 0 < τ < 1, the 100(1− τ)% ACIs for λ and β are provided by

λ̂± zτ/2
√

σ̂11 and β̂± zτ/2
√

σ̂22,

where σ̂11 and σ̂22 are the main diagonal elements of (10) and zτ/2 is the upper (τ/2)th

percentile point of the standard normal distribution.
As a matter of fact, in order to establish the confidence bounds of the RF and HRF under

normal operating conditions, we should first determine the variances of their estimators.
Here, we approximate the necessary estimated variances of Ĝu(t) and Ĥu(t) using the delta
method. To apply this approach, we need the first derivatives of RF and HRF with respect
to the parameters λ and β as follows:

∂Gu(t)
∂λ

= −
te−teλ+βxu+2(λ+βxu)

[
4 + t + eλ+βxu

(
3 + t + eλ+βxu

)]
(1 + eλ+βxu)2 ,

∂Gu(t)
∂β

= xu
∂Gu(t)

∂λ

∂Hu(t)
∂λ

=
e2(λ+βxu)

{
2t + eλ+βxu

[
7 + 4eλ+βxu + e2(λ+βxu) + t(4 + t2 + 2eλ+βxu)

]}
[(1 + eλ+βxu)2 + teλ+βxu ]2

,

and
∂Hu(t)

∂β
= xu

∂Hu(t)
∂λ

.

Let Λ1 = ( ∂Gu(t)
∂λ , ∂Gu(t)

∂β ) and Λ2 = ( ∂Hu(t)
∂λ , ∂Hu(t)

∂β ), evaluated at the MLEs of λ and β.

Then, the approximate estimated variances of Ĝu(t) and Ĥu(t) are obtained as follows:

σ̂G ≈ [Λ1 I−1(λ̂, β̂)Λ>1 ] and σ̂H ≈ [Λ2 I−1(λ̂, β̂)Λ>2 ].

Consequently, the ACIs of Gu(t) and Hu(t) can be constructed, respectively, as

Ĝu(t)± zτ/2

√
σ̂G , and Ĥu(t)± zτ/2

√
σ̂H .

4. Bayesian Estimation

When the sample size is large or the data are well collected, MLEs usually produce
results that are reasonably accurate. However, when there is a lot of information missing
from the data or the sample size is limited, the Bayesian paradigm produces a more precise
inference. We discuss the Bayesian inference for the model parameters as well as the RF and
HRF in this section. As we are aware, in a Bayesian investigation, the model parameters are
generally treated as random variables that follow a set of predetermined prior distributions.
On the basis of the prior knowledge and the observed data, it is then possible to acquire
the posterior distributions of the model parameters and obtain the Bayes estimators as
well. Keep in mind that the mean time to failure of the testing units is often lower in
ALTs because of the stress conditions. In our case and for the XL distribution, one can see
from Chouia and Zeghdoudi [23] that the mean is a decreasing function of the parameter
α. Under the log-linear model, this can be achieved for positive β with any value for the
parameter λ. This idea can be incorporated into the priors. We assume that the parameters
are independent, where the parameter λ follows the normal distribution, which allows the
parameter λ to be negative or positive. On the other hand, the parameter β is assumed to
follow the gamma distribution which is more flexible than other prior distributions and
adapts the support of the parameter β, i.e., λ ∼ N(a, b) and β ∼ Gamma(c, d). Then, the
joint prior distribution can be expressed as
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p(λ, β) ∝ βc−1e−0.5(λ−a)2/b2−dβ,−∞ < λ < ∞, β > 0, (11)

where b, c, d > 0 and −∞ < a < ∞ are the hyperparameters. Equations (6) and (11), when
combined, can provide the following as the joint posterior density function of λ and β:

q(λ, β|y) =
βc−1e2mλ+β ∑r

j=1 mjxj−0.5(λ−a)2/b2−dβ

A e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

1 +
yji eλ+βxj(

1 + eλ+βxj
)2


Rji

× exp

−∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

), (12)

where A is the normalized constant given by

A =
∫ ∞

0

∫ ∞

−∞
p(λ, β) L(λ, β|y) dλdβ.

We can draw Bayes estimators with respect to parameters of interest and/or functions
of parameters, say ψ(λ, β), using the SE loss function as follows:

ψ̃(λ, β) =

∫ ∞
0

∫ ∞
−∞ ψ(λ, β)p(λ, β) L(λ, β|y) dλdβ∫ ∞
0

∫ ∞
−∞ p(λ, β) L(λ, β|y) dλdβ

. (13)

Due to the ratio of two intractable integrals in (13), it appears that the Bayes estimator
cannot be derived analytically. Due to this difficulty, the MCMC method is used, which
does not require the computation of a normalizing constant. First, we must derive the
conditional distributions of the parameters λ and β to apply the MCMC technique. In light
of (12), the following are the conditional posterior distributions of λ and β, respectively,

q(λ|β, y) ∝
e2mλ−0.5(λ−a)2/b2

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

1 +
yji eλ+βxj(

1 + eλ+βxj
)2


Rji

× exp

−∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

) (14)

and

q(β|λ, y) =
βc−1eβ ∑r

j=1 mjxj−dβ

e2 ∑r
j=1 mj log

(
1+eλ+βxj

) r

∏
j=1

mj

∏
i=1

1 +
yji eλ+βxj(

1 + eλ+βxj
)2


Rji

× exp

−∑
(j,i)

(1 + Rji)yji eλ+βxj + ∑
(j,i)

log
(

2 + eλ+βxj + yji

). (15)

It is noted that no analytical reduction to any well-known distributions can be achieved
for the conditional distributions of λ and β provided by (14) and (15), respectively. The main
goal of MCMC algorithms is to generate samples from a given probability distribution.
The “Monte Carlo” part of the method’s name is due to the sampling purpose, whereas the
“Markov Chain” part comes from the kind of Markov chains. As a result, the Metropolis–
Hastings (M-H) procedure is used to generate samples from these distributions in order to
obtain the Bayes estimates and the BCIs. To implement the M-H procedure, we consider
the normal distribution as the proposal distribution for both parameters. Thus, follow the
steps listed below for the sample generation process:

Step 1. Put l = 1.

Step 2. Start with the primary guesses (λ(0), β(0)) = (λ̂, β̂).
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Step 3. Obtain λ(l) from (14) using the M-H algorithm.

Step 4. Acquire β(l) using (15) via the M-H algorithm.

Step 5. Use λ(l) and β(l) to obtain α
(l)
u , and then compute

G(l)
u (t) = e−α̂

(l)
u t

(
1 +

α̂
(l)
u t

[ ˆ̄α(l)u ]2

)

and

H(l)
u (t) =

[α̂
(l)
u ]2(1 + ˆ̄α(l)u + t)

[ ˆ̄α(l)u ]2 + α̂
(l)
u t

Step 6. Set l = l + 1.

Step 7. Perform Steps 3–6 M times to acquire[
λ(l), β(l), G(l)

u (t), H(l)
u (t)

]
, l = 1, 2, . . . , M.

To guarantee convergence and avoid the appeal of starting values, the first D generated
samples are eliminated. In this case, we have φ(l), where l = D + 1, . . . , M, where φ =
λ, β, Gu(t), Hu(t). Based on large M, one can compute the Bayes estimates of φ based on
the SE loss function as

φ̃ =
1

M◦
M

∑
l=D◦

φ(l),

where M◦ = M−D and D◦ = D + 1. To obtain the BCI of φ, sort φ(l) as φ[l], l = D◦, . . . , M.
Then, the 100(1− τ)% BCI of the φ takes the form{

φ[0.5τM◦ ], φ[M◦(1−0.5τ)]
}

.

5. Monte Carlo Simulations

To compare the behavior of the proposed point and interval estimators of the XL model
parameter α and its reliability characteristics RF Gu(t) and HRF Hu(t), extensive simulation
studies are conducted based on several combinations of xj, j = 1, 2, . . . , r (stress levels), nj
(group size), mj (effective sample size) and Rji, j = 1, 2, . . . , r i = 1, 2, . . . , mj (censoring pat-
tern). We replicated the PT-IIC mechanism 1000 times when the true value of (λ, β) is taken
as (0.2, 0.5). At the same time, for the usual condition xu = 0.1, the acquired estimates
of Gu(t) and Hu(t) at time t = 0.1 are evaluated when their actual values are taken as
0.9011 and 1.0438, respectively. Take 2 choices of stress levels (x1, x2), namely (1, 2) and
(3, 5), n1 = n2 = n(= 30, 80), without loss of generality, and the failure percentages (FPs)
are taken as m

n × 100% = (40, 80)% to a specific amount m of each n. Moreover, for each
setting, different progressive censoring mechanisms are considered as follows:

Scheme-1 : R1 = n−m, Ri = 0 for i 6= 1;

Scheme-2 : R m
2
= n−m, Ri = 0 for i 6= m

2
;

Scheme-3 : Rm = n−m, Ri = 0 for i 6= m.

Once 1000 constant stress PT-IIC samples are collected, the maximum likelihood
and Bayes estimates of λ, β, α (based on normal condition xu = 0.1), Gu(t) and Hu(t)
along with their asymptotic and credible interval estimates are calculated. To perform the
desired numerical evaluations, using R 4.2.2 software, we suggest to install both the ’maxLik’
(proposed by Henningsen and Toomet [26]) and ’coda’ (proposed by Plummer et al. [27])
packages in order to carry out the maximum likelihood and Bayesian analysis.

Following the mean and variance criteria of the proposed density priors, we have
chosen different sets of the prior parameters (a, b, c, d) of λ and β, called Prior[1]:(0.2,
5, 0.5, 1) and Prior[2]:(0.2, 1, 2.5, 5). These values are determined in such a way that
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the expected prior refers to the sample mean for the coefficient of interest. Alternatively,
the hyperparameter values can also easily be specified using the past-sample technique.
Following the M-H sampler described in Section 4, to obtain the Bayes point (or credible)
estimates of λ, β, αu, Gu(t) or Hu(t), we simulated D = 2000 and M◦ = 10, 000 samples.

To evaluate the convergence of the simulated MCMC draws of λ, β, αu, Gu(t) or
Hu(t), when (x1, x2) = (1, 2), n[FP] = 30[40%] and Scheme-1 (as an example), both the
autocorrelation and trace convergence diagnostic plots are shown in Figure 1. It shows
that the samples drawn from the Markov chain of all the unknown parameters are mixed
adequately, and thus the calculated estimates are satisfactory.
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Figure 1. Autocorrelation (top) and trace (bottom) plots for MCMC draws in Monte Carlo simulation.

Now, the comparison between the acquired point estimates of λ is made based on
their root mean squared errors (RMSEs) and mean absolute biases (RABs), respectively, as

RMSE =

√√√√ 1
1000

1000

∑
i=1

(
λ̆(i) − λ

)2

and

MAB =
1

1000

1000

∑
i=1

∣∣∣λ̆(i) − λ
∣∣∣,

respectively, where λ̆(i) is the calculated estimate at ith sample of λ.
Additionally, taking τ = 5%, the comparison between the acquired interval estimates of λ

is made based on their average confidence lengths (ACLs) and coverage percentages (CPs) as

ACL95%(λ) =
1

1000

1000

∑
i=1

(
Uλ̆(i) −Lλ̆(i)

)
,

and

CP95%(λ) =
1

1000

1000

∑
i=1

1(L
λ̆(i)

;U
λ̆(i)

)(λ),
respectively, where 1(·) is the indicator function, (L(·),U (·)) is the two-sided interval
estimate. In a similar fashion, both point and interval estimates of β, αu, Gu(t) and Hu(t)
can easily be developed.
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Nowadays, heat-map data visualization has become a popular tool for digital data
representation as the value of each data point is indicated using specific colors. Therefore, all
the simulated results (including the RMSE, MAB, ACL and CP) of λ, β, αu, Gu(t) and Hu(t)
are displayed by a heat-map tool in Figures 2–6, respectively. Specifically, for Prior-1 (say P1)
as an example, the Bayes estimates are mentioned as “BE-P1”, whereas the BCI estimates are
mentioned as “BCI-P1”. All the numerical tables are also available as Supplementary Materials.

(1,2)−30[40%]−1

(1,2)−30[40%]−2

(1,2)−30[40%]−3

(1,2)−30[80%]−1

(1,2)−30[80%]−2

(1,2)−30[80%]−3

(1,2)−80[40%]−1

(1,2)−80[40%]−2

(1,2)−80[40%]−3

(1,2)−80[80%]−1

(1,2)−80[80%]−2

(1,2)−80[80%]−3

(3,5)−30[40%]−1

(3,5)−30[40%]−2

(3,5)−30[40%]−3

(3,5)−30[80%]−1

(3,5)−30[80%]−2

(3,5)−30[80%]−3

(3,5)−80[40%]−1

(3,5)−80[40%]−2

(3,5)−80[40%]−3

(3,5)−80[80%]−1

(3,5)−80[80%]−2

(3,5)−80[80%]−3

MLE SE−P1 SE−P2

λ

(x
1
 ,

 x
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.2

0.4

0.6

0.8

RMSE

(1,2)−30[40%]−1

(1,2)−30[40%]−2

(1,2)−30[40%]−3

(1,2)−30[80%]−1

(1,2)−30[80%]−2

(1,2)−30[80%]−3

(1,2)−80[40%]−1

(1,2)−80[40%]−2

(1,2)−80[40%]−3

(1,2)−80[80%]−1

(1,2)−80[80%]−2

(1,2)−80[80%]−3

(3,5)−30[40%]−1

(3,5)−30[40%]−2

(3,5)−30[40%]−3

(3,5)−30[80%]−1

(3,5)−30[80%]−2

(3,5)−30[80%]−3

(3,5)−80[40%]−1

(3,5)−80[40%]−2

(3,5)−80[40%]−3

(3,5)−80[80%]−1

(3,5)−80[80%]−2

(3,5)−80[80%]−3

MLE SE−P1 SE−P2

λ

(x
1
 ,

 x
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.1

0.2

0.3

0.4

0.5

0.6

MAB

(1,2)−30[40%]−1

(1,2)−30[40%]−2

(1,2)−30[40%]−3

(1,2)−30[80%]−1

(1,2)−30[80%]−2

(1,2)−30[80%]−3

(1,2)−80[40%]−1

(1,2)−80[40%]−2

(1,2)−80[40%]−3

(1,2)−80[80%]−1

(1,2)−80[80%]−2

(1,2)−80[80%]−3

(3,5)−30[40%]−1

(3,5)−30[40%]−2

(3,5)−30[40%]−3

(3,5)−30[80%]−1

(3,5)−30[80%]−2

(3,5)−30[80%]−3

(3,5)−80[40%]−1

(3,5)−80[40%]−2

(3,5)−80[40%]−3

(3,5)−80[80%]−1

(3,5)−80[80%]−2

(3,5)−80[80%]−3

ACI BCI−P1 BCI−P2

λ

(x
1
 ,

 x
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

1

2

ACL

(1,2)−30[40%]−1

(1,2)−30[40%]−2

(1,2)−30[40%]−3

(1,2)−30[80%]−1

(1,2)−30[80%]−2

(1,2)−30[80%]−3

(1,2)−80[40%]−1

(1,2)−80[40%]−2

(1,2)−80[40%]−3

(1,2)−80[80%]−1

(1,2)−80[80%]−2

(1,2)−80[80%]−3

(3,5)−30[40%]−1

(3,5)−30[40%]−2

(3,5)−30[40%]−3

(3,5)−30[80%]−1

(3,5)−30[80%]−2

(3,5)−30[80%]−3

(3,5)−80[40%]−1

(3,5)−80[40%]−2

(3,5)−80[40%]−3

(3,5)−80[80%]−1

(3,5)−80[80%]−2

(3,5)−80[80%]−3

ACI BCI−P1 BCI−P2

λ

(x
1
 ,

 x
2
) 

−
 n

 [
 F

P
 ]

 −
 S

c
h

e
m

e

0.92

0.94

0.96

0.98

CP

Figure 2. Heat map for the simulation results of λ.
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Figure 3. Heat map for the simulation results of β.
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Figure 4. Heat map for the simulation results of αu.
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Figure 5. Heat map for the simulation results of Gu(t).
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Figure 6. Heat map for the simulation results of Hu(t).

From Figures 2–6, in terms of the lowest level of the RMSE, MAB and ACL values as
well as the highest level of the CP values, we list the following conclusions:

1. As a general comment, it is clear that the derived point (or interval) estimates of λ, β,
αu, Gu(t) or Hu(t) have a good performance.

2. As n (or m or both) increases, all the calculated estimates provide better results and
hold the consistency property. An equivalent observation is also reached when ∑

mj
i=1 Rji

decreases.
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3. As xj, j = 1, 2 increase, the following can be seen:

• The RMSEs and MRABs of all the estimates of λ increase while of β they decrease.
• The RMSEs and MRABs of αu, Gu(t) and Hu(t) derived from the likelihood

method increase while those derived from the Bayes method decrease.
• The ACLs of λ increase while of β they decrease. The CPs of λ decrease while of β

they increase.
• The ACLs of αu, Gu(t) and Hu(t) obtained from the ACI method increase while those

obtained from the BCI decrease. Regarding their CPs, the opposite result is noted.

4. It is known that more accurate estimates will be obtained when the priors are used
more accurately. Thus, for all settings, the MCMC estimates of λ, β, αu, Gu(t) and Hu(t)
provide more accurate results compared to those obtained from the likelihood method.

5. Because the calculated variance of Prior[1] is higher than that associated with Prior[2],
as anticipated, all the MCMC (or BCI) estimates using Prior[2] have more accurate
results than the others, and both are better than those obtained from the MLE (or ACI)
estimates.

6. Comparing the proposed censoring schemes 1, 2 and 3, for both the point and interval
estimates, it is observed that the proposed estimation procedures of λ, β, αu, Gu(t) or
Hu(t) perform better based on Scheme-3 (right censoring) than the others.

7. To sum up, the simulation facts showed that the Bayes estimation method according to
the M-H sampler for evaluating the XL parameters of life has a good performance and is
recommended across different scenarios.

6. Real-Life Applications

To highlight the adaptability of acquired estimators to real-life situations, this sec-
tion demonstrates two applications from the engineering field using two real data sets.
These applications showed that the proposed estimation approaches work satisfactorily
in practice.

6.1. Oil of Insulating Fluid

This application provides an analysis of the oil breakdown times (OBTs) of an insulating
fluid subjected to various high test voltages. From Nelson [28], two data sets (in seconds)
under different stress levels (kilovolt or kV) are considered; one is taken from 30 kV (normal
use condition) and the other is taken from 32 kV (stress use condition). For computational
convenience, each breakdown time point is divided by one hundred. So, the new transformed
OBT data are presented in Table 1. Before addressing our inference, to check whether the
XL model provides a significant fit to the OBT data or not, the Kolmogorov–Smirnov (KS)
statistics along its p-value at a 5% significance level are considered. First, from Table 1, the MLE
(standard error (SE)) of α based on the normal and stress use OBT data sets is 1.5101(0.3835)
and 2.6212(0.6097), respectively. Correspondingly, the KS (p-value) of the normal and stress
use data sets is 0.203(0.682) and 0.309(0.089), respectively. It indicates, for both given stress
levels, that the XL model fits the OBT data appropriately. Graphically, from Table 1, the
fitted/empirical RFs as well as the probability–probability (PP) plots are plotted and shown in
Figure 7. As we anticipated, Figure 7 shows that the proposed XL model provides a suitable
fit to the OBT data sets.

Table 1. Oil breakdown times of insulating fluid.

Normal Use

0.1705 0.1774 0.2046 0.2102 0.2266 0.4340 0.4730 1.3907 1.4412 1.7588 1.9490

Stress Use

0.0027 0.0040 0.0069 0.0079 0.0275 0.0391 0.0988 0.1395 0.1593 0.2780 0.5324
0.8285 0.8929 1.0058 2.1510
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Figure 7. Fitted RF (right) and PP (left) plots from OBT data. (a) Normal condition; (b) stress condition.

In this part, to see the usefulness of the derived point/interval estimators, several PT-
IIC samples from the OBT data sets are obtained. From Table 1, taking different options of
the effective samples mj, i = 1, 2 and censoring plans (Rj1, Rj2, . . . , Rjmj), 3 artificial samples
are created and listed in Table 2. Here, for brevity, the scheme (1, 1, 1, 1, 1) is considered as
(15). So, for each generated sample, the point estimates (including the maximum likelihood
and Bayes estimates) and the interval estimates (including the asymptotic and credible
interval estimates) of λ, β, αu, Gu(t) and Hu(t) (for distinct time t = 1 and the normal
operating level xu = 25) are calculated. Obviously, we do not have any prior information
about λ and β; thus, we set a = b = c = d = 0.001 which means that the posterior density
becomes quite close to the likelihood function. We also run the proposed MCMC procedure
with a burn-in of 10,000 followed by 40,000 iterations. Thus, the Bayes point (or credible
interval) estimates are evaluated. The initial values of β and δ for beginning our iterations
are taken as λ̂ and β̂, respectively. However, in Table 3, the point estimates (with their
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SEs) and the interval estimates (with their lengths) are presented. It shows that both the
frequentist and Bayesian estimates are very close to each other while the latter performed
better than the former with respect to the minimum standard errors and interval lengths.
A similar behavior is also noted in the case of the interval estimates.

Moreover, to display the convergence of the generated Markovian chains, the his-
tograms plot with the Gaussian kernel as well as the trace plot based on 40,000 MCMC
variates are shown in Figure 8. Specifically, in Figure 8, the Bayes estimate of λ, β, αu, Gu(t)
and Hu(t) is highlighted by a solid line while their BCI bounds are highlighted by dashed
lines. As a result, from Figure 8, it is observed that (i) the proposed estimates developed
by the MCMC algorithm have sufficient convergence, (ii) the burn-in sample has enough
size to eliminate the effect of the starting points and (iii) the density distribution of λ or δ is
almost fairly symmetrical, of αu or Hu(t) it is positively skewed and of Gu(t) it is negatively
skewed.

(a) (b) (c)

Figure 8. Density (left) and trace (right) plot of λ, β, αu, Gu(t) and Hu(t) from OBT data. (a) Sample 1;
(b) Sample 2; (c) Sample 3.
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Table 2. Various constant stress PC-T-II samples from OBT data.

Sample Scheme Normal Use Censored Data from (n1, m1) = (11, 8)

1 (3, 07) 0.1705, 0.2046, 0.2102, 0.2266, 0.4340, 1.3907, 1.4412, 1.7588
2 (03, 3, 04) 0.1705, 0.1774, 0.2046, 0.2102, 0.4730, 1.3907, 1.4412, 1.7588
3 (07, 3) 0.1705, 0.1774, 0.2046, 0.2102, 0.2266, 0.4340, 0.4730, 1.3907

Sample Scheme Stress Use Censored Data from (n2, m2) = (15, 10)

1 (5, 09) 0.0027, 0.0069, 0.0079, 0.0275, 0.0391, 0.1395, 0.1593, 0.2780, 0.8285, 0.8929
2 (04, 5, 05) 0.0027, 0.0040, 0.0069, 0.0079, 0.0275, 0.1593, 0.2780, 0.5324, 0.8285, 0.8929
3 (09, 5) 0.0027, 0.0040, 0.0069, 0.0079, 0.0275, 0.0391, 0.0988, 0.1395, 0.1593, 0.2780

Table 3. Point and interval estimates from OBT data.

Sample Par.
MLE MCMC 95% ACI 95% BCI

Est. SE Est. SE Lower Upper Length Lower Upper Length

1 λ −15.821 5.0750 −15.815 0.0122 −25.768 −5.874 19.894 −15.834 −15.795 0.0394
β 0.5402 0.1637 0.5397 0.0056 0.2192 0.8611 0.6418 0.5286 0.5504 0.0218

αu 0.0986 0.0985 0.0990 0.0139 −0.0946 0.2917 0.3863 0.0742 0.1282 0.0540
Ḡu(t) 0.9801 0.0359 0.9797 0.0052 0.9098 0.9995 0.0897 0.9683 0.9882 0.0199
Hu(t) 0.0231 0.0413 0.0235 0.0059 −0.0578 0.1040 0.1618 0.0138 0.0367 0.0229

2 λ −14.988 5.5623 −14.982 0.0116 −25.890 −4.0865 21.804 −15.001 −14.963 0.0388
β 0.5088 0.1795 0.5083 0.0056 0.1570 0.8605 0.7034 0.4970 0.5189 0.0219

αu 0.1034 0.1129 0.1037 0.0144 −0.1178 0.3246 0.4424 0.0775 0.1339 0.0564
Ḡu(t) 0.9784 0.0425 0.9780 0.0055 0.8951 0.9942 0.0991 0.9657 0.9872 0.0215
Hu(t) 0.0251 0.0489 0.0256 0.0063 −0.0706 0.1208 0.1915 0.0149 0.0396 0.0247

3 λ −19.302 7.2219 −19.295 0.0125 −33.457 −5.1476 28.309 −19.314 −19.276 0.0381
β 0.6521 0.2332 0.6516 0.0056 0.1951 1.1092 0.9141 0.6403 0.6623 0.0220

αu 0.0498 0.0700 0.0500 0.0070 −0.0874 0.1870 0.2744 0.0374 0.0647 0.0273
Ḡu(t) 0.9944 0.0149 0.9943 0.0015 0.9652 0.9996 0.0344 0.9908 0.9968 0.0059
Hu(t) 0.0066 0.0174 0.0067 0.0018 −0.0275 0.0406 0.0681 0.0038 0.0107 0.0069

6.2. Transformer Life-Testing

In this application, to show the usefulness of the proposed estimation approaches and
to verify how our estimates work in practice, the failure times (in hours) of the TLT at high
voltage are analyzed. These data were first given by Nelson [28] and later re-analyzed by
Nassar et al. [9]. Under three accelerating stresses, 35.4, 42.2 and 46.7 kV, the TLT data sets
were generated. In Table 4, each failure time in 35.4 kV (as normal use data) and 42.2 kV (as
stress use data) is divided by 1000 for computational purposes, and the new transformed
TLT data are presented. From Table 4, the MLE (SE) of α based on the normal and stress use
TLT data sets is 5.0778(1.7186) and 37.968(12.640), respectively. Next, the KS distance and
its (p-value) from the normal and stress use TLT data sets is 0.185(0.901) and 0.287(0.374),
respectively. This result is evidence that the XL model fits the TLT data sets well. On the
other hand, in Figure 9, two plots, namely the fitted/empirical RFs and PP of the XL model,
are displayed. It supports the same goodness-of-fit findings.

Table 4. Failure times of transformer life-testing.

Normal Use

0.0401 0.0594 0.0712 0.1665 0.2047 0.2297 0.3083 0.5379

Stress Use

0.0006 0.0134 0.0152 0.0199 0.0250 0.0302 0.0328 0.0444 0.0562
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Figure 9. Fitted RF (right) and PP (left) plots from TLT data. (a) Normal condition; (b) stress condition.

From Table 4, based on several choices of mj = 5, i = 1, 2 and (Rj1, Rj2, . . . , Rjmj), some
artificial constant stress PT-IIC samples are generated and provided in Table 5. For each
sample, in Table 6, the Bayes and maximum likelihood estimates along with their SEs as
well as the 95% ACI/BCI estimates along with their lengths of λ, β, αu, Gu(t) and Hu(t)
(at t = 1 and xu = 20) are calculated and provided. Just like our assumption about the
prior parameters in Section 6.1, the acquired Bayes point/interval analyses are made. It is
seen that the calculated point and interval estimates of λ, β, αu, Gu(t) and Hu(t), derived
from the Bayes MCMC and likelihood estimation methods, are quite similar to each other.
It also supports the same findings established in Table 3. To evaluate the behavior of 40,000
simulated Markovian chains of λ, β, αu, Gu(t) or Hu(t), for each generated sample in
Table 4, the density and trace plots are shown in Figure 10. It indicates that the MCMC
estimates converged adequately. It also depicts that the simulated posteriors of λ are
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distributed as fairly symmetric while of (β or Gu(t)) and (αu or Hu(t)) they are distributed
as negatively and positively skewed, respectively.

(a) (b) (c)

Figure 10. Density (left) and trace (right) plot of λ, β, αu, Gu(t) and Hu(t) from TLT data. (a) Sample 1;
(b) Sample 2; (c) Sample 3.

Table 5. Various constant stress PC-T-II samples from TLT data.

Sample Scheme Normal Use Censored Data from (n1, m1) = (8, 5)

1 (3, 04) 0.0401, 0.0594, 0.1665, 0.2047, 0.2297
2 (02, 3, 02) 0.0401, 0.0594, 0.0712, 0.2047, 0.3083
3 (04, 3) 0.0401, 0.0594, 0.0712, 0.1665, 0.2047

Sample Scheme Stress Use Censored Data from (n2, m2) = (9, 5)

1 (4, 04) 0.0006, 0.0134, 0.0199, 0.0250, 0.0328
2 (02, 4, 02) 0.0006, 0.0134, 0.0152, 0.0250, 0.0444
3 (04, 4) 0.0006, 0.0134, 0.0152, 0.0199, 0.0250
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As a summary, the numerical results developed from the OBT or TLT data revealed
that the proposed XL model is useful for addressing the proposed inferential issues and is
also beneficial for addressing the engineering problems.

Table 6. Point and interval estimates from TLT data.

Sample Par.
MLE MCMC 95% ACI 95% BCI

Est. SE Est. SE Lower Upper Length Lower Upper Length

1 λ −9.0329 3.4227 −9.0180 0.0249 −15.741 −2.3244 13.417 −9.0572 −8.9797 0.0775
β 0.3067 0.0879 0.3052 0.0078 0.1345 0.4790 0.3445 0.2896 0.3193 0.0297

αu 0.0551 0.0926 0.0549 0.0083 −0.1264 0.2367 0.3631 0.0397 0.0720 0.0323
Ḡu(t) 0.9932 0.0215 0.9932 0.0020 0.9511 0.9993 0.0482 0.9888 0.9964 0.0075
Hu(t) 0.0079 0.0250 0.0080 0.0023 −0.0410 0.0569 0.0979 0.0043 0.0131 0.0088

2 λ −6.8924 3.2927 −6.8806 0.0231 −13.346 −0.4388 12.907 −6.9197 −6.8415 0.0782
β 0.2438 0.0846 0.2425 0.0076 0.0780 0.4097 0.3316 0.2269 0.2563 0.0295

αu 0.1333 0.2154 0.1327 0.0196 −0.2888 0.5553 0.8442 0.0961 0.1731 0.0770
Ḡu(t) 0.9661 0.0958 0.9659 0.0087 0.7783 0.9985 0.2202 0.9468 0.9810 0.0342
Hu(t) 0.0393 0.1101 0.0394 0.0100 −0.1765 0.2550 0.4315 0.0221 0.0614 0.0393

3 λ −7.9132 3.3983 −7.8999 0.0238 −14.574 −1.2526 13.321 −7.9386 −7.8612 0.0775
β 0.2658 0.0874 0.2645 0.0075 0.0945 0.4372 0.3426 0.2491 0.2783 0.0292

αu 0.0746 0.1241 0.0744 0.0109 −0.1687 0.3178 0.4865 0.0540 0.0968 0.0428
Ḡu(t) 0.9881 0.0367 0.9880 0.0032 0.9161 0.9968 0.0807 0.9808 0.9935 0.0127
Hu(t) 0.0139 0.0424 0.0141 0.0037 −0.0693 0.0971 0.1663 0.0076 0.0223 0.0147

7. Conclusions and Future Work

A statistical analysis of constant-stress accelerated life tests for the XLIndley distri-
bution based on progressive Type-II censoring is investigated in this article. Even though
there have been many studies looking into estimating problems when constant-stress
accelerated life tests are present, there have been relatively few studies looking into the
estimation of reliability and hazard rate functions in the context of normal use conditions.
To fill this gap, we utilized classical and Bayesian inferential approaches to estimate the
unknown parameters and reliability measures under normal use situations. Based on
the maximum likelihood approach, the point estimates and the approximate confidence
intervals based on the asymptotic normality of the maximum likelihood estimators are
obtained. The squared error loss function is used in the Bayesian technique to derive
the Bayes estimates. The Markov chain Monte Carlo approach is employed to obtain the
Bayes estimates and the Bayes credible intervals of the unknown parameters due to the
joint posterior distribution’s complex expression. The effectiveness of the various esti-
mation techniques is demonstrated through a simulation study, and the applicability of
the different estimators is verified through the analysis of two data sets from accelerated
life tests. Based on the root mean square error, absolute bias and interval length of the
estimates, the numerical results show that the Bayes estimates, whether point or interval,
perform quite well. It is observed that the various estimates based on the right censoring
scheme perform better than other censoring schemes. Moreover, the accuracy of the Bayes
estimates increases as the prior distribution’s variance decreases. In general, when prior
knowledge about the unknown parameters is available, the Bayes estimates outperform the
maximum likelihood method. It is preferable to utilize the classical method when there is
no information about the unknown parameters because the Bayesian method requires more
calculation time. On future work, one can perform the same estimation procedures for
the XLindley distribution described in the current study based on adaptive progressively
censored samples. Referring to Opheim and Roy [29] and Avdović and Jevremović [30], the
concepts of these two papers can be extended to test the XLindley distribution empirically
by providing cut-off values for the required number of samples to attain predetermined
nominal significance levels.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/axioms12040352/s1, Table S1: Average estimates (1st column),
RMSEs (2nd column) and MABs (3rd column) of λ; Table S2: Average estimates (1st column), RMSEs
(2nd column) and MABs (3rd column) of β; Table S3: Average estimates (1st column), RMSEs (2nd
column) and MABs (3rd column) of αu; Table S4: Average estimates (1st column), RMSEs (2nd
column) and MABs (3rd column) of Ḡu(t); Table S5: Average estimates (1st column), RMSEs (2nd
column) and MABs (3rd column) of Hu(t); Table S6: The ACLs (1st column) and CPs (2nd column) of
95% ACI/BCI of λ; Table S7: The ACLs (1st column) and CPs (2nd column) of 95% ACI/BCI of β;
Table S8: The ACLs (1st column) and CPs (2nd column) of 95% ACI/BCI of αu; Table S9: The ACLs
(1st column) and CPs (2nd column) of 95% ACI/BCI of Ḡu(t); Table S10: The ACLs (1st column) and
CPs (2nd column) of 95% ACI/BCI of Hu(t).
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