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Abstract: The subject of this work is the coupled steady-state conduction-radiation-convection heat
transfer phenomenon in a non-convex blackbody, which is represented by a second-order partial
differential equation (representing the heat conduction inside the body) subjected to nonlinear (and
non-local) boundary conditions (due to the thermal radiation heat transfer). Moreover, anon-convex
body emits thermal radiant energy to itself, which must be taken into account in the boundary condi-
tions when high temperatures are involved. The unknown is the absolute temperature. A procedure
is proposed for constructing the solution tothe problem by means of a sequence whose elements are
obtained from linear problems, such asthe classical ones involving linear Robin boundary conditions.
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1. Introduction

Any real body at a temperature different from absolute zero emits thermal radiant
energy, provided that it is surrounded by a non-opaque medium [1]. In general, at low
temperatures, only the convection heat transfer between the body and the environment is
taken into account, following the Newton law of cooling.

Nevertheless, when the body is surrounded by a rarefied atmosphere or when the
temperature levels are high, the thermal radiation heat exchange must be taken into account,
since it becomes a non-negligible mechanism for heat transfer between the body and its
surroundings.

In addition, if this body is not convex, part of the thermal radiant energy emitted
from its boundary reaches itself directly. When subsets of the body boundary are at high
temperatures, the incident thermal radiant energy coming from the body boundary plays
the role of a non-negligible external energy supply.

For instance, let us consider the part of a body represented in Figure 1. The points A
and B can exchange, directly, thermal radiant energy.

In fact, any two points of body boundary, connectable by a straight line that does not
intersect the body, exchange thermal radiant energy [1,2].

Since the Stefan-Boltzmann constant (5.67 x 10~8 watt per square meter per Kelvin
to the fourth), the non-convexity effects may become negligible, especially for low tem-
peratures and no rarefied atmospheres. Nevertheless, when temperatures greater than
300 Kelvin are involved and/or the vicinity is a rarefied atmosphere, the non-convexity
effects may give rise to non-negligible contributions, since the emission from the body
boundary to itself plays the role of a temperature dependent external source and the
convective heat transfer becomes less effective.

Clearly, this is only an illustration of the non-convexity effect, but it serves to show the
need of taking into account this effect.
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Figure 1. Example of a part of a non-convex body.

In order to take into account the thermal radiant energy exchange between points of
the body boundary, the mathematical description becomes more complex. The boundary
conditions will involve a relationship between the normal heat flux at each point on the
boundary and the whole temperature distribution along this boundary.

The amount of thermal radiant energy exchanged between two points will depend on
the local temperature as well as on the whole temperature distribution on some subsets of
the body boundary.

The effect of the non-convexity on the heat transfer depends on the distance between
the points on the boundary and on the angle between the normal vectors for each of the
two points, provided a straight line can connect these points without passing inside the
body (this line must be completely immersed in a non-opaque region). If the straight line
connecting two points passes inside the body, then these points do not directly exchange
thermal radiant energy. Convex bodies do not exhibitdirect thermal radiant energy inter-
change betweenpoints ontheir boundaries. Even so, the boundary conditions are non-linear
due to the thermal radiation.

Assuming an opaque body at rest, a conduction heat transfer process takes place inside
it, while a thermal radiation heat transfer and a convection heat transfer take place from/to
the body boundary. It will be assumed the existence of known internal heat sources as well
as known external thermal radiant sources [3].

In a non-convex body, part of the emitted thermal radiant energy reaches itself directly.
In other words, a direct thermal radiant energy interchange takes place among points of
the same body, even when these points are not neighboring [2,4].

The boundary condition for these problems arises naturally when the continuity of the
normal heat flux on the boundary is assumed [5,6]. In other words, the normal conduction
heat flux must be equal to the sum of both convection and thermal radiation heat flux
at any point on the body boundary. Such a condition gives rise to a nonlinear boundary
condition more complex than the usual ones employed in heat transfer problems [4].

Let us represent the body by the bounded open set Q). If () is not convex, then a part
of the thermal radiant energy emitted from the body boundary will reach the body directly,
playing the role of an external temperature dependent heat source. This effect takes into
account the temperature distribution on a given subset of body boundary 00).

Assuming the body to be rigid, opaque, and at rest, the energy transfer process
inside () takes place by conduction heat transfer only. Hence, the energy transfer process
considered here involves a coupling between a conduction heat transfer (inside (), a
thermal radiant heat transfer (from/to d(2), and a convection heat transfer (from/to 9Q2).

The main objective of this work is to construct the solution for the steady-state energy
transfer process in a body (assumed black from a thermal radiant point of view) by means
of a sequence whose elements are functions obtained from the solution of very simple and
largely known linear heat transfer problems. Specifically, these well-known problems look
like the classical conduction—convection heat transfer problems, in which the boundary
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condition is a linear “Robin boundary condition,” represented by the well-known Newton
law of cooling, which can be found in most textbooks on heat transfer [7-10].

This type of problem is present in several situations in engineering, e.g., in the project
of heating systems [11,12].

It is to be noticed that nonlinear heat transfer problems consist of an issue of perma-
nent interest [13-17], in particular those involving nonlinear boundary conditions [18,19].
Nevertheless, the phenomenon considered in this work is little discussed in the current
literature. In general, the boundary conditions employed here are poorly approximated by
most authors (in order to avoid complex calculations).

2. The Mathematical Modeling

The steady-state conduction heat transfer process inside a rigid and opaque body at
rest, represented by the set (), is mathematically described as [6,9]

div (k VT) +4=0in Q) )

where T represents the temperature, g is a non-negative field (an internal heat source), and
k is the thermal conductivity (always positive valued). In this work, 4 and k are assumed to
be known, piecewise continuous, and bounded. In addition, () is assumed to possess the
cone property, while d() is piecewise smooth.

Assuming a blackbody behavior, the thermal radiant energy (per unit time and per
unit area) emitted from a point on the boundary 9} is given by [20]

eEMIT =0’|T|3T07’Z 20 (2)

where ¢ is the Stefan-Boltzmann constant. The use of |T|3T instead of T* is mathematically
convenient and physically equivalent [20]. From a physical point of view, T does not make
sense if negative valued.

The incident thermal radiant energy (per unit time and per unit area) at a given point
x € dQ) is given by [1,10]

eiNe = / o| T(y)| T (y)K(x y)dS +5(x), for all x € 30 ©3)
y<oQ

Equation (3) takes into account an external thermal radiant source, represented by
s = 8(x) (a known non-negative valued bounded function)as well as the effect of the
thermal radiation that, emerging from points on 9(), reaches the point x € 9€). In (2) and
(3), T = T(x) represents the absolute temperature at the point x € 9Q).

Since the radiation emitted from a blackbody is diffusely distributed, the kernel K(x, y)
(K(x,y) = K(y,x)) depends only on the geometry of Q) [1] and is such that

0< / K(x,y)dS = 4(x) < u < 1, forall x € 302 @)
ycoQ)

Here, we admit that any point on the body boundary can emit thermal radiant energy
directly to the environment in such a way that the non-negative constant y is less than one.
In fact, this is a sufficient condition for the protocol to be proposed here, not a necessary
one.

Combining Equations (2) and (3), we have the thermal radiant heat flux on 0Q2 given
by [1]

JRADIATION = €EMIT — €INC 011 0() @)

The convection heat transfer from/to body boundary is given by the Newton law of
cooling [4,5] as
qconvecrion = (T — Te) on 9O} (6)
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where h and T, are known positive-valued functions (bounded and, in general, assumed
constants).
The conduction heat flux on the boundary is given by (Fourier law) [6,9]

gconpuctioN = —kVT-n on 0Q) ()

In order to ensure that there is no jump in the normal heat flux across the boundary,
we must equal the normal conduction heat flux and the thermal radiant heat flux on 9Q).
With this aim in mind, we have

JCONDUCTION = qRADIATION + §CONVECTION 01 0Q) = ®)
= —kVT-n =eppmr —erne + (T — Teo) 01 0Q)

Combining (1) and (9), the resulting mathematical description for the steady-state heat
transfer process yields

div(kVT) +q =0in Q)
kT = 0[T[’T ~O|o|TPT] s+ h(T - T) on 30 ©)

where the unknown is the absolute temperature field T. The linear operator ® is defined as

O¢] = / B(y)K(x,y)dS, ¢ = p(x), for all x € 32 (10)

y€oQ
It is worth noting that T is continuous in (2 and piecewise continuous on 0().

3. Constructing the Sequence

Let us consider now the sequence [¢!, 2,9, ...] whose elements are obtained from
the solution of the following problem:

div(kVy' ) +§=0in Q
—kVyitln = apitl — g on 90 11)
with B = ay' — o|pi[ i + @[a|¢i}31/ﬂ} +s—h(p — Tw) 0n 30

where a is a sufficiently large positive constant and g’ is (for each i) a known function. As
already pointed out, the quantities 4 and s are known non-negative valued functions. The
thermal conductivity k is always positive-valued. It is obvious that it is possible to define a
new function as the sum s + h T, but this is not convenient from a physical point of view,
since the natures of the terms arequite different.
The sequence [¢!,¢?,¢°,...] is obtained assuming that ¢ = 0. The solution of
problem (9) is given by
T=¢> = limy' in Q (12)
1—00

as it will be shown later (see Equation (55)).
Taking into account that ° = 0, the element ¢! is the solution of

div(kVy') +§=0in Q

—kVipln = app! — s — hTs on 0Q 13

and, therefore, since ¢ > 0, s + hTe, > 0, and & > O, 1;]1 is non-negative valued every-
where [21,22].

4. On the Behavior of the Sequence for Sufficiently Large «

The first step for proving that (12) holds is to show that the sequence [y}, 2, ¢, .. ]
is nondecreasing. In order to show this, let us consider (11) for two consecutive elements of



Axioms 2023, 12, 338 50f 15

the sequence. Taking into account that /1, Tw, k, g, and s do not depend on the unknowns,
we have

div (kV (p1 — ¢')) = 0in Q

—kV (! =y )n = a(yt — ') — (B p") on 00

ﬁi _ ﬁifl — (14)
= @=n) ' =y —o(jp 'y = [y 1y t) + oo [y Py — |y g onan

The existence of a positive constant J such that k > 6 everywhere [4,7,8] enables us to
conclude that

sup (lpiﬂ _ lpi) _ Sgp (lpi+1 _ wi) and ia%f(lpm _ lpi) _ igf(t/)iﬂ _ lpi) (15)

Q)

So, there exists a nonempty subset BQ;H, defined as follows [19,23],

Q) = {x € dQ), such that kV (l[]i+1 - 1/)’) n < 0}

such that
inf i+1 _ i — inf i+1 i — inf i+1 i 1
nf (91— y') = inf(y"™! - ') = inf (v =) )
From the boundary conditions on SQ;H we have [24]

Oé(llJiJrl —l/JZ) > (’81 _ﬁi*l) on anj,-l = DC(lIJi+l —lpl) >

i i T 113, i— T 113 i - 17
> =)y =y ) — ([P~ [ Py ) oo [p Py — |y Py onaor, 17
Taking into account that ' > 0 everywhere and that ¢° = 0, we can write
a(yp? —ypl) >
(¥?—y') = a8)

> (= h) (' —4°) = (91’9 = [9°9°) + o ©[ |91 y! — |99 on 205

Therefore, for a sufficiently large constant &, the right-hand side is nonnegative on
d(), and we ensure, from (18), that 1,L72 > 1/)1 everywhere.
The above procedure may be repeated, giving rise to the following inequality

Lot >yl > > >l > =0in Q (19)
provided, for any i > 0,
(a_h)(wi_¢i—1> 20(’¢i Bbi_l‘gil)i_l) —0'@{
Any positive constant « such that
“(l/Ji _ lpi—l) > U(’l/}i
ensures (20).
In order to establish a sufficiently large value for «, we must obtain an upper bound

for the sequence [¢°, !, 2, ¢3,...]. As it will be shown later, the temperature T, solution
of (9), is an upper bound for this sequence. So, any « such that

3 . 3.
4)1_ l[Jz lpl_

i1 ’31/;1‘—1] on 30, (20)

3
lp_

lpi_1‘3¢i—1> +h(¢i _ ¢i—1) on 90, i=1,23,... (21)

x> 4o sup{\TP} + sup{h} (22)
Q) Q)

satisfies (21) and ensures convergence.
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Inequality (22) is a sufficient condition, not a necessary condition. So, a “trial and

error” procedure may be used for choosing a convenient value for «.

5. On the Convergence of the Sequence [¢°, ¢!, 9%, ¢3,.. ]
From problem (14), we may write

/ {a(lPHl _¢i) . (ﬁi _‘Bi71> }dA —0
Q)
whichleads to

Ja(y™! —yl)dA =

0Q)

= [ {@=m@ —¢ ) —o(jg'y = [p 1y ) +o0 gy — [y Jaa

Q)

Since

f 0—@[’4)1|3¢1 _ |lpi71|3¢i71:|dA —
Q)

= J { S o {[i ol Ey) -6 y) 3@-1<y>}1<<x,y>dA}=
x€0Q) |y€o)

- o{\¢f<y>r3¢f<y>—|¢f1<y>|3¢f1<y>}{ / K(x,ymA}dAg
y€oQ x€0Q)

Hi(y) - [§1(y)]

<u [ o{[Fy)

ycoQ
we ensure that
S {=o(loly = o P ) oo [y - 1y faa <
< —(1—p) [oj¢Py — [¢ 1y t)da<o

00

Therefore,

/“(l/)i—&-l_lpi)dAS /(lx—h)(l[)i—lpi_l)dA
a0

0Q
Defining the norm ||e|| as follows (the L!(9Q)) norm) [25]

ol = [ [s]2
Q)

and taking into account inequality (21), we have

v (12

Clearly, when & is assumed constant (most usual), h=h.

g

Pty

,h=minh >0
Q)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Inequality (31) characterizes a contraction and ensures the convergence in the norm

(L'(3Q2)) defined by (28). In addition, since y° = 0, we may write,

<(1-2) I

Hlpiﬂ _wi‘

(30)
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In this way, we can define the limit of the sequence, denoted here as 1*, as the solution
of the problem below

V-(kVyp®) +q=0in Q
—kV§p® n = ap™ — B on 9Q (31)
with p* = lim {ay’ — o|y/| "¢ + © |o|y! "] +5 —h(y — Two) } on 90
1—00
Hence, the regularity of ¢ in () is the same as T (the solution of (9)), lending support

to (12). In other words, it is proven that the limit of the sequence is the solution of the
problem.

6. An Error Estimate

Combining (9) and (11), we have

div(kV (T — ¢1)) = 0in O
- AU A | (32)
= o(ITPT = |9/]’y) o O[ITPT — |9/ ] — a(¥*! = /) + (T — ¢) on 202

Defining the nonempty subset dQ);; as follows

0077 = {x € 30, such that kv (T — y'*1)-n < 0}

we can write . - ' - ' -
ot (T = pg(r ) (- ) o

On the subset 80;} we have

a(T3T

The above inequality may be rewritten as

IIJi

wi’3¢i> a®[|T|3T 34)1} 70((#)141 71/]1‘) +h(Tilpi) >0 (34)

U(lT‘ST— U’lpi+l‘3lpi+l> —(T®[|T|3T— ‘l/ﬂi|3l/)i] —i—h(T— lpi+1) >

. / L I (35)
> (w—h) (! =) — o (Jp 1 Pyt — g y) on 00y
Since, from (21),
. . 3 3 .
(a — h)(qﬂ“ - ¢’) —(7( 1/;1“’ Pl — |yl 1/;1) >00n 9Q,i=1,2,3,... (36)

inequality (37) gives rise to

(7<|T|3T -0

lpi+1‘3lpi+1> —U®[|T|3T— )I/Ji

31/4 + h(T — lpi"‘l) >00ndQ); 5 (37)

This inequality ensures that, if T > l[Ji on dQ), then T > 1./1”‘1 on E)Qijr_l. Therefore,
since l[Jl > 1/;0 = 0, we are able to conclude that

aggq (T - lPiJrl) = ia%f(T - ¢i+1) = igf(T— lp’“) >0i=1,23,... (38)

In other words, T > ¢’ in Q) (T is an upper bound for the sequence [¢°, !, 2, ¢3,...]).
It is possible to establish an error estimate for each element of the sequence with respect to

the exact solution T. In order to do this, let us integrate the boundary condition of problem
(34), yielding
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/{a(|T|3T—

Q)

y 3¢i] —a(y = yi) (T ) }dA ~0 (39)

34]1‘) -0® [|T|3T -

wi

Taking into account that T > ¢ and considering (4), we have

/ {U(l — ) (T3T Ny 3l[Ji> +h(T -y }dA < /a(qﬂ'*l —y)dA (o)
Q) a0
In addition, since
e () (41)

inequality (41) yields (taking into account Schwarz inequality [23])

4
% C/ (T_¢i)dA) +hé£ (1 ¢')da < /zx(xpf“ —yi)da @)

Q Q)

in which A is the area of 0Q).
Inequality (42) gives rise to the following error estimate

¢i+1 _ lPl

"

3
< MIN( ad
o h

(1—#)‘

lpi+1 o #)i)

|7 ) el = [loaa @)
Q)

It is remarkable that the supremum of T — l,Lji on d(2 coincides with the supremum of
T — ¢! in Q. The same holds for the difference y'*! — .

7. An a Priori Upper Bound for T

The knowledge of an upper bound estimate is always a useful bit ofinformation [26]
and, in this work, may be used for estimating a sufficient value for the constant . Consider
again problem (5) and the following inequality (there are infinitely many choices for v)

div(kVv) +g9 < 0in Q) (44)
So,
div(kV(T —v)) > 0in Q
kV(T —0)n = 0| TPT — O[o|TPT] + k(T ~Tw) ~s + kVonona @
At this point, we introduce the nonempty subset 90", defined as follows
00" = {x € 90, such that kV (T —v)-n > 0} (46)
Therefore,
sup(T — v) = sup(T —v) = sup(T —v) (47)
Elok a0 o)
Hence, we have
o|TPT - © [mm + (T — Too) — s+ kVon < 00on 90" (48)
This inequality yields

o|ITPT+hT < © [a|T|3T} + hTw + 5 + sup|[kVo| on 90" (49)
Q)
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and gives rise to

o(l- V)SUP(|T|3T) <sup(hTe +s) + sali)kaVvH and

B 00! o0t (50)
hsup(T) < sup(hTe + s) + sup|[kVv|
Clok CloM 90
Taking into account that 90" C 902, we have
sup(T —v) < sup(T) — inf(v) (51)

a0 a0’ 00

Since

sup(T —v) < sup(T) —inf(v) = sup(T) < sup(T) — inf(v) + sup(v) (52)

Therefore, we are able to establish an a priori upper bound for T, with the aid of (51).
With this upper bound estimate, we may estimate &« from (22). The following choices are
always valid, and we can choose the least value between the ones below

sup(hTe +5) + s;)kaVvH /4 sup(hTe +5) + s;)kaVvH

20 20"
sup(T) < orsup(T) < —
aQI:( ) o(1—p) aQI:( ) h

(53)

Nevertheless, this calculation serves, basically, to show that there exists a value for « that
ensures the sequence isnon-decreasing and convergent. In fact, the upper bound estimate
yields very large values of «, giving rise to low convergence speeds.

It is recommended that the “trial and error” procedure be used. If the choice of & does
not provide a non-decreasing sequence, then we increase «.

Since the elements of the sequence as well as T are bounded and continuous in (), the
limit defined in (12) can be regarded in a Sobolev sense (H!(Q)). In other words,
lim H g (54)

i—00

HI(Q)

8. A One Dimensional Example—Spherical Shell

In order to illustrate the proposed procedure, let us consider a very simple heat transfer
problem, involving a spherical shell (as suggested in Figure 2) in which the temperature
depends only on the radial variable, s = 0, k = constant, h = constant, T, = constant, and
g = constant.

Figure 2. The studied problem. Spherical shell with internal radius R; and external radius Rg.



Axioms 2023, 12, 338 10 of 15

In this case, the steady-state heat transfer problem has the mathematical description
given by
kdivVT +q=0in Q

—kVTn :0|T|3T—®[U|T|3T} + (T = Tao) 01 9O (55)

where the set () is defined in terms of the radial variable as R; < r < Rg, while the
boundary consists of the points r = Ry and 7 < Rg.
Here, the kernel is given by [1]

1

= constant , r = R;

K(x,y) = {4 R} 0 r—R (56)
7 - E

Problem (56) may be rewritten as

1d dT ‘
25(1’2(1’,>+%:0, R; <r <Rg

k‘g:aTT<4 R2)0|T|T+hT Teo), r:R1,0<ﬁ<1 (57)
—k4T = | TPT + h(T — To), r = Rg
where A is the area of the internal spherical surface r = R;. The solution has the form
= 9. S ¢ R<r<R (58)
- 6k r o E

Defining the quantities

A Iq . I’lR[ kTe . Rg . kT o r
47‘[R%, = k4 b T, 900 qu, 0= E 1, 0= ﬁ and(;‘ = E (59)

")/:

we obtain a dimensionless form of the problem

a|0°0 — val6]*0 +b(6 — b)), € =1 (60)
=a|0P0 +b(0 —b), E=1+

N

d%(f? )+1:0 1<f<140
o
d¢

with the following solution

2
9=f€+%+c2,1§§§1+5 (61)
that can be written as
§2 1 66p(1+0) + (1—|—5) 60 +1/1+6
— 2 ) - 7 <E<
0 6+6 5 (: 1)+ 3 z 1)7,1<¢<1496 (62)

where 0] represents the dimensionless temperature 6 at the position { = 1, while 6
represents the dimensionless temperature 6 at the position ¢ =1+ 4.
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Now;, let us consider the sequence associated with the above (dimensionless) problem.
Its elements are a solution of

i+1
gzdg(gﬂw) +1=0,1<&<1+6

dlpl+1 _ l+1 ‘B _
d i+1 I,
dll’ lIJH-l :BZEI =144 (63)

B —w; alyi[’ 9o+ valvil v~ b() - 6eo)
Br = ayp — alk [ ¢r — b(¥E — )
where the constants 1/)3 and 1/}55 represent the function ¢/ at ¢ = 1 and at & = 1+,

respectively. '
The element ' ! may be represented as

. i+1 3 i+1
P = _§6z+é{ 6y (1+§)+(1+5) (%_1> +6¢1§+1(1?;_1)}, 1<E<1+6,

1=0,1,23,...

(64)

It must be highlighted that, since ¢° = 0, the constants ¢ and y? are zero too. The
constants q)ZH and 1}7;;“1 are obtained from the boundary conditions of (62), as the solution
of the following linear system (highlighting that g} and B are known)

1+1 5+ 5 3 i+1 .

146 6y +(1+9) 69, +1 _ 1 g
(3)_é{ ) (1%)_ X (ﬁ) “¢l+ — B (65)

,31—“1/11_”‘%’ ¢1+'Y“’lr’)1’ lpl_b(‘/’l 900)
B = a — “|‘/’E’¢’E_b(‘/’ls Oco)

The constants 1/}1+1 and 1/Jl+l that satisfy the above system may be represented as

it1 _ {6BL(14+6)+2(1+0)* } (1+6+ad) +6p; —2—a (92 +20)
Y = 6(2&-&2&54—042215-&-0(_(52 a252) (66)
gitt = (IR BN (g g2
In order to estimate a sufficiently large (not necessary) value for «, we could use (52)
as follows

v=—1 = supv =0, info=—}(1 +6)?
Q QO
B (1+6) s 2

= sup(f) < (i +any ) +40+07 = (67)

b, _(1+0) VM
= “24’1{{{1(1—7)"’"341(1—7)} 5(14—(5) +b

but this will give rise to values much greater than the necessary.

Table 1 presents 6; and 0 for some selected values of 7, J, a, b, and 8. The non-
convexity effect is present in lines where «y # 0. The results obtained with -y = 0 disregard
the effect of the non-convexity.

It is worthnotingthat the temperature increase due to non-convexity effects may reach
50%.

Figures 3 and 4 present the dimensionless temperature distribution for two values of &
(0 = 1.0 and ¢ = 2.0) and some selected values of 4, b, and 6. The results were obtained
for v = 0.8 and y = 0 (without the non-convexity effects).

Figure 5 presents ¢; and . (elements of the sequence) as a function of i for three
considered values of «, illustrating the process of convergence.



Axioms 2023, 12, 338

12 of 15

From Figures 3 and 4, the effects of non-convexity on the temperature distributions is
evident:the non-convexity gives rise to a non-negligible temperature increase.

It is interesting to notice that, if the convergence is reached for « = 10.0, the conver-
gence is ensured for any & > 10.0. Nevertheless, as « increases, the speed of convergence
decreases. If a = 10.0, the element 1 is considered a good approximation (error less than
1%). On the other hand, if « = 30.0, the element ¢ is not a good approximation (more
elements are required).

1.0 - 1.0 =
p 0=1.0 p 0o=1.0
a=3.0 a=1.0
=0.5 v=0.8 h=0.1

0.0

1.0

-
=
<

Figure 3. The dimensionless temperature 6 as a function of the dimensionless position ¢ for 6 = 1.0.

2.0 1.0

P
=
b

Table 1. Some values of 0; and 0 obtained for 16 selected cases.

2.0

v=0.0 6=0.1 a=1.0 b=0.1 0o =0.8 0 = 0.52449 0r = 0.52434
v=028 6=0.1 a=1.0 b=0.1 0 =0.8 0; =0.57611 0r =0.57176
v=0.0 6=0.5 a=1.0 b=01 00 =0.8 0r =0.71713 6r = 0.70530
v=028 6=05 a=1.0 b=0.1 0o =0.8 0r =0.81699 0r = 0.75004
v=0.0 6=05 a=2.0 b=10 0 =0.8 0 = 0.66748 0r = 0.65842
v=0.38 6=0.5 a=20 b=10 0o =0.8 07 = 0.75259 0r = 0.68234
v=00 6=1.0 a=1.0 b=0.1 0o =04 0r =0.84847 0r =0.79670
v=028 6=1.0 a=1.0 b=0.1 B =04 0r =1.02156 0r = 0.82822
v=0.0 6=1.0 a=1.0 b=01 0o =0.8 01 = 0.86490 0r = 0.81461
v=038 6=1.0 a=1.0 b=0.1 0o =0.8 0r =1.04694 0r = 0.84610
v=0.0 6=05 a=2.0 b=10 0 =0.8 0 = 0.66748 0r = 0.65842
v=0.38 6=0.5 a=20 b=10 0o =0.8 0y = 0.75259 0r = 0.68234
v=00 6=1.0 a=1.0 b=05 0o =04 0; =0.78019 0 =0.72717
v=038 6=1.0 a=1.0 b=05 B =04 0 = 0.89469 0r =0.74911
v=0.0 6=3.0 a=1.0 b=05 0o =0.4 0 =1.22369 0r = 0.96425
v=038 6=30 a=1.0 b=05 0o =04 0 = 1.64805 0r = 0.97264
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0.5 h=0.1
0.0 _ 1 0.0 _ .
1.0 & 3.0 1.0 & 3.0
Figure 4. The dimensionless temperature 0 as a function of the dimensionless position ¢ for 6 = 2.0.
0914 0=20 a=10 bh=10
I 6. =00 »=0.5
v, Ve
0.646
0=20 a=10 bh=10
6. =00 »=0.5

001 j 50 %01 j 300

Figure 5. The constants ¢} and i represented as a function of i for five different values of the
constant « for the particular case in which § =2.0,a = b = 1.0, 6 = 0.0, and 7y = 0.5. In this case,
6; = 0.914 and 6 = 0.646.

9. Conclusions

A very simple procedure for constructing the solution of a non-linear heat transfer
problem was presented in this work. The proposed scheme usesmethods known to most
undergraduate students.

The problem, which is inspired by conduction-convection-radiation heat transfer
processes, consists of an interesting issue, usually considered under a severe simplifying
hypothesis, in order to become mathematically simpler.
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The main result of the paper is as follows. The nonlinear heat transfer problem

div(kVT) +q=0inQ
~kVTn = o|TPT - [ {o|TPT}KdA ~ s+ (T - Te) on 90 (68)
Q)

is treated as a sequence of (well-known) problems such as

div(kVT) +q =0in Q)

—kVTn = a(T — Te) 01 0Q2 (69)

in which « is a known positive constant.

In this way, a process involving the effects of high temperatures is treatedas a basic
undergraduate problem.

It is remarkable that the procedure used for constructing the solution can be extended
toreaching approximate solutions. For instance, we could employ a discretized form of (11)
in order to find an approximate limit for the sequence.
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