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Abstract: Over the past few decades, a new area of reliability known as classes of life distributions
has developed as a result of the creation of metrics for evaluating the success or failure of reliability.
This paper proposes a new reliability class-test statistic for life distributions. In some reliability
processes, such as convolution, mixture, and homogeneous shock models, the closure characteristics
of the proposed class-test statistic are investigated. To compare the proposed class-test against some
competitive tests, the Weibull, linear failure rate (LFR), and Makeham distributions are evaluated. In
addition, the relationship between sample size, level of confidence, and critical values is considered
to assess the efficacy of the proposed class-test. Furthermore, a Monte Carlo null distribution critical
points simulation and some applications of the censored and uncensored data are performed to
demonstrate the validity of the proposed class-test in reliability analysis.

Keywords: aging; convolution; Poisson shock model; simulation; goodness-of-fit approach; COVID-19;
statistics; numerical data

1. Introduction

Several reliability analysts and statisticians have shown a strong interest in presenting
survival data using rankings of life distributions based on different aging concepts that
explain how the number of units or systems improves or deteriorates with age. There
are several important types of life distributions used in applications that can be seen in
reliability, including bio-metrics, engineering, medical and biological research. It was
discovered that the basic distribution of the statistical reliability theory is the exponential
distribution; see Mahmoud et al. [1]. Various types of life distributions have been put
forward over the past few decades to model different aspects of aging. The most famous of
these categories are: increasing failure rate (IFA), increasing failure rate average (IFRA),
new better than used (NBU), new better than used in expectation (NBUE), harmonic new better
than used in expectation (HNBUE), decreasing mean residual life (DMRL), and new better
than renewal used (NBRU). Bryson and Siddiqui [2] and Barlow and Proschan [3] proposed
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some properties for these aging concepts and their duals, including decreasing failure
rate (DFR), decreasing failure rate average (DFRA), new worse than used (NWU), new worse
than used in expectation (NWUE). El-Arishy et al. [4] investigated the characterizations and
testing hypotheses for decreasing the Laplace transform of the time to failure (DLTTF) class.
Abouammoh et al. [5] studied some properties for the NBRU class. Klefsjo [6] introduced
some properties for HNBUE and harmonic new worse than used in expectation (HNWUE)
classes, and EL-Sagheer et al. [7] introduced characterizations and testing hypotheses for
the NBRUL-t◦ class.

Many authors provided tests for the exponentiality of specific types of life distributions
based on the Laplace transform approach technique. As an example, Gadallah et al. [8]
tested new better than used in the increasing concave order (NBU(2)), Mansour [9] tested the
NBU class, and Bakr et al. [10] tested better than aged in the moment generating function
order (UBAmg f ). For testing exponentiality versus the new better than renewal used in Laplace
transform order (NBRUL) class, see Mahmoud et al. [11,12], EL-Sagheer et al. [13], and
Kumazawa [14]) for the NBU class. The random variable X ∈ NBRU, if

WF(x + t) ≤ F(x)WF(t), x, t ≥ 0, (1)

whereas the random variable X ∈ NBRUL, if∫ ∞

0
e−sxWF(x + t)dx ≤WF(t)

∫ ∞

0
e−sxF(x)dx, x, t, s ≥ 0,

or ∫ ∞

0

∫ ∞

x+t
e−sxF(u)dudx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(u)dudx,

where WF(x + t) = 1
µ

∫ ∞
x+t F(u)du and F(u) represent the survival function. It is obvious

that NBRU ⊂ NBRUL ⊂ NBRUE. Based on the goodness-of-fit approach, many authors
offered tests for exponentiality against some classes of life distributions. For instance,
Kayid et al. [15] tested the new better than used in the increasing concave order “NBU(2)”
class, Abu-Youssef and El-Toony [16] tested used better than aged in increasing concave
(UBAC(2)L), Mahmoud and Abdul Alim [17] tested new better than used renewal failure rate
“NBURFR” and new better than used average renewal failure rate “NBARFR” classes, Bakr
et al. [18] tested used better than aged in Laplace “UBAL” transform order, Abu-Youssef
and Gerges [19] tested new better than used convex order at the moment generating function
“NBUCmg f ”, Mahmoud et al. [20] tested renewal new better than used in Laplace transform
order “RNBUL”, and Abu-Youssef et al. [21] tested used better than aged in moment generating
function “UBAmg f ”.

The goal of creating a systematic method for the study of any event and process
occurring in the world was forcefully pushed forward by the essential requirements of
modern science and technology. It follows that the need for such an approach in the
investigation of the issue of the technological product and system reliability is quite natural.
There are instances in real life where the system’s components gradually degrade over time
t, the amount of time covered by the manufacturer’s warranty, and then there is a need for
it to be renewed through the replacement of spare parts. In this case, renewal is intended
to enhance the system’s functionality but cannot return it to a superior state than it had
at age t. For instance, after several hours of flight, the aviation administration wished to
replace a portion of an airplane engine. The airlines contend that this replacement is, at
best, unneeded and may potentially be detrimental to the aircraft. Airlines examine if an
aviation engine after hours of renewal is as good as a new engine using operational data to
support their claim.

We found that there is a lack of test efficiency and a weak test power in the nonpara-
metric tests of life distributions. As a result, in this paper, we have established a brand-new
class of life distribution that takes into account the effectiveness and power of the test. This
paper can be organized as follows: some definitions for the NBRU and NBRUL classes
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of life distributions are listed in Section 2. In Section 3, we discuss preservation for the
NBRUL class of life distribution under convolution, mixture and homogeneous Poisson
shock models. A goodness-of-fit based on a test of exponentiality is discussed against
the NBRUL class in Section 4. Section 5 provides the Pitman asymptotic for some life
distributions. The power estimates and critical points of the Monte Carlo null distribution
are simulated in Section 6. Section 7 deals with data that have been right-censored and
tabulates a few critical values. Further, several real data applications are discussed based
on the statistical test suggested. Finally, concluding remarks are listed in Section 8.

2. Closure Properties

In this section, the closure characteristics of the NBRUL class under some reliability
operations are given as follows.

1. Property of convolution: The NBRUL class is preserved under convolution, where∫ ∞

0

∫ ∞

t
e−sxF(x + y)dydx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(y)dydx. (2)

The following example is presented to show that the NWRUL class is not preserved
under convolution.

Example 1. The convolution of the exponential distribution F(x) = 1− e−x with itself
yields the gamma distribution of order 2: G(x) = 1− (1 + x)e−x, with strictly increasing
failure rate. Thus, G(x) is not NWRUL.

2. Property of mixture: The NWRUL class is preserved under mixture, where∫ ∞

0

∫ ∞

t
e−sxF(x + y)dydx ≥

∫ ∞

0

∫ ∞

t
e−sxF(x)F(y)dydx. (3)

The following example shows that the NBRUL class is not preserved under mixtures.

Example 2. Let Fα(u) = e−αu, α > 0 “scale parameter” and G(u) =
∫ ∞

0 Fα(u)e−αdα =

(u + 1)−1. Then the failure rate function is rg(u) = (u + 1)−1, which is strictly decreasing;
thus, G(u) is not NBRUL.

3. The shock model under a homogeneous Poisson process: Suppose the device is
subjected to a series of shocks that occur at random time intervals using the Poisson
process with intensity λ. Further suppose that the device has a probability Pk. From
surviving the first shock k, where 1 = P0 ≥ P1 ≥ ....... and Pj = Pj−1 − Pj, j ≥ 1.
Then, the survival function of the device is given by

H(t) =
∞

∑
k=0

Pk
(λt)k

k!
e−λt, t ≥ 0. (4)

If Pk is discrete NBRUL, then H(t) is given by (4) is NBRUL, where∫ ∞

0

∫ ∞

t
e−sx H(x + y)dydx ≤

∫ ∞

0

∫ ∞

t
e−sx H(x)H(y)dydx. (5)

For more details about the proofs of closure properties, see EL-Sagheer et al. [13]).

3. NBRUL Comparative Testing Alternatives

In this section, a test statistic based on the goodness-of-fit approach is presented for
testing the null hypothesis H◦ : the distribution function F is exponential (does not belong
to the NBRUL class), against the alternative hypothesis H1 : the distribution function F is
not exponential (belongs to the NBRUL class).
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Lemma 1. Let X be an NBRUL random variable with distribution function F. Then,

(s2 − s)ζ(s)ζ(1) + (s2 − s)µζ(s) + (s− s2)ζ(s) + sζ(1)− s ≥ ζ(s)− 1, s ≥ 0, s 6= 1, (6)

where
ζ(s) = Ee−sX = −

∫ ∞

0
e−sxdF(x).

Proof. Since F is NBRUL, then∫ ∞

0
e−sxWF(x + t)dx ≤WF(t)

∫ ∞

0
e−sxF(x)dx, x, t ≥ 0. (7)

Consider the following integral∫ ∞

0

∫ ∞

0
e−te−sxWF(x + t)dxdt ≤

∫ ∞

0
e−tWF(t)

∫ ∞

0
e−sxF(x)dxdt. (8)

Setting,

I1 =
∫ ∞

0

∫ ∞

0
e−te−sxWF(x + t)dxdt.

Hence,

I1 =
∫ ∞

0

∫ ∞

v
e−ve−s(u−v)WF(u)dudv

=
∫ ∞

0

∫ v

0
e−ue−s(v−u)WF(v)dudv

=
1

1− s
[
∫ ∞

0
e−svWF(v)dv−

∫ ∞

0
e−vWF(v)dv], s 6= 1.

Note , ∫ ∞

0
e−svWF(v)dv = µ−1

F

∫ ∞

0
e−sv

∫ ∞

v
F(u)dudv

= µ−1
F

∫ ∞

0
F(v)

∫ v

0
e−sududv

=
µ−1

F
s

[µ− 1
s
(1− ζ(s))].

Therefore,

I1 =
1

1− s
{

µ−1
F
s

[µ− 1
s
(1− ζ(s))]− µ−1

F [µ− (1− ζ(1))]}. (9)

Setting

I2 =
∫ ∞

0
e−tWF(t)

∫ ∞

0
e−sxF(x)dxdt,

gives

I2 = E
∫ ∞

0
e−tWF(t)

∫ ∞

0
e−sx I(X > x)dxdt

= E
∫ ∞

0
e−tWF(t)

∫ X

0
e−sxdxdt

=
1
s
(1− ζ(s))

∫ ∞

0
e−tWF(t)dt.

Therefore,

I2 =
µ−1

F
s

[µ(1− ζ(s))− (1− ζ(s))(1− ζ(1))]. (10)
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Substituting (9) and (10) into (8), we obtain

(s2 − s)ζ(1)ζ(s) + (s2 − s)µζ(s) + (s− s2)ζ(s) + sζ(1)− s ≥ ζ(s)− 1. (11)

This completes the proof.

Let X1, X2, ..., Xn be a random sample from a population with distribution F. Based on
Lemma 1, δ(s) “a measure of departure from exponentiality” can be reported as

δ(s) = (s2 − s)ζ(1)ζ(s) + (s2 − s)µζ(s) + (s− s2 − 1)ζ(s) + sζ(1)− s + 1. (12)

Under H◦, δ(s) = 0, whereas under H1, δ(s) > 0. The empirical estimate δ̂(s) of δ(s) can
be obtained as

δ̂(s) =
1
n2

n

∑
i=1

n

∑
j=1

[(s2 − s)e−Xi e−sXj + (s2 − s)Xie
−sXj + (s− s2 − 1)e−sXi + se−Xi − s + 1].

To make the test invariant, let ∆(s) = δ(s),
µ which is estimated by ∆̂(s) = δ̂(s)

X
, where X is

the sample mean. Then,

∆̂(s) =
1

n2X

n

∑
i=1

n

∑
j=1

[(s2 − s)e−Xi e−sXj + (s2 − s)Xie
−sXj + (s− s2 − 1)e−sXi + se−Xi − s + 1]. (13)

One can note that ∆̂(s) is an unbiased estimator of δ(s). Now, set

φ(Xi, Xj) = (s2 − s)e−Xi e−sXj + (s2 − s)Xie
−sXj + (s− s2 − 1)e−sXi + se−Xi − s + 1, (14)

and define the symmetric kernel

ψ(Xi, Xj) =
1
2! ∑ φ(Xi, Xj),

where ∆̂(s) in (13) is equivalent to the Un statistic supplied by the summation over all
configurations of Xi, Xj.

Un =
1
(n

2 )

n

∑
i<j

ψ(Xi, Xj). (15)

The following theorem provides a concise statement of the asymptotic normality of ∆̂(s).

Theorem 1. (i) As n → ∞,
√

n(∆̂(s) − ∆(s)) is asymptotically normal with zero mean and
variance σ2(s), where

σ2(s) = Var{(s2 − s)e−Xζ(s) + (s2 − s)Xζ(s) + (s− s2 − 1)e−sX

+se−X + (s2 − s)e−sXζ(1) + (s2 − s)µe−sX

+(s− s2 − 1)ζ(s) + sζ(1)− 2s + 2}. (16)

(ii) Under H◦, the variance σ2
◦(s) can be expressed as

σ2
◦(s) =

(−1 + s)2s4(14 + 3s)
12(1 + s)2(2 + s)(1 + 2s)

. (17)

Proof. Using standard U-statistics theory (see Lee, [22]) yields

σ2 = V{E[φ(X1, X2) | X1] + E[φ(X1, X2) | X2]}. (18)
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Utilizing (14), E[φ(X1, X2) | X1] and E[φ(X1, X2) | X2] can be formulated as

E(φ(X1, X2) | X1) = (s2 − s)e−X
∫ ∞

0
e−sxdF(x) + (s2 − s)X

∫ ∞

0
e−sxdF(x)

+(s− s2 − 1)e−sX + se−X − s + 1,

and

E(φ(X1, X2) | X2) = (s2 − s)e−sX
∫ ∞

0
e−xdF(x) + (s2 − s)e−sX

∫ ∞

0
xdF(x)

+(s− s2 − 1)
∫ ∞

0
e−sxdF(x) + s

∫ ∞

0
e−xdF(x)− s + 1,

as long as,

σ2(s) = Var{(s2 − s)e−Xζ(s) + (s2 − s)Xζ(s) + (s− s2 − 1)e−sX

+se−X + (s2 − s)e−sXζ(1) + (s2 − s)µe−sX

+(s− s2 − 1)ζ(s) + sζ(1)− 2s + 2}.

Under H◦, σ2
◦(s), it can be proposed as

σ2
◦(s) =

(−1 + s)2s4(14 + 3s)
12(1 + s)2(2 + s)(1 + 2s)

. (19)

4. The Pitman Asymptotic Efficiency (PAE) of ∆̂(s)∆̂(s)∆̂(s)

In this section, the PAE technique’s effectiveness for the Weibull, near-failure rate (LFR),
and Makeham distributions is evaluated using the following probability distributions:
F̄1(x) = e−xθ

, x ≥ 0, θ > 0 (Weibull); F̄2(x) = e−x− θ
2 x2

, x ≥ 0, θ ≥ 0 (LFR), and F̄3(x) =
e−x−θ(x+e−x−1), x ≥ 0, θ ≥ 0 (Makeham). The exponential distribution is produced from
these distributions by setting θ = 1 for F̄1(x) and θ = 0 for F̄2(x) and F̄3(x). The PAE of
∆̂(s) is defined by

PAE(∆(s)) =
1

σ◦(s)

∣∣∣∣ d
dθ

∆(s)
∣∣∣∣

θ→θ◦

. (20)

δθ(s) = (s2 − s)ζθ(1)ζθ(s) + (s2 − s)µθζθ(s) + (s− s2 − 1)ζθ(s) + sζθ(1)− s + 1,

where
µθ =

∫ ∞

0
Fθ(x)dx, ζθ(s) =

∫ ∞

0
e−sxdFθ(x).

Hence,

d
dθ

δθ(s) = (s2 − s)[ζθ(1)ζ8θ(s) + ζ8θ(1)ζθ(s)] + (s2 − s)[µθζ8θ(s) + µ8
θζθ(s)]

+(s− s2 − 1)ζ8θ(s) + sζ8θ(1),

where
µ8

θ =
∫ ∞

0
F8

θ(x)dx, ζ8θ(s) = −
∫ ∞

0
e−sxdF8

θ(x). (21)

Making use of the definition of (20), we have
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PAE(δ(s)) =
1
σ◦
+(s− s2 − 1)ζ8θ◦(s) + sζ8θ◦(1)θ→θ◦ , (22)

evaluating (22) at s = 0.99 and σ◦(0.99) = 0.00196211,gives

PAE[∆(0.99), Weibull] = 1.11564, (23)

PAE[∆(0.99), LFR] = 0.946023 (24)

and
PAE[∆(0.99), Makeham] = 0.279834. (25)

Table 1 indicates a comparison of the proposed PAE test with various other tests based on
some probability models.

Table 1. Comparison between PAE test and some competitive tests.

Models

Test Makeham LFR Weibull

Mugdadi and Ahmad [23] 0.039 0.408 0.170
Kango [24] 0.144 0.433 0.132
Abdel-Aziz [25] 0.184 0.535 0.223
Etman et al. [26] 0.233 0.932 1.046
EL-Sagheer et al. [13] 0.287 0.901 1.158
Proposed test ∆̂(0.99) 0.280 0.946 1.116

∆̂(0.99) is superior to the alternative tests based on the PAEs. However, EL-Sagheer
et al. [12] used the Laplace transform technique with the s and β parameters, whereas in
our paper, we used the goodness of fit technique with the s parameter only, and the results
were as follows: the PAE used by EL-Sagheer et al. [12] is better in the case of Weibull and
Makeham distributions, whereas our paper is better in the case of LFR distribution.

5. Critical Points for Monte Carlo Distribution

Using 10,000 size-generated samples with n = 5(5)50, 29, 43, 59, this section simulates
the critical points of the Monte Carlo null distribution. We used the Mathematica 12 program
for the common exponential distribution.

For various levels of confidence, 90%, 95%, and 99%, Table 2 provides the upper
percentile values of statistic ∆̂(0.99). Figure 1 shows our empirical results where the
critical values increase with increasing confidence levels and approximately decrease with
increasing sample size.
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Table 2. Critical values of the statistic ∆̂(0.99).

Sample Size Confidence Levels

n 90% 95% 99%

5 0.001238 0.001473 0.001939
10 0.000818 0.000955 0.001259
15 0.000657 0.000791 0.001005
20 0.000576 0.000689 0.000884
25 0.000512 0.000612 0.000793
29 0.000476 0.000565 0.000736
30 0.000470 0.000564 0.000734
35 0.000434 0.000518 0.000675
40 0.000409 0.000488 0.000633
43 0.000393 0.000474 0.000619
45 0.000392 0.000478 0.000605
50 0.000361 0.000432 0.000566
59 0.000337 0.000408 0.000530
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Figure 1. Relationship between the sample size, the level of confidence, and the critical values.

Estimations of Test Power

For some commonly-used distributions, such as the Weibull and gamma distributions,
based on 10,000 samples, the power of the proposed test will be estimated in this section at
a (1− α)% confidence level, α = 0.05 and appropriate parameter values of θ at n = 10, 20
and 30. The results are summarized in Table 3. It is noted that the test’s power estimates
∆̂(0.99) are good for all substitutions and rise when increasing the parameter value and
sample size.
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Table 3. The power estimates of ∆̂(0.99).

n θ Weibull Gamma

10
2
3
4

0.9345
0.9997
1.0000

0.6718
0.9371
0.9902

20
2
3
4

0.9959
1.0000
1.0000

0.8372
0.9962
0.9999

30
2
3
4

0.9998
1.0000
1.0000

0.9235
0.9996
1.0000

6. Censoring Data Testing

In this section, a test statistic for testing H◦ versus H1 with randomly right-controlled
data is proposed. Such censored data are usually the only information available in a
life-test form or in a clinical study where patients may be missed (censored) before the
completion of the study. This demo/experimental situation can be formally modeled as
follows: suppose n objects are tested, where X1, X2, ..., Xn denote their true lifetime. The
lifetimes are independent and identically distributed (i.i.d.) according to a continuous
life distribution F. Let Y1, Y2, ..., Yn be i.i.d. according to a continuous life distribution G.
Further, assume X’s and Y’s are independent. In the randomly right-censored model, we
observe the pairs (Zj , δj), j = 1, ..., n, where Zj = min(Xj,Yj) and

δj =

{
1, if Zj = Xj (j-th observation is uncensored),
0, if Zj = Yj (j-th observation is censored).

Let Z(0) = 0 < Z(1) < Z(2) < .... < Z(n) denote the ordered Z’s, and δ(j) is δj corresponding
to Z(j). Using the censored data (Zj, δj), j = 1, ..., n. Kaplan and Meier [27] proposed the
product limit estimator, where

F̄n(X) =[j:Z(j)≤X] {(n− j)/(n− j + 1)}δ(j) , X ∈ [0, Z(n). (26)

Now, for testing H◦ : φ̂c = 0 against H1 : φ̂c > 0, we propose the following test statistic

φ̂c = (s2 − s)ζ(1)ζ(s) + (s2 − s)µζ(s) + (s− s2 − 1)ζ(s) + sζ(1)− s + 1, (27)

where ζ(s) =
∫ ∞

0 e−sxdFn(x). For computational purposes, φ̂c may be rewritten as

φ̂c = (s2 − s)τη + (s2 − s)Ωη + (s− s2 − 1)η + sτ − s + 1, (28)

where

Ω =
n

∑
k=1

[k−1
m=1Cδ(m)

m

(
Z(k) − Z(k−1)

)
], (29)

η =
n

∑
j=1

e−sZ(j) [
j−2
p=1Cδ(p)

p −j−1
p=1 Cδ(p)

p ], (30)

τ =
n

∑
j=1

e−Z(j) [
j−2
p=1Cδ(p)

p −j−1
p=1 Cδ(p)

p ], (31)
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and
dFn(Zj) = F̄n(Zj−1)− F̄n(Zj), ck = [n− k][n− k + 1]−1. (32)

To make the test invariant, let

∆̂c =
φ̂c

Z̄
, where Z̄ =

n

∑
i=1

Z(i)

n
. (33)

By utilizing the Mathematica 8 software, the common exponential distribution is used to
simulate the Monte Carlo null distribution critical values of ∆̂c at s = 0.99 for sample sizes
of n = 10(10)80, 51, and 81 with 10,000 replications. Table 4 displays the critical value
percentile points for the statistic ∆̂c. The critical values rise as the confidence level rises,
and they fall as the sample size rises, respectively, as shown in Table 4 and Figure 2.

Table 4. The upper percentile of ∆̂c at s = 0.99.

Sample Size Confidence Intervals

n 90% 95% 99%

10 0.011499 0.014484 0.022093
20 0.007095 0.008642 0.012312
30 0.005581 0.006751 0.009710
40 0.004488 0.005425 0.007276
50 0.004075 0.004885 0.006603
51 0.004014 0.004857 0.006554
60 0.003660 0.004448 0.005918
70 0.003254 0.003928 0.005155
80 0.003016 0.003589 0.004904
81 0.002998 0.003615 0.004873
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Figure 2. Relationship between the sample size, the level of confidence, and the critical values.

∆̂c(s) Test Power Estimates

This section will assess the test’s power at (1− α)% confidence level, α = 0.05, with
appropriate parameter values of θ at n = 10, 20 and 30, concerning three alternative
distributions based on 10,000 samples: Weibull, LFR, and gamma distributions. The results
are listed in Table 5. It is clear that the test’s power estimates ∆̂c(0.99) are good for all
substitutions and rise when increasing the parameter value.
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Table 5. Power estimates of ∆̂c(0.99).

n θ Weibull LFR Gamma

10
2
3
4

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

20
2
3
4

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

30
2
3
4

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

7. Applications: Uncensored and Censored Observations

In this section, utilizing both censored and uncensored data at a 95% confidence level,
the proposed test is applied to a number of applications in the engineering and medical
sciences.

7.1. Uncensored Data
7.1.1. Data Set I: COVID-19-Italy

The COVID-19 death rate in Italy from 27 February 2020, to 27 April 2020 is represented
in this data set (see Almongy et al. [28]). The data set size is 622.

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503
18.474 11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333
11.822 14.242 11.273 14.330 16.046 11.950 10.282 11.775 10.138
9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148
4.040 4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341
2.686 2.814 2.508 2.450 1.518

Non-parametric plots are required to discuss the shape of the data set (see Figure 3).
The data display an asymmetric dimorphic shape with no extreme observations. In this
example, the value shown in Table 2 is less than ∆̂(0.99) = 0.001003, indicating that the
data set has the property NBRUL.
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Figure 3. Non-parametric plots for data set I.
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7.1.2. Data Set II: COVID-19-Netherlands

This data set represents a COVID-19 mortality rate in the Netherlands from 31 March
to 30 April 2020 (see, EL-Sagheer et al. [29]). The data set is as follows

14.918 10.656 12.274 10.289 10.832 7.099 5.928 13.211
7.968 7.584 5.555 6.027 4.097 3.611 4.960 7.498
6.940 5.307 5.048 2.857 2.254 5.431 4.462 3.883
3.461 3.647 1.974 1.273 1.416 4.235

It is clear from the non-parametric plots in Figure 4 that the data has an asymmet-
ric dimorphic with an extreme observation. In addition, the data set has the property
NBRUL since ∆̂(0.99) = 0.001167 is higher than the critical value displayed in Table 2 at a
95% confidence level.
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Figure 4. Non-parametric plots for data set II.

7.1.3. Data Set III: Aircraft Air Conditioning

Consider the classical real data in the study by Keating et al. [30], which were specified
at times on operating days between successive malfunctions of the aircraft’s air conditioning
equipment. This data set is recorded as

3.750 0.417 2.500 7.750 2.542 2.042 0.583
1.000 2.333 0.833 3.292 3.500 1.833 2.458
1.208 4.917 1.042 6.500 12.917 3.167 1.083
1.833 0.958 2.583 5.417 8.667 2.917 4.208
8.667

According to the non-parametric plots (see Figure 5), it is noted that the data have
an asymmetric multimodal with an extreme observation. In this case, ∆̂(0.99) = 0.000716
is more than the critical value indicated in Table 2 at a 95% confidence level. Then, we
disregard H◦, which asserts that the dataset exhibits an exponential property.
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Figure 5. Non-parametric plots for data set III.

7.1.4. Data Set IV: Leukemia

We take into account the data set in the study by Kotz and Johnson [31], which shows
the post-diagnosis survival times (in years) of 43 individuals with a particular type of
leukemia.

0.019 0.129 0.159 0.203 0.485 0.636 0.748
0.781 0.869 1.175 1.206 1.219 1.219 1.282
1.356 1.362 1.458 1.564 1.586 1.592 1.781
1.923 1.959 2.134 2.413 2.466 2.548 2.652
2.951 3.038 3.6 3.655 3.745 4.203 4.690
4.888 5.143 5.167 5.603 5.633 6.192 6.655
6.874

The data set contains a binary form in an asymmetric shape with no extreme values, as
shown by the non-parametric plots (see Figure 6). At a 95% level of confidence, it is evident
that ∆̂(0.99) = 0.000603 is higher than the equivalent critical value in Table 2. Therefore,
the NBRUL property applies to this data set.
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Figure 6. Non-parametric plots for data set IV.
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7.2. Censored Data
7.2.1. Data Set V: Melanoma Patients

Consider the data set in the study by Susarla and Van Ryzin [32], which displays
the survival rates of 46 melanoma patients, 35 of which correspond to entire lifetimes
(non-censored data). The order of the non-censored observations is given by

13 14 19 19 20 21 23 23 25 26 26 27
27 31 32 34 34 37 38 38 40 46 50 53
54 57 58 59 60 65 65 66 70 85 90 98
102 103 110 118 124 130 136 138 141 234

whereas the censored observations are ordered as follows

16 21 44 50 55 67 73 76 80 81 86 93
100 108 114 120 124 125 129 130 132 134 140 147
148 151 152 152 158 181 190 193 194 213 215

In this example, ∆̂c(0.99) = −1.24863× 1088 is obtained by considering the entire set
of survival data, both censored and uncensored. As shown in Table 4, this result is below
the critical value, indicating that the data has exponential properties.

7.2.2. Data Set VI: Blood Cancer

The International Bone Marrow Transplant Registry received 101 reports from patients
with advanced acute myelogenous blood malignancy (see Ghitany and Al-Awadhi [33]
for further information). In order to restore their immune systems, 50 of these patients
experienced an allogeneic bone marrow transplant using the marrow of histocompatibility
leukocyte antigen (HLA) matched sibling. After receiving high doses of chemotherapy,
51 individuals experienced a tautologous bone marrow transplant in which their marrow
was re-infused to restore their immune systems. The 50 allogeneic transplant patients’
leukemia-free survival times (in months) that represent censored observations are as follows

0.030 0.493 0.855 1.184 1.283 1.480 1.776 2.138
2.500 2.763 2.993 3.224 3.421 4.178 4.441+ 5.691

5.855+ 6.941+ 6.941 7.993+ 8.882 8.882 9.145+ 11.480
11.513 12.105+ 12.796 12.993+ 13.849+ 16.612+ 17.138+ 20.066

20.329+ 22.368+ 26.776+ 28.717+ 28.717+ 32.928+ 33.783+ 34.221+
34.770+ 39.539+ 41.118+ 45.033+ 46.053+ 46.941+ 48.289+ 57.401+
58.322+ 60.625+

In the case of the complete set of survival data, which includes both censored and
uncensored data, ∆̂c(0.99) = −9.531× 1038 is smaller than the critical value mentioned
in Table 4 at the confidence level of 95%. Therefore, H◦ is accepted, which claims that
the data set has exponential properties. For the 51 autologous transplant recipients, the
leukemia-free survival periods were (in months)

0.658 0.822 1.414 2.500 3.322 3.816 4.737 4.836+
4.934 5.033 5.757 5.855 5.987 6.151 6.217 6.447+
8.651 8.717 9.441+ 10.329 11.480 12.007 12.007+ 12.237

12.401+ 13.059+ 14.474+ 15.000+ 15.461 15.757 16.480 16.711
17.204+ 17.237 17.303+ 17.664+ 18.092 18.092+ 18.750+ 20.625+
23.158 27.730+ 31.184+ 32.434+ 35.921+ 42.237+ 44.638+ 46.480+

47.467+ 48.322+ 56.086

Taking into account the complete set of survival data (both censored and uncensored)
yielded ∆̂c(0.99) = −7.581× 1037. The data set meets the NBRUL property requirements
since the ∆̂c(0.99) value is higher than the critical value in Table 4.
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8. Conclusions

This paper introduces a new reliability class-test statistic. The closure characteristics
of the new class-test statistic have been discussed using some reliability processes, such
as convolution, mixture, and homogeneous shock models. The Weibull, near-failure rate
(LFR), and Makeham distributions were evaluated to compare the new class-test to some
competitive tests, and a new hypothesis test based on the goodness-of-fit approach was
suggested. In order to assess the effectiveness of the new class-test, a Monte Carlo null
distribution critical points simulation was performed, and the relationship between sample
size, level of confidence, and critical values was considered. For different levels of confi-
dence, 90%, 95%, and 99%, the upper percentile values of the statistic ∆̂(0.99) increase with
increasing levels of confidence and nearly drop with growing levels of sample size.

In order to demonstrate the validity of the proposed class-test, some applications in
medical and engineering fields are discussed. In both censored and uncensored scenarios,
if the ∆̂c(s) value is lower than the critical value at a 95% level of confidence, the data
have exponential properties; however, if the ∆̂c(s) value is greater than the critical value
at a 95% level of confidence, the data have NBRUL properties. For all substitutions, it is
clear that test power estimates ∆̂c(0.99) are significant and increase when increasing the
parameter value.

In future work, we aim to study the problem of testing exponentiality against the
NBRUL class based on the Kernel method, defining another class of life distributions, such
as NBRUL-t◦ (new better than renewal used in Laplace transform order after a specific time
t◦). We also aim to study the problem of testing exponentiality against these classes from
different points of view.
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