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Abstract: Guaranteed-coverage and expected-coverage tolerance limits for Weibull models are
derived when, owing to restrictions on data collection, experimental difficulties, the presence of
outliers, or some other extraordinary reasons, certain proportions of the extreme sample values have
been censored or disregarded. Unconditional and conditional tolerance bounds are presented and
compared when some of the smallest observations have been discarded. In addition, the related
problem of determining minimum sample sizes for setting Weibull tolerance limits from trimmed
data is discussed when the numbers or proportions of the left and right trimmed observations are
fixed. Step-by-step procedures for determining optimal sampling plans are also presented. Several
numerical examples are included for illustrative purposes.

Keywords: missing or discarded data; guaranteed-coverage and expected-coverage tolerance limits;
optimal sampling plans; unconditional and conditional tolerance limits

MSC: 62F25; 62N05; 62N01; 62G30

1. Introduction

Tolerance limits are extensively employed in some statistical fields, including sta-
tistical quality control, economics, medical and pharmaceutical statistics, environmental
monitoring, and reliability analysis. In essence, a tolerance interval describes the behavior
of a fraction of individuals. Roughly speaking, the tolerance limits are bounds within which
one expects a stated proportion of the population to lie. Two basic types of such limits
have received considerable attention, β-content and β-expectation tolerance limits; see
Wilks [1], Guttman [2] and Fernández [3] and references therein. Succinctly, a β-content tol-
erance interval contains at least 100β% of the population with certain confidence, whereas
a β-expectation tolerance interval covers, on the average, a fraction β of the population.

In life-testing and reliability analysis, the tolerance limits are frequently computed
from a complete or right-censored sample. In this paper, the available empirical information
is provided by a trimmed sample, i.e., it is assumed that determined proportions q1 and q2
of the smallest and largest observations have been eliminated or censored. These kinds of
data are frequently used in several areas of statistical practice for deriving robust inferential
procedures and detecting influential observations, e.g., Prescott [4], Huber [5], Healy [6],
Welsh [7], Wilcox [8], and Fernández [9,10]. In various situations, some extreme sample
values may not be recorded due to restrictions on data collection (generally for reasons of
economy of money, time, and effort), experimental difficulties or some other extraordinary
reasons, or be discarded (especially when some observations are poorly known or the pres-
ence of outliers is suspected). In particular, a known number of observations in an ordered
sample might be missing at either end (single censoring) or at both ends (double censoring)
in failure censored experiments. Specifically, double censoring has been treated by many
authors in the statistical literature (among others, Healy [11], Prescott [12], Schneider [13],
Bhattacharyya [14], LaRiccia [15], Schneider and Weissfeld [16], Fernández [17,18], Escobar
and Meeker [19], Upadhyay and Shastri [20], and Ali Mousa [21]).
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The Weibull distribution provides a versatile statistical model for analyzing time-to-
event data, which is useful in many fields, including biometry, economics, engineering,
management, and the environmental, actuarial, and social sciences. In survival and relia-
bility analysis, this distribution plays a prominent role and has successfully been used to
describe animal and human disease mortality, as well as the reliability of both components
and equipments in industrial applications. This probability model has many practical
applications; e.g., Chen et al. [22], Tsai et al. [23], Aslam et al. [24], Fernández [25], Roy [26],
Almongy et al. [27], and Algarni [28]. If the Weibull shape parameter α = 1, the distribu-
tion is exponential, which plays an notable role in engineering; see Fernández et al. [29],
Lee et al. [30], Chen and Yang [31], and Yousef et al. [32]. The random variable is Rayleigh
distributed when α = 2. This case is also important in various areas; see Aminzadeh [33,34],
Raqab and Madi [35], Fernández [36], and Lee et al. [37].

This paper is devoted to deriving tolerance limits using a trimmed sample drawn from
a Weibull W(θ, α) population. It is assumed that α is appropriately chosen while the Weibull
scale parameter, θ, is unknown. The conditionality principle, proposed primarily by Fisher,
is adopted when some of the smallest observations have been disregarded. The related
problem of determining minimum sample sizes is also tackled. In the exponential case,
Fernández [38,39] presented optimal two-sided tolerance intervals and tolerance limits for
k-out-of-n systems, respectively. On the basis of a complete Rayleigh sample (i.e., α = 2),
Aminzadeh [33] found β-expectation tolerance limits and discussed the determination of
sample size to control stability of coverage, whereas Aminzadeh [34] derived approximate
tolerance limits when θ depends on a set of explanatory variables. Weibull tolerance limits
based on complete samples were obtained in Thoman et al. [40].

The structure of the remainder of this work is as follows. The sampling distribution
of a Weibull trimmed sample is provided in the next section. Section 3 presents β-content
tolerance limits based on W(θ, α) trimmed data. In addition, the problem of determining
optimal sample sizes is discussed. Mean-coverage tolerance limits are derived in Section 4.
Optimal sampling plans for setting β-expectation tolerance limits are also deduced. The cor-
responding unconditional and conditional bounds are compared in Sections 3 and 4 when
the lower trimming proportion, q1, is positive, whereas Section 5 includes several numerical
examples, reported by Sarhan and Greenberg [41], Meeker and Escobar [42], and Lee and
Wang [43], for illustrative purposes. Finally, Section 6 offers some concluding remarks.

2. Weibull Trimmed Samples

The probability density function (pdf) of a random variable X which has a Weibull
distribution with positive parameters θ and α, i.e., X ∼W(θ, α), is defined by

fX(x | θ, α) =
αxα−1/θα

exp
{
(x/θ)α} , x > 0. (1)

Its k-th moment is obtained to be E[Xk | θ, α] = θkΓ(1 + k/α), k = 1, 2, ..., where Γ(·)
is the well-known gamma function. The parameter α controls the shape of the density
whereas θ determines its scaling. Since the hazard rate is h(x | θ, α) = (α/θα)xα−1 for
x > 0, the Weibull law may be used to model the survival distribution of a population with
increasing (α > 1), decreasing (α < 1), or constant (α = 1) risk. Examples of increasing
and decreasing hazard rates are, respectively, patients with lung cancer and patients who
undergo successful major surgery. Davis [44] reports several cases in which a constant risk
is reasonable, including payroll check errors and radar set component failures.

In many practical applications, Weibull distributions with α in the range 1 to 3 seem
appropriate. If 3 ≤ α ≤ 4, the W(θ, α) pdf has a near normal shape; for large α (e.g., α ≥ 10),
the shape of the density is close to that of the (smallest) extreme value density. The
Weibull density becomes more symmetric as α grows. In Weibull data analysis it is quite
habitual to assume that the shape parameter, α, is a known constant. Among other authors,
Soland [45], Tsokos and Rao [46], Lawless [47], and Nordman and Meeker [48] provide
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justifications. The α value may come from previous or related data or may be a widely
accepted value for the problem, or even an expert guess. In reliability analysis, α is
often tied to the failure mechanism of the product and so engineers might have some
knowledge of it. Klinger et al. [49] provide tables of Weibull parameters for various devices.
Abernethy [50] supplies useful information about past experiments with Weibull data.
Several situations in which it is appropriate to consider that α is constant are described in
Nordman and Meeker [48]. Among many others, Danziger [51], Tsokos and Canavos [52],
Moore and Bilikam [53], Kwon [54], and Zhang and Meeker [55] also utilize a given Weibull
shape parameter.

Consider a random sample of size n from a Weibull distribution (1) with unknown
scale parameter θ ∈ Θ = (0, ∞), and let Xr:n, ..., Xs:n be the ordered observations remaining
when the (r− 1) smallest observations and the (n− s) largest observations have been
discarded or censored, where 1 ≤ r ≤ s ≤ n. The trimming proportions q1 = (r− 1)/n and
q2 = 1− s/n, as well as the shape parameter α, are assumed to be predetermined constants.

The pdf of the (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) at x = (xr:n, ..., xs:n) is then
defined by

fX(x | θ, α) =
n!αs−r+1{1− exp(−xα

r:n/θα)}r−1 ∏s
i=r xα−1

i:n

(r− 1)!(n− s)!θ(s−r+1)α exp{T(x)/θα}
, (2)

for 0 < xr:n < · · · < xs:n, where T(x) is the observed value of

T ≡ T(X) =
s

∑
i=r

Xα
i:n + (n− s)Xα

s:n.

Clearly, T is sufficient when r = 1, whereas the sample evidence is contained in the
sufficient statistic (Xr:n, T) if r > 1.

The maximum likelihood estimator (MLE) of θ, denoted by θ̂ ≡ θ̂(X), can be derived
from the equation ∂ ln fX(X | θ, α)/∂θ = 0. It is well-known that θ̂ is the unique solution to
the equation

(θ̂)α =
Xα

r:n(r− 1)/(s− r + 1)
1− exp([Xα

r:n/(θ̂)α])
+

T
s− r + 1

. (3)

See, e.g., Theorem 1 in Fernández et al. [29]. Therefore, the MLE of θ is given explicitly by
θ̂ = (T/s)1/α when r = 1. Otherwise, θ̂ must be found upon using an iterative procedure.

3. Guaranteed-Coverage Tolerance Limits

Given the Weibull (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) and β, γ ∈ (0, 1), a
statistic Lβ,γ ≡ Lβ,γ(X) is called a lower β-content tolerance limit at level of confidence γ
(or simply a lower (β, γ)-TL for short) of the W(θ, α) distribution if

Pr X|θ,α
{

Pr X|θ,α(X > Lβ,γ
)
≥ β

}
= γ (4)

for all θ > 0, where Pr X|θ,α{·} and Pr X|θ,α(·) refer to the respective sampling distribution of
X and X under the nominal values of θ and α, which are defined in (1) and (2), respectively.

According to (4), one may guarantee with confidence γ that at least 100β% of popu-
lation measurements will exceed Lβ,γ. In other words, with confidence γ, the probability
that a future observation of X ∼ W(θ, α) will surpass Lβ,γ is at least β. Clearly, an upper
(β, γ)-TL, Uβ,γ ≡ Uβ,γ(X), is provided by L1−β,1−γ. In this manner, one can be 100γ%
confident that at least 100β% of Weibull W(θ, α) observations will be less than Uβ,γ.

Assuming that 1 < r = s, as Xr:n is minimal sufficient for θ, it is logical to consider a
lower (β, γ)-TL for the form Lβ,γ = Cβ,γXr:n, where, from (4), Cβ,γ must satisfy

Pr
(

exp
{
−
(
Cβ,γXr:n/θ

)α
}
≥ β

)
= γ.
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Since exp(−Xα
r:n/θα) ∼ Beta(n− r + 1, r), it follows that β1/(Cβ,γ)

α
is merely the (1− γ)-

quantile of the Beta(n− r + 1, r) distribution. Thus, Cβ,γ satisfies the equation

r−1

∑
k=0

(n
k){1− β1/(Cβ,γ)

α
}k

β(k−n)/(Cβ,γ)α = 1− γ.

Alternatively, Cβ,γ may be expressed explicitly as

Cβ,γ =

(
− ln β

ln{1 + rF2r,2(n−r+1);γ/(n− r + 1)}

)1/α

, (5)

where F2r,2(n−r+1);γ denotes the γ-quantile of the F-distribution with 2r and 2(n− r + 1)
degrees of freedom (df). In particular, Cβ,γ = {n ln β/ ln(1− γ)}1/α when r = s = 1,
whereas Cβ,γ = {ln β/ ln(1− γ1/n)}1/α if r = s = n.

If 1 = r ≤ s, it is clear that T is minimal sufficient for θ, which implies that it is
sensible to assume that Lβ,γ is proportional to T1/α, i.e., Lβ,γ = Cβ,γT1/α. In this situation,
it can be shown that 2T/θα ∼ χ2

2s, where χ2
2s represents the chi-square distribution with

2s df. Observe that, letting X0:n ≡ 0, the pivotal 2T/θα coincides with ∑s
i=1 Zi, where

Zi = 2(n− i + 1)
(
Xα

i:n − Xα
i−1:n

)
/θα, i = 1, .., s, are mutually independent χ2

2 variables.
Since, in view of (4),

Pr
(
exp

{
−(Cβ,γ)

αT/θα
}
≥ β

)
= Pr

(
2T/θα ≤ −2 ln β/(Cβ,γ)

α
)
= γ,

it turns out that Cβ,γ = (−2 ln β/χ2
2s;γ)

1/α. Consequently, Lβ,γ = (−2T ln β/χ2
2s;γ)

1/α.

3.1. Unconditional and Conditional Tolerance Limits

When focusing on the more general case, in which 1 < r < s, obviously (Xr:n, T) is a
sufficient statistic for θ. Moreover, if R = T − (n− r + 1)Xα

r:n, then 2R/θα ∼ χ2
2(s−r) since

this pivotal quantity can be expressed as the sum of the (s− r) independent χ2
2 variables

Zr+1, Zr+2, ..., Zs. Therefore, it can be shown that

Lβ,γ = Cβ,γR1/α = (−2R ln β/χ2
2(s−r);γ)

1/α

constitutes a (unconditional) lower (β, γ)-TL. Notice, however, that this limit is based on
an insufficient statistic R.

An alternative and more appropriate TL can be constructed assuming that A = Xα
r:n/R

is an ancillary statistic. Note that, by itself, A does not contain any information about θ,
and that the statistic (R, A) is minimal sufficient for θ. Therefore, given A, the statistic R is
conditionally sufficient. In accordance with the conditional principle suggested by Fisher, a
tolerance limit should be based on the distribution of R given the observed value of the
ancillary statistic A. Then, adopting the above principle and assuming that A = a, it is
sensible to look for a conditional lower (β, γ)-TL of the form La

β,γ = Ca
β,γR1/α, where

Pr X|θ,α
{

Pr X|θ,α
(

X > La
β,γ

)
≥ β | A = a

}
= γ. (6)

Thus, as Pr(R/θα ≤ − ln β/(Ca
β,γ)

α | A = a) = γ, it follows that − ln β/(Ca
β,γ)

α is precisely
the γ-quantile of the distribution of R/θα conditional to A = a.

The pdf of Y = R/θα given A = a is derived to be

fY(y | a) =
ys−r exp[−{1 + (n + 1− r)a}y]
(s− r)!G[a]{1− exp(−ay)}1−r , y > 0,
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where

G[a] =
r−1

∑
k=0

(−1)i(r−1
k )

{(k + n + 1− r)a + 1}s−r+1 ,

whereas the cumulative distribution function of Y conditional to A = a is defined by

Pr(Y ≤ y | a) = 1− G∗[y; a]/G[a], y > 0,

where

G∗[y; a] =
r−1

∑
i=0

s−r

∑
j=0

(−1)i(r−1
i )yj{1 + (n− r + 1 + i)a}j−s+r−1

j! exp[{1 + (n− r + 1 + i)a}y] .

Consequently, if ya
γ denotes the γ-quantile of the distribution of Y given A = a, i.e., ya

γ

satisfies the equation G∗[ya
γ; a] = (1− γ)G[a], it is obvious that Ca

β,γ = (− ln β/ya
γ)

1/α. In

this way, it follows that La
β,γ = (−R ln β/ya

γ)
1/α.

Of course, LA
β,γ ≡ LA

β,γ(X) is also a lower (β, γ)-TL in the ordinary unconditional
sense because

Pr X|θ,α
{

Pr X|θ,α
(

X > LA
β,γ

)
≥ β

}
coincides with

E
[
Pr X|θ,α

{
Pr X|θ,α

(
X > LA

β,γ

)
≥ β | A

}]
= E[γ] = γ.

Table 1 compares, for selected values of r, s, and n, the unconditional and conditional
lower (β, γ) tolerance factors, Cβ,γ and Caε

β,γ, corresponding to the W(θ, α) distribution
when α = 1, (β, γ) = (0.90, 0.95) and A = aε, ε = 0.01, 0.25, 0.75, 0.99, where aε denotes the
ε-quantile of the distribution of A. It can be proven that aε is the unique positive solution in
a to the following equation

r−1

∑
i=0

(−1)ir(r−1
i )(n

r)/(n− r + 1 + i)

{1 + (n− r + 1 + i)a}s−r = 1− ε.

Table 1. Unconditional and conditional lower (β, γ) tolerance factors, Cβ,γ and Caε

β,γ, for the W(α, θ)

model based on X = (Xr:n, ..., Xs:n) when α = 1, β = 0.90, and γ = 0.95.

r s n Cβ,γ Ca0.01
β,γ Ca0.25

β,γ Ca0.75
β,γ Ca0.99

β,γ

2 6 10 0.0135885 0.0103609 0.0124313 0.0183526 0.0450331
10 20 0.00801336 0.00682716 0.00751394 0.00921814 0.0147077

4 8 30 0.0135885 0.00934313 0.0129005 0.0211442 0.0562717
20 40 0.00456163 0.00396171 0.00437034 0.00506643 0.00673139

6 10 50 0.0135885 0.00894574 0.0133632 0.0230475 0.0636906
30 60 0.00323337 0.00285084 0.00312617 0.00353006 0.00438183

It is worthwhile to mention that the difference between Cβ,γ and Caε
β,γ might be large

when A takes extreme percentiles (i.e., when ε is near to 0 or 1). For instance, if (r, s, n) =
(4, 8, 30), the unconditional factor is Cβ,γ = 0.01359, whereas the respective conditional
factors Ca0.01

β,γ and Ca0.99
β,γ are given by 0.009343 and 0.05627. The difference between Cβ,γ and

Caε
β,γ becomes smaller when n grows to infinity and the trimming proportions, q1 and q2,

are fixed. Indeed, provided that s− r is large, Cβ,γ and Ca
β,γ are quite similar. In addition, it

turns out that

Cβ,γ ' C∗β,γ =

(
− ln β

s− r + zγ
√

s− r

)1/α

from the Wilson–Hilferty transformation (see, e.g., Lawless [47], p. 158), where zγ is
the γ-quantile of the standard normal distribution. For instance, Cβ,γ = 0.001862 and
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C∗β,γ = 0.001880 when (r, s, n) = (5, 50, 55), α = 1 and (β, γ) = (0.90, 0.95). In this case,
(Ca0.01

β,γ , Ca0.99
β,γ ) is (0.001741, 0.002170). If one assumes now that (r, s, n) = (5, 90, 95), then

Cβ,γ = 0.001046 and C∗β,γ = 0.001051, whereas (Ca0.01
β,γ , Ca0.99

β,γ ) = (0.001007, 0.001134).

3.2. Sample-Size Determination

The choice of sample size plays a primordial role in the design of most statistical
studies. A traditional approach is to assume that it is desired to find the smallest value of n
(and the corresponding values of r and s), such that the lower (β, γ)-TL based of a (q1, q2)-
trimmed sample X = (Xr:n, ..., Xs:n) drawn from X ∼ W(α, θ), Lβ,γ ≡ Lβ,γ(X), satisfies

Pr X|θ,α
{

Pr X|θ,α(X > Lβ,γ
)
≥ β′

}
≤ γ′ (7)

for all θ > 0, and certain β′ > β and γ′. In this way, one could affirm that at least 100β% of
population measurements will exceed Lβ,γ with confidence γ, and that at least 100β′% of
population measurements will surpass Lβ,γ with confidence at most γ′. That is to say, the
random coverage of (Lβ,γ(X),+∞) is at least β with probability γ and it is at least β′ > β
with a probability not exceeding γ′.

In this subsection, a sampling plan (r, s, n) satisfying condition (7) will be named
feasible. Our target is obtaining the optimal (minimum sample size) feasible plan (r, s, n)
for setting the lower (β, γ)-TL. For later use, dxe and bxc will represent the rounded-up
and -down values of x to integer numbers.

Supposing that 1 < r = s ≤ n, it is clear that Lβ,γ = Cβ,γXr:n and Lβ′ ,γ′ = Cβ′ ,γ′Xr:n,
where Cβ,γ and Cβ′ ,γ′ are defined in accordance with (5). Thus, condition (7) will hold
if and only if Cβ,γ ≥ Cβ′ ,γ′ . Therefore, (r, r, n) is a feasible sampling plan if and only if
g1(r, n) ≥ 0, where

g1(r, n) =
ln{1 + rF2r,2(n−r+1);γ′/(n− r + 1)}
ln{1 + rF2r,2(n−r+1);γ/(n− r + 1)} −

ln β′

ln β
.

Since F2r,2(n−r+1);γ −→ χ2
2r;γ/(2r) when n → ∞ and ln(1 + t)/t −→ 1 as t → 0, there

exists a value of n, such that (r, r, n) is feasible if h1(r) > 0, where

h1(r) = χ2
2r;γ′/χ2

2r;γ − ln β′/ ln β.

Otherwise, the inequation g1(r, n) ≥ 0 has no solution in n. On the other hand, provided
that 1 = r ≤ s ≤ n, as Lβ,γ = (−2T ln β/χ2

2s;γ)
1/α is the lower (β, γ)-TL, the sampling plan

(1, s, n) will be feasible if and only if h1(s) ≥ 0. Similarly, if 1 < r < s ≤ n, the plan (r, s, n)
would be feasible if and only if h1(s− r) ≥ 0 because Lβ,γ = (2R ln β/χ2

2(s−r);γ)
1/α.

The determination of the optimal feasible sampling plan for setting the lower (β, γ)-TL
assuming fixed numbers of trimmed observations (Case I) or fixed trimming proportions
(Case II) will be discussed in the remainder of this subsection.

Case I: Fixed numbers of left and right trimmed observations

Suppose that the researcher wishes to find the optimal feasible plan (r, s, n), such that
(r− 1) = δ1 and (n− s) = δ2, where δ1 and δ2 are prespecified non-negative integers. Then,
if g1(r, n) ≥ 0 with r = δ1 + 1 and n = δ1 + δ2 + 1, it follows that (δ1 + 1, δ1 + 1, δ1 + δ2 + 1)
would be the optimal plan. Otherwise, if m denotes the smallest integer value, such that
h1(m) ≥ 0, it turns out that

(r, s, n) = (δ1 + 1, δ1 + m + I(δ1 > 0), δ1 + δ2 + m + I(δ1 > 0))

would be the optimal plan, where I(·) is the indicator function. Observe that m will always
exist because χ2

2k;γ′/χ2
2k;γ −→ 1 as k→ ∞ and ln β′/ ln β < 1. It is worthwhile to point out
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that m = 1 if and only if γ′ ≥ 1− (1− γ)ln β′/ ln β since χ2
2;ε = −2 ln(1− ε) for ε ∈ (0, 1).

In particular, m is always 1 when γ′ ≥ γ. Note also that (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) is not
feasible when m > δ1 + 1.

Due to the fact that χ2
2k;ε ' 2k{1− 1/(9k) + zε/(9k)1/2}3 when k ≥ 5 and ε ∈ (0, 1)

from Wilson–Hilferty transformation, it can be proven that m is approximately equal to the
smallest integer greater than or equal to ρ, i.e., m ' dρe, where

ρ = {ω + (ω2 + 1/9)1/2}2 and ω =
zγ′ − zγ(ln β′/ ln β)1/3

6{(ln β′/ ln β)1/3 − 1}
. (8)

It can be proven that the approximation m ' dρe is exact in practically all cases. Nonethe-
less, a method for determining the proper value of m would be immediate: using m0 = dρe
as initial the guess of m, calculate h1(m0) and h1(m0 − 1). If h1(m0) ≥ 0 and h1(m0 − 1) < 0,
then m = m0; otherwise, set m0 = m0 − 1 if h1(m0) < 0 or set m0 = m0 + 1 if h1(m0) ≥ 0,
and repeat again this process.

Case II: Fixed left and right trimming proportions

Assuming that πi ≥ 0, i = 1, 2, and π1 + π2 < 1, consider now that the researcher
desires to obtain the minimum sample size feasible plan (rn, sn, n) with rn = bnπ1 + 1c and
sn = dn(1− π2)e. In such a case, the left and right trimming proportions, q1 and q2, are
approximately π1 and π2, respectively. Furthermore, rn ≤ sn and the available observations
would be at least dn(1− π1 − π2)e.

Our aim is to determine the smallest integer n, such that g1(rn, n) ≥ 0 if 1 < rn = sn
or such that h1(sn − rn + I(rn = 1)) ≥ 0 otherwise. As before, m will represent the smallest
integer satisfying h1(m) ≥ 0. It is important to take into account that if (rn, sn, n) is a feasible
plan, then rn must be greater than or equal to m when rn = sn. Otherwise, as

sn − rn + I(rn = 1) = m, sn ≥ m + 1− I(rn = 1) and n ≥ sn,

it follows that n ≥ n0, where

n0 = max
{⌈

m− 1− I(rn = 1)
1− π1 − π2

⌉
,
⌈

m− I(rn = 1)
1− π2

⌉
, m + 1− I(rn = 1)

}
. (9)

In addition, since n(1− π2)− (nπ1 + 1) ≤ m−I(rn = 1), it turns out that

n ≤ b{m + 1− I(rn = 1)}/(1− π1 − π2)c. (10)

On the other side, if rn = sn = k > 1, it is clear that k ≤ nπ1 + 1 and n(1− π2) ≤ k. As
a consequence,

d(k− 1)/π1e ≤ n ≤ bk/(1− π2)c.

The above results may be helpful for finding the optimal sampling plan. Once the researcher
chooses the desired values of β, γ, β′, γ′, π1, π2 ∈ (0, 1), with β < β′ and π1 +π2 < 1, a step-
by-step procedure for determining the smallest sample size plan (rn, sn, n) satisfying (7),
where rn = bnπ1 + 1c and sn = dn(1− π2)e, may be described as follows:

• Step 1: If γ′ ≥ 1− (1− γ)ln β′/ ln β, then set (rn, sn, n) = (1, 1, 1) and go to step 10.
Otherwise, find the smallest integer m, such that h1(m) ≥ 0 using m0 = dρe as initial
guess (see Case I), where ρ is given in (8).

• Step 2: Define n = n0 assuming that rn = 1, where n0 is provided in (9), and compute
rn and sn. If rn > 1, redefine n = n0 and recalculate rn and sn.

• Step 3: While (sn − rn + I(rn = 1) < m) set n = n + 1 and recompute rn and sn.
• Step 4: If rn < m, then go to step 10. Otherwise, take k = m.
• Step 5: If k > b1/{1− π1/(1− π2)}c, go to step 10.
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• Step 6: Take n1 = d(k− 1)/π1e.
• Step 7: If n1 > n, go to step 10.
• Step 8: If n1 > bk/(1− π2)c, set k = k + 1 and go to step 7.
• Step 9: If g1(rn1 , n1) ≥ 0, then set (rn, sn, n) = (k, k, n1) and k = k + 1, and go to step 6.

Otherwise, let n1 = n1 + 1 and go to step 7.
• Step 10: The optimal sampling plan is given by (rn, sn, n).

Table 2 reports the optimal sampling plans (r, s, n) for setting lower (β, γ)-TLs based
on the Weibull W(θ, α) trimmed sample X = (Xr:n, ..., Xs:n) when (i) q1 ' 0.2 and q2 ' 0.3
and (ii) r− 1 = 2 and n− s = 3.

Table 2. Optimal sampling plans (r, s, n) for setting lower (β, γ)-TLs for the W(α, θ) model based on
X = (Xr:n, ..., Xs:n) when (i) q1 ' 0.2 and q2 ' 0.3 and (ii) r− 1 = 2 and n− s = 3.

q1 ' 0.2, q2 ' 0.3 r = 3, n− s = 3

β β′ γ γ′ r s n r s n

0.80 0.85 0.90 0.25 16 54 76 3 41 44
0.50 6 21 29 3 18 21

0.95 0.25 21 73 103 3 55 58
0.50 10 35 49 3 28 31

0.90 0.95 0.90 0.25 4 12 16 3 11 14
0.50 1 3 3 3 3 6

0.95 0.25 4 14 19 3 13 16
0.50 2 7 9 3 8 11

For instance, consider that (β, γ) = (0.8, 0.9) and (β′, γ′) = (0.85, 0.25). Assuming
that the researcher desires around, 20% and 30% of the smallest and the largest observations
be trimmed, respectively, (i.e., q1 ' π1 = 0.2 and q2 ' π2 = 0.3), as m = dρe = 38, it
follows from (9) and (10) that 72 ≤ n ≤ 78. The optimal sampling plan would be precisely
(16, 54, 76), i.e., one needs a sample of size n = 76, but the smallest 16 and the largest 24
observations are disregarded or censored. The left and right trimming proportions are
exactly q1 = 0.1974 and q2 = 0.2895. If it was required that the first two and last three data
are discarded or censored (i.e., r− 1 = 2 and n− s = 3), the optimal sampling would be
(3, 41, 44). On the other hand, suppose that (β, γ) = (0.9, 0.9) and (β′, γ′) = (0.95, 0.50).
In that case, m also coincides with dρe = 3. If the researcher assumes that π1 = 0.2 and
π2 = 0.3, then n0 = 3 from (9), whereas (rn, sn, n) = (1, 3, 3) is the optimal plan since
sn − rn+I(rn = 1) ≥ m. The minimum sample size plan would be (3, 3, 6) provided that
r− 1 = 2 and n− s = 3.

4. Expected-Coverage Tolerance Limits

Given the Weibull (q1, q2)-trimmed sample X = (Xr:n, ..., Xs:n) and β ∈ (0, 1), a statistic
Lβ ≡ Lβ(X) is called a lower β-expectation tolerance limit (or lower β-ETL for simplicity)
of the W(θ, α) distribution if it satisfies

EX|θ,α
[
Pr X|θ,α(X > Lβ

)]
= β (11)

for all θ > 0. In this way, the probability that a future observation of X will surpass Lβ is
expected to be β. Obviously, an upper β-ETL, Uβ ≡ Uβ(X), is given by L1−β.

Provided that β ∈ (0, 1), our purpose is determining β-ETLs based on the trimmed
sample X = (Xr:n, ..., Xs:n) drawn from X ∼W(θ, α).

Suppose that 1 < r = s, in which case Xr:n is minimal sufficient for θ. It is therefore
rational to consider a lower β-ETL of the form Lβ = DβXr:n, where, from (11), the constant
Dβ must satisfy

EX|θ,α
[
exp

{
−
(

DβXr:n/θ
)α
}]

= β.
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Since exp(−Xα
r:n/θα) ∼ Beta(n− r + 1, r), Dβ is the unique positive solution to the follow-

ing equation in D

ζ(D) = B(n− r + 1 + Dα, r)/B(n− r + 1, r) = β,

where B(·, ·) is the beta function, i.e., Dβ = ζ−1(β). Note that ζ(·) is continuous and
decreasing with ζ(0) = 1 and ζ(+∞) = 0. Therefore, Dβ is the positive constant which
satisfies the equation

r−1

∑
i=0

(−1)i(r−1
i )r(n

r)

n− r + 1 + i + (Dβ)α
= β.

Observe that Dβ = {n(1− β)/β}1/α when r = s = 1. In general, as

r−1

∏
i=0
{1 + (Dβ)

α/(n− i)} = 1/β,

it is clear that

(n− r + 1)1/α(β−1/r − 1)1/α ≤ Dβ ≤ n1/α(β−1/r − 1)1/α.

The above lower and upper bounds on Dβ might serve as a starting point for iterative
interpolation methods, such as regula falsi. In addition,

Dβ ' (n− r/2 + 1/2)1/α(β−1/r − 1)1/α

when r/n is small.
If 1 = r ≤ s, as T is minimal sufficient for θ, it is evident that Lβ = DβT1/α is an appro-

priate lower β-ETL. Since 2T/θα ∼ χ2
2s, the tolerance factor is given by Dβ = (β−1/s − 1)1/α.

4.1. Unconditional and Conditional Tolerance Limits

In the more general case in which 1 < r < s, the statistic (Xr:n, T) is minimal sufficient.
Since 2R/θα ∼ χ2

2(s−r), where R = T− (n− r + 1)Xα
r:n, it is obvious that Lβ = DβR1/α is a

(unconditional) lower β-ETL when Dβ = {β1/(r−s) − 1}1/α. The lower and upper β-ETLs
are then given by

Lβ =
[{

β1/(r−s) − 1
}

R
]1/α

and Uβ =
[{

(1− β)1/(r−s) − 1
}

R
]1/α

.

Nonetheless, as in Section 3, these limits are based on an insufficient statistic R. As men-
tioned previously, (R, A) is minimal sufficient for θ and A = Xα

r:n/R is pivotal for θ. Thus,
if ones adopts the conditionality principle and assumes that A = a, it is then natural to seek
a conditional lower β-ETL of the form La

β = Da
βR1/α, where

EX|θ,α
[
Pr X|θ,α

(
X > La

β

)
| A = a

]
= β. (12)

After some calculations, it follows from (12) that

E
[
exp

{
−(Da

β)
αR/θα

}
| A = a

]
=

G[a/{1 + (Da
β)

α}]
G[a]{1 + (Da

β)
α}s−r+1 = β.

Manifestly, the conditional lower β-ETL given A, LA
β , is also an unconditional lower

β-ETL because

EX|θ,α
[
Pr X|θ,α

(
X > LA

β

)]
= E

[
E
[
Pr X|θ,α

(
X > LA

β

)
| A
]]

= E[β] = β
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Table 3 compares unconditional and conditional lower β-expectation W(α, θ) tolerance
factors, Dβ and Daε

β , for selected values of r, s, and n when α = 1, β = 0.90 and A = aε,
ε = 0.01, 0.25, 0.75, 0.99.

Table 3. Unconditional and conditional lower β-expectation tolerance factors, Dβ and Daε

β , for the
W(α, θ) model based on X = (Xr:n, ..., Xs:n) when α = 1 and β = 0.90.

r s n Dβ Da0.01
β Da0.25

β Da0.75
β Da0.99

β

2 6 10 0.0266901 0.0183145 0.0219756 0.0324522 0.0796828
10 20 0.0132572 0.0107789 0.0118633 0.0145544 0.0232244

4 8 30 0.0266901 0.0154573 0.0213445 0.0349895 0.0931401
20 40 0.00660676 0.00553705 0.00610823 0.00708131 0.00940913

6 10 50 0.0266901 0.0141242 0.0211005 0.0363961 0.100592
30 60 0.00439967 0.00376406 0.00412769 0.00466106 0.00578604

As before, the difference between Dβ and Daε
β might be considerable when ε is near

to 0 or 1. Nevertheless, Dβ and Daε
β are quite similar when s − r is large. For instance,

Dβ = 0.001240, Da0.01
β = 0.001189, and Da0.99

β = 0.001339 when (r, s, n) = (5, 90, 95), α = 1,
and β = 0.90.

4.2. Sample-Size Determination

Frequently, the researcher wishes to choose the minimum sample size to achieve a
specified criterion for β-ETLs. In our circumstances, a classical criterion is to require the
maximum variation of the content of the β-expectation tolerance interval

(
Lβ,+∞

)
around

its mean value, β, to be sufficiently small (say, less than ε ∈ (0, min{β, 1− β})) with a
determined minimum stability (say λ ∈ (0, 1)). In other words, the coverage of the random
interval (Lβ(X),+∞) must be contained in (β− ε, β + ε) with a probability of at least λ, i.e.,

Pr X|θ,α
(∣∣∣Pr X|θ,α(X > Lβ

)
− β

∣∣∣ < ε
)
≥ λ (13)

or, equivalently, Pr X|θ,α{ln(β− ε) < −(Lβ/θ)α < ln(β + ε)
}
≥ λ for all θ > 0. In this

subsection, if condition (13) is satisfied, the corresponding sampling plan (r, s, n) will be
called feasible.

Assuming that 1 < r = s ≤ n, as exp(−Xα
r:n/θα) ∼ Beta(n− r + 1, r) andLβ = DβXr:n,

where Dβ = ζ−1(β), it is deduced that the sampling plan (r, r, n) is feasible if and only if
g2(r, n) ≥ 0, in which

g2(r, n) =
r−1

∑
k=0

(
n
k

)
{

1− (β + ε)1/(Dβ)
α
}k

(β + ε)(k−n)/(Dβ)α −

{
1− (β− ε)1/(Dβ)

α
}k

(β− ε)(k−n)/(Dβ)α

− λ.

Provided that 1 = r ≤ s ≤ n, the sampling plan (1, s, n) will be feasible if and only if
h2(s) ≥ 0, where

h2(s) =
s−1

∑
i=0

(βi/s/i!)
(1− β1/s)i

[
{− ln(β + ε)}i

(β + ε)1/(1−β−1/s)
− {− ln(β− ε)}i

(β− ε)1/(1−β−1/s)

]
− λ,

in view of that Lβ = DβT1/α with Dβ = (β−1/s − 1)1/α and 2T/θα ∼ χ2
2s. In particular, the

plan (1, 1, n) would be feasible if and only if (β + ε)β/(1−β) − (β− ε)β/(1−β) ≥ λ. Finally, if
1 < r < s ≤ n, it can be shown that (r, s, n) is feasible if and only if h2(s− r) ≥ 0.

The determination of the optimal feasible sampling plan for setting the lower β-ETL
assuming fixed numbers of trimmed observations (Case I) or fixed trimming proportions
(Case II) will be tackled in the remainder of this subsection.
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Case I: Fixed numbers of left and right trimmed observations

In this situation, the researcher desires to find the optimal feasible plan (r, s, n), such
that (r− 1) = δ1 and (n− s) = δ2, where δ1 and δ2 are prespecified non-negative integers.
Then, (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) would be the optimal plan if g2(r, n) ≥ 0 with r = δ1 + 1
and n = δ1 + δ2 + 1. Otherwise, if m is now the smallest integer value, such that h2(m) ≥ 0,
it turns out that the optimal plan would be

(r, s, n) = (δ1 + 1, δ1 + m + I(δ1 > 0), δ1 + δ2 + m + I(δ1 > 0))

Note that m will always exist because h2(k) > 0 when k is sufficiently large. It is important
to mention that m = 1 if and only if

h2(1) = (β + ε)β/(1−β) − (β− ε)β/(1−β) − λ ≥ 0.

Moreover, if r = s and n → ∞, as 2nXα
r:n/θα converges in law to a χ2

2r distribution and
Dβ/n1/α −→ (β−1/r − 1)1/α, it follows that g2(r, n) −→ h2(r). Consequently, if (r, r, n)
is a feasible plan, it is indispensable that r ≥ m. Hence, (δ1 + 1, δ1 + 1, δ1 + δ2 + 1) is not
feasible when m > δ1 + 1.

Case II: Fixed left and right trimming proportions

Consider that it is now needed to obtain the minimum sample size feasible plan (rn, sn, n)
with rn = bnπ1 + 1c and sn = dn(1− π2)e, where πi ≥ 0, i = 1, 2, and π1 + π2 < 1. Our
goal in this case is to determine the smallest integer n such that g2(rn, n) ≥ 0 if 1 < rn = sn
or such that h2(sn − rn + I(rn = 1)) ≥ 0 otherwise.

Assume that (rn, sn, n) is a feasible plan and also that m is the smallest integer satisfying
h2(m) ≥ 0. Then, it turns out that rn ≥ m when rn = sn, whereas n ≥ n0 if rn < sn, where
n0 is given in (9).

Given β, ε, λ, π1, π2 ∈ (0, 1), with ε < min{β, 1− β}, and π1 + π2 < 1, a step-by-step
procedure for determining the minimum sample size plan (rn, sn, n) satisfying (13), where
rn = bnπ1 + 1c and sn = dn(1− π2)e, would be similar to that presented in Section 3.2,
except that g1(rn1 , n1) is replaced by g2(rn1 , n1) in step 9, and step 1 is now as follows:

• Step 1: If (β + ε)β/(1−β) − (β− ε)β/(1−β) ≥ λ, then set (rn, sn, n) = (1, 1, 1) and go to
step 10. Otherwise, find the smallest integer m, such that h2(m) ≥ 0.

Table 4 shows the optimal sampling plans (r, s, n) for setting lower β-ETLs based on
the Weibull W(θ, α) trimmed sample X = (Xr:n, ..., Xs:n) for selected values of β, ε and δ
when (i) q1 ' 0.2 and q2 ' 0.3 and (ii) r− 1 = 2 and n− s = 3.

In particular, if β = 0.9, ε = 0.03, δ = 0.9 and the experimenter desires that at least 20%
of the smallest and 30% of the largest observations were trimmed, the minimum sample
size for setting the lower β-ETL would be n = 53, whereas the smallest 10 and the largest
15 data would be disregarded or censored (i.e., r = 11 and s = 38). On the other hand, if
the experimenter wishes to discard the first two and last three data, the required sample
size is n = 33; obviously, the optimal sampling plan would be (3, 30, 33).
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Table 4. Optimal sampling plans (r, s, n) for setting lower β-ETLs for the W(α, θ) model based on
X = (Xr:n, ..., Xs:n) when (i) q1 ' 0.2 and q2 ' 0.3 and (ii) r− 1 = 2 and n− s = 3.

q1 ' 0.2, q2 ' 0.3 r = 3, n− s = 3

β ε δ r s n r s n

0.80 0.03 0.70 16 54 76 3 41 44
0.90 39 135 192 3 99 102

0.06 0.70 4 14 19 3 13 16
0.90 10 34 48 3 27 30

0.90 0.03 0.70 5 16 22 3 14 17
0.90 11 38 53 3 30 33

0.06 0.70 1 3 3 3 3 6
0.90 3 10 13 3 10 13

5. Illustrative Examples

Three numerical examples are considered in this section to illustrate the results devel-
oped above.

5.1. Example 1

An experiment in which students were learning to measure strontium-90 concentra-
tions in samples of milk was considered by Sarhan and Greenberg [41]. The test substance
was supposed to contain 9.22 microcuries per liter. Ten measurements, each involving
readings and calculations, were made. However, since the measurement error was known
to be relatively larger at the extremes, especially the upper one, a decision was made to
censor the two smallest and the three largest observations, leaving the following trimmed
sample: x = (8.2, 8.4, 9.1, 9.8, 9.9). Thus, n = 10, r = 3, and s = 7, which imply that q1 = 0.2
and q2 = 0.3.

Fernández [10] assumed that the above data arisen from a Weibull model (1) with
α = 3, which has a near normal shape. In such a case, T = 6720.03, R = 2309.09 and
A = a = 0.238782. Furthermore, in view of (3), the MLEs of θ and the mean concentration,
µ = E[X | θ, α], are given by θ̂ = 10.1049 and µ̂ = 9.02343.

Table 5 contains the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs for selected values of β and γ when α = 3. For instance, if β = γ = 0.9, Lβ,γ = 3.315
and La

β,γ = 4.162, whereas Lβ = 3.950 and La
β = 4.783. In particular, the experimenter

might assert with confidence γ = 0.9 that at least 90% of strontium-90 concentrations will
exceed 3.315 (4.162) if the unconditional (conditional) approach is adopted. Moreover,
under the unconditional (conditional) perspective, one can be 90% confident that a future
strontium-90 concentration will surpass 3.950 (4.783). The corresponding unconditional
and conditional upper (β, γ)-TLs and β-ETLs are derived to be Uβ,γ = 14.50, Ua

β,γ = 16.23,
Uβ = 12.16 and U a

β = 14.12.

Table 5. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs in Example 1.

β γ Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

0.80 0.90 4.257 5.345 5.098 6.160 12.87 14.40 10.46 12.31
0.95 4.050 5.139 13.96 15.24

0.90 0.90 3.315 4.162 3.950 4.783 14.50 16.23 12.16 14.12
0.95 3.154 4.002 15.73 17.18

Suppose the experimenter wish to determine the optimal sampling plan (r, s, n) for
setting the lower (0.9, 0.9)-TL based on a Weibull trimmed sample under the premise that
the left and right trimming proportions are nearly 0.2 and 0.3, respectively. According to
Table 2, if (β′, γ′) is (0.95, 0.25), the needed sample size would be n = 16, whereas r = 4
and s = 12. On the other side, if the experimenter wants to ignore the smallest two and the
largest three observations, the optimal sampling plan would be (3, 11, 14).
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In addition, consider now the experimenter desires to find the optimal sampling plan
(r, s, n) for setting a lower 0.9-ETL, L0.9(X), such that the coverage of (L0.9(X),+∞) is
contained in (0.87, 0.93) with a probability of at least 0.7. If it is also required that about 20%
and 30% of the smallest and largest observations were trimmed, respectively, the optimal
sampling plan is given by (5, 16, 22) based on Table 4 with β = 0.9, ε = 0.3 and δ = 0.7.
Likewise, in the case of it was demanded that r = 3 and n− s = 3, the smallest sample size
would be n = 17.

In order to explore the effect of α on the tolerance limits, the unconditional and
conditional lower and upper (β, γ)-TLs and β-ETLs for selected values of α around 3 are
displayed in Table 6. In general, as expected, the influence of α is quite appreciable,
especially in the unconditional case.

Table 6. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs for selected values
of α around 3 in Example 1.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

α Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

2.8 3.936 5.133 4.775 5.976 2.855 3.764 3.633 4.557
2.9 4.100 5.241 4.940 6.071 3.006 3.885 3.794 4.673
3.0 4.257 5.345 5.098 6.160 3.154 4.002 3.950 4.783
3.1 4.408 5.444 5.248 6.245 3.298 4.114 4.100 4.889
3.2 4.552 5.538 5.391 6.326 3.437 4.222 4.244 4.990

5.2. Example 2

Meeker and Escobar [42] (pp. 151, 198) present the results of a failure-censored fatigue
crack-initiation experiment in which 100 specimens of a type of titanium alloy were put on
test. Only the nine smallest times to crack-initiation were recorded. In this way, n = 100,
r = 1 and s = 9. The observed times in units of 1000 cycles were 18, 32, 39, 53, 59, 68,
77, 78, and 93. Based on experience with fatigue tests on similar alloys, it was assumed
the adequacy of the Weibull model (1) with α = 2 to describe the above data. Hence,
T = 821504 and R = 789104, whereas θ̂ = 302.123 and µ̂ = 267.749 are the MLEs of θ and
the expected failure-time µ.

Table 7 shows the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs when r = 1, 2, ..., 9 for selected values of β and γ. For example, if the engineer
wants to discard the smallest two data (i.e., r = 3) and (β, γ) = (0.8, 0.9), it turns out that
T = 820156, R = 671098, θ̂ = 302.154 and µ̂ = 267.777, whereas A = X2

3:100/R takes the
value a = 0.00226644. In such a case, it follows that Lβ,γ = 127.1, La

β,γ = 118.8, Lβ = 159.5,
and La

β = 143.6. Hence, the reliability engineer could affirm with confidence γ = 0.9 that at
least 80% of the times to crack-initiation (in units of 1000 cycles) of specimens of that type
of titanium alloy will be greater than 127.1 (118.8) when the unconditional (conditional)
viewpoint is considered. Likewise, adopting the unconditional (conditional) perspective,
the engineer may be 80% sure that a future time to crack-initiation will surpass 159, 500
(143, 600) cycles.

It is interesting to point out that the variability of La
β,γ when r = 2, ..., 8 is very small. In

addition, observe that La
β,γ, r = 2, ..., 8, is quite similar to the unconditional lower (β, γ)-TL,

Lβ,γ, for r = 1. Analogous results are obtained for the β-ETLs when r = 2, ..., 5.
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Table 7. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs when r = 1, . . . , 9 in
Example 2.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

r Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

1 118.8 143.6 77.44 98.35
2 123.5 118.8 152.7 143.6 80.03 77.44 104.5 98.37
3 127.1 118.8 159.5 143.6 82.01 77.44 109.0 98.36
4 123.5 118.9 157.9 143.7 79.29 77.50 107.8 98.43
5 126.8 118.9 166.2 143.7 80.90 77.49 113.4 98.43
6 125.1 118.9 169.7 145.3 79.01 77.54 115.5 108.5
7 119.9 119.0 171.9 152.0 74.57 77.61 116.4 105.8
8 151.2 118.9 242.9 150.9 91.10 77.50 161.9 105.2
9 119.4 144.3 77.81 98.84

5.3. Example 3

Lee and Wang [43] (p. 205) consider that 21 patients with acute leukemia have the
following remission times in months: 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8, 8, 9, 10, 10, 12, 14, 16, 20, 24,
and 34. The available sample is now complete, since r = 1 and s = n = 21.

In accordance with previous tests, the researcher assumes that the remission time
follows the exponential distribution. A probability plot also indicates that the Weibull
model (1) with α = 1 fits the above data very well. In this situation, T = ∑n

i=1 xi = 198
and θ̂ = T/n = 9.42857. Supposing that (β, γ) = (0.8, 0.9), it follows that Lβ,γ = 1.634 and
Lβ = 2.115.

Table 8 provides the unconditional and conditional lower and upper (β, γ)-TLs and
β-ETLs when r = 1, 3, 5, 7, 9, 11, and n − s = r − 1 (i.e., q1 = q2). For instance, if the
two smallest and largest observations are missing, and the unconditional (conditional)
perspective is adopted, the researcher might state with confidence γ = 0.9 that at least
80% of patients with acute leukemia will have remission times greater than Lβ,γ = 1.467
(La

β,γ = 1.622) months. In the same manner, one might be 80% confident that a future
remission time will exceed Lβ = 1.966 (La

β = 2.126) months.

Table 8. Unconditional and conditional lower and upper (β, γ)-TLs and β-ETLs for r = 1, 3, 5, 7, 9, 11
and s = n + 1− r in Example 3.

β = 0.80, γ = 0.90 β = 0.90, γ = 0.95

r s Lβ,γ La
β,γ Lβ La

β Uβ,γ Ua
β,γ Uβ U a

β

1 21 1.634 2.115 0.7178 0.9959
3 19 1.467 1.622 1.966 2.126 0.6386 0.7102 0.9249 1.001
5 17 1.385 1.586 1.933 2.110 0.5960 0.6920 0.9083 0.9926
7 15 1.232 1.507 1.839 2.039 0.5209 0.6542 0.8617 0.9591
9 13 1.436 1.580 2.467 2.184 0.5843 0.6817 1.148 1.027

11 11 1.768 2.518 0.7563 1.182

6. Concluding Remarks

Weibull tolerance limits with certain guaranteed or expected coverages are obtained
in this paper when the available empirical information is provided by a trimmed sample.
These bounds are valid, even when some of the smallest and largest observations have been
disregarded or censored. Single (right or left) and double failure-censoring are allowed.
Unconditional and conditional tolerance bounds have been obtained and compared when
s > r > 1. The difference between these limits might be large when the auxiliary statistic
A takes extreme percentiles. In our case, it is preferable to use the suggested conditional
tolerance limits. Optimal sampling plans for setting β-content and β-expectation tolerance
limits have also been determined. Efficient step-by-step procedures for computing the
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corresponding test plans with smallest sample sizes have been proposed. These methods
can be easily applied and require little computational effort. Several numerical exam-
ples have been studied for illustrative and comparative purposes. An extension of the
frequency-based perspective presented in this work the Bayesian approach is currently
under investigation.
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