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Abstract: A In the field of biomedical image reconstruction, functional near infra-red spectroscopy
(fNIRs) is a promising technology that uses near infra-red light for non-invasive imaging and re-
construction. Reconstructing an image requires both forward and backward problem-solving in
order to figure out what the image’s optical properties are from the boundary data that has been
measured. Researchers are using a variety of numerical methods to solve both the forward and
backward problems in depth. This study will show the latest improvements in numerical methods
for solving forward and backward problems in fNIRs. The physical interpretation of the forward
problem is described, followed by the explanation of the state-of-the-art numerical methods and the
description of the toolboxes. A more in-depth discussion of the numerical solution approaches for
the inverse problem for fNIRs is also provided.

Keywords: image reconstruction; functional near infra-red spectroscopy; forward problem; inverse
problem; numerical methods
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1. Introduction

Neuroscientists have proposed several imaging modalities to comprehend and study
the anatomical and functional aspects of the human brain. Magnetic resonance imag-
ing (MRI), computerized tomography (CT), magnetoencephalography (MEG), electroen-
cephalography (EEG), functional magnetic resonance imaging (fMRI), and Fourier-domain
near-infrared spectroscopy (fNIRs) are some of the most well-known imaging methods.
fNIRs is a relatively recent non-invasive neuroimaging technology that uses near infrared
light with frequency ranges between 650 and 900 nanometers to evaluate the optical char-
acteristics of the brain tissues. In the near-infrared part of the electromagnetic spectrum,
the most important optical absorbers are the oxygenated (HbO) and deoxygenated (HbR)
hemoglobin’s found in brain tissue.

The location of the source and detector, as well as the equipment used, affect NIR light
measurements. In the context of source or detector probes, the measurement of NIR light
is regarded as a measurement of transmission or reflectance. It is possible to measure the
transmission by positioning the source and detector in the opposite direction if the NIR
light is bright enough. However, only biological tissues like hands and arms can be used
with this technique. The source and detector probes are typically arranged on the same side
of the measuring instrument when measuring reflectance. Currently, three techniques can
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be used to simulate how light moves through tissue: time-domain (TD), frequency-domain
(FD), and continuous wave (CW) (Figure 1) [1–5].
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Figure 1. Visual representation of the case (c) continuous wave, case (b) frequency domain, and case
(a) (adapted from Ref. [6]).

TD systems illuminate tissues with incredibly brief light pulses, which are widened
and attenuated as they travel through the tissue. Detectors in time-resolved devices capture
the temporal distribution of photons as they leave the tissue. The optical properties of
the tissue can be figured out by looking at the shape and size of this distribution [3]. In
FD systems, the light that comes in is changed in amplitude at a frequency between tens
and hundreds of megahertz. Both the change in amplitude and the change in phase with
respect to the signal that came in are measured. By using both data formats, it is possible
to get unique information about the optical properties of tissues, such as the absorption
and scattering coefficients [4]. The simplest and least expensive approach is CW mode. It
makes use of a light source that is modulated at a frequency lower than a few tens of hertz
or one that has a constant amplitude. It only examines the light’s amplitude attenuation
after it has contacted biological tissues. Therefore, attenuation effects due to light scattering
and absorption cannot be separated. It, however, has the highest signal-to-noise ratio. The
most common modality is this one [5].

In fNIRs, the scalp is covered with an Optode montage, a spatially distributed ar-
rangement of sources and detectors that emit and detect near-infrared light. The HbO and
HbR) hemoglobin found in brain tissue are the two most prominent optical absorbers in
the near-infrared range of the electromagnetic spectrum, respectively. The result of this
conversion is that variations in hemoglobin concentration ([HbO] and [HbR]) at a single
location can be derived from differences in optical density (OD) detected at two or more
wavelengths. It is common practice to use a modified version of the Beer-Lambert Law
(mBLL) when calculating these changes.
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Mathematically, the procedure of image reconstruction entails reconstructing the
optical properties using the experimentally measured boundary data and can be thought of
as consisting of two parts: developing a forward model of light propagation and obtaining
an inverse solution to the forward problem (Figure 2). The forward problem tries to estimate
the boundary data at the position of the detector based on the distribution of the optical
properties inside the object. This means making an estimate of the sensitivity matrix as
absorption changes at each location in the head or trying to predict the optical flux density
at the detectors based on a geometric model with optical parameters like source-detector
location and functionality. The inverse problem is based on the same general equation as
the forward problem. However, the goal is to dissect the vector of intracranial phenomena
that can explain the vector of observed scalp values, given a specific sensitivity matrix.
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This review is being done to learn more about the basic ideas behind the forward and
inverse problems in fNIRs. For researchers who are new to the subject, it is designed to
provide insight into the most up-to-date methods for tackling the problem and the types
of toolboxes currently being used. It is also meant to give the reader a good idea of the
best ways to solve the inverse problem in fNIRs so that the reader can understand these
methods thoroughly.

The following is the flow of the paper; it begins with the fundamental concepts of mod-
eling light transport through biological tissue as a forward problem, which are discussed
in detail. The available methods and toolboxes that were applied to simulate the forward
problem were thoroughly investigated. The review also includes an in-depth discussion of
the inverse problem and a detailed explanation of various available image reconstruction
methods. Aside from that, the paper offers a comparison of several algorithms as well as
conclusions and recommendations.

2. Mathematical Modeling of Light Transport in Biological Tissue as Forward Problem

The radiative transport equation (RTE), which is based on the idea that energy stays
the same as light moves through a volume element of a medium with an absorber and
scattered light, accurately describes how light moves through biological tissue. The RTE in
the TD is expressed as [8,9],{

∂

c(r)∂t
+ Ω·V + µa(r) + µ(r)

}
I(r, Ω, t) = µs(r)

∫
4π

dΏP
(
r, Ω·Ώ

)
I(r, Ω, t) + q(r, Ω, t) (1)

here I(r, Ω, t) described as the energy radiance or light intensity as a function of position
r(x, y, z), Ω is defined as angular direction with zenith and azimuth angles, and time t. The
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absorption and scattering coefficients are represented by µa(r) and µs(r), respectively. The
velocity of light in a turbid medium is denoted by c(r), and the light source is denoted
by q(r, Ω, t). Moreover, P

(
r, Ω·Ώ

)
is the scattering phase function, which determines the

probability that a photon travelling in a direction Ώ will be scattered in that direction Ω
during a scattering event. And P is normalised to the value of 1.∫

4π
dΏP

(
r, Ω·Ώ

)
=
∫ 1

−1
P(cosθ)dcosθ = 1 (2)

As the sprinkling phase function, the Henyey–Greenstein function is widely used as
follows:

P
(
r, Ω·Ώ

)
=

1
4π

1− g(r)2{
1 + g(r)2 − 2gΩ·Ώ

} 3
2

(3)

where g(r) denotes the anisotropy factor, which ranges from −1 (full backscattering) to +1
(full forward scattering) and anything between 0 (isotropic scattering).

A numerical solution to the RTE is challenging since it is an integrodifferential equation,
and the computational complexity for numerical solutions is exceedingly high. On the other
hand, the diffusion equation (DE) assumes that radiance in a medium that is optically thick
and has multiple scattering is almost entirely isotropic. The DE can be calculated using the
diffusion approximation to the RTE. The following equation shows the TD and DE:

∂

c(r)∂t
Φ(r, t)−∇·κ(r)∇Φ(r, t) + µa(r)Φ(r, t) = q(r, t) (4)

where Φ(r, t) denotes the fluence rate as estimated by
∫

4π dΩI(r, Ω, t), κ(r) is denoted
as diffusion coefficient as determined by 1/3(µa(r) + (1− g)µs(r)), and q(r, t) signifies
the light source as calculated by

∫
4π dΩq(r, Ω, t) and the reduced scattering coefficient is

defined as (1− g)µs = µ́s.
Similarly, RTE in terms of FD and CW is given as follow [10]:

∂

c(r)∂t
Φ(r, ω)−∇·κ(r)∇Φ(r, ω) + µa(r)Φ(r, ω) = q(r, ω) (5)

The fluence rate with modulated frequency ω from the light source q(r, ω) in a medium
at the same frequency is denoted by Φ(r, ω). In an FD, the frequency ω 6= 0, whereas in
a CW instrument, the frequency is equal to zero. In the fNIRs context, the DA equation
is generally nonlinear, so it can be linearized as given in [11] and then used to perform
the Rytov approximation [12]. When performing functional brain imaging, the absorption
coefficient is assumed to be proportional to hemoglobin change, whereas the scattering co-
efficient is supposed to be constant. So, under these assumptions, the Rytov approximation
can be formulated as [13]

y = Ax (6)

where A denotes the sensitivity matrix as determined by the absorption proportion within
the brain, y is the difference in log-ratio between the optical density recorded before and
after blood flow, x denotes the change in absorption coefficient.

3. Methods for Forward Model Simulation

The methods used to solve the forward problem are discussed in this section. The
forward problem, in general, considers the modeling of light propagation from sources to
sensors across the head. The solutions to this problem can be divided into three categories.
(i) Analytical techniques (ii) Numerical techniques (iii) Stochastic techniques.
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3.1. Analytical Methods

The term “Green’s function approach” generally refers to the analytical method. The
solution can be visualized using Green’s function, which is defined as follows when the
source is represented as a spatial and temporal delta function: First and foremost, one must
ascertain their own GI functions. Following that, Green’s functions can be used to create
more general solutions. In homogeneous media, the convolution of these Green’s functions
with the source term yields the full fluence rate solution, which is simple to compute.

Equation gives the most basic analytical solution for TD-DE for an infinitely homoge-
neous medium [14],

φ(r, t) =
c

(4πDct)
3
2

exp
(
− r2

4Dct
− µact

)
(7)

where r is the distance from the origin to a point impulse source. The authors [15] first used
the mirror image source method to find analytical solutions for TD-DE for semi-infinite and
slab media with a zero-boundary condition. The pulsed laser source systems (TD systems)
are close enough to the source that they can be calculated with convolution methods [16].

Even in modern times, Green’s function approach is most commonly used to find
solutions to the DE in regular geometries [15,17]. For instance, researchers [17] came up
with ways to solve an endless cylinder by putting in a source line that goes on forever.
Also, they used Green’s function method to solve the DE for a point source in several
regular geometries. In addition, authors [18] Using a series expansion method, solved
the DE for concentric spheres. In a separate piece of work, authors [19] solved the DE in
the CW, frequency, and time domains using the Green’s function approach with extended
boundary conditions for a multiple-layered finite cylinder. These solutions were obtained
by solving the equation for a multiple-layered finite cylinder. In addition, researchers [20]
provided a CW solution for a point source that made use of the extrapolated boundary
conditions in cylindrical coordinates. Finally, by employing a number of different integral
transformations, Liemert and Kienle were able to derive specific solutions for the DE [21]
when it was applied to a homogeneous and turbid medium with a point source.

In recent research, Erkol et al. [22] have derived analytical solutions to the DE in
two and three dimensions for the steady state CW case in a cylindrical media. In this
case, a Dirac function with different strengths is used to model the light source. To get
the Green’s function for the Robin boundary condition, an integral method is used. This
method is extremely adaptable, allowing the implementation of any boundary condition
(i.e., not limited to the Robin boundary condition). This is also applicable to other regular
geometries, like spherical. Because finding solutions to the DE at the boundary is the
primary focus of their study, this method is perfectly suited for determining the DOI in
homogeneous or nearly homogeneous environments.

Theoretically, analytical solutions could be a direct and accurate way to get light to
travel, but the complexity of biological tissue makes it hard to make analytical solutions.
The analytical solutions of the RTE and the DA are faster to calculate, but they can only
be used for certain specific geometries with values that are almost all the same inside.
Therefore, numerical methods are usually used to solve the RTE and the DA models. The
critical constraint in its applicability is that the solutions are only available for simple
homogeneous geometries [17], which induces severe modeling errors by providing a
poor approximation [23]. In some cases, it has been possible to get these solutions for
time-domain DE, like slab media [24].

3.2. Numerical Methods

In diffuse optical imaging, numerical methods are often used because they are good
at simulating how light moves through realistic, complex geometries as well as different
types of media. Numerical solutions for the forward model can be found using the partial
differential equation, which can be solved in a variety of ways. The finite difference method
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(FDM), the finite volume method (FVM), the boundary element method (BEM), and the
finite-element method (FEM) are all examples of this.

3.2.1. Finite Difference Method

In the finite difference method, the medium is broken up into small pieces using a
regular grid, and complex shapes are made around the points inside the grid. Points with
absorption values in the thousands are assigned outside of the required form. It has been
demonstrated that this method produces more accurate results than other methods such
as Monte Carlo and analytic solutions [25]. However, because the FEM is so simple to
use when dealing with complex geometries, the FDM is rarely used in DOT applications.
However, it has been used to determine the dispersion of light in the human brain and the
cranium of a rat [26,27]. This method has been employed in the literature: for additional
details, read the following studies [28–30].

3.2.2. Finite Volume Method

In a way like the finite element and finite difference methods, the FVM calculates
values at discrete points within a meshing geometry. In this way, both approaches compute
values. The element (in a cell center formulation) is known as a volume of control, or VC
for short, in FVM. This is a distinct region of space in which the PDEs will be integrated.
During this step of the process, you will be evaluating the volumetric sources as well as
the surface fluxes that flow into and out of VC. In order to convert the surface integral
into volume integrals, it will be necessary to make use of Gauss’ theorem. Interpolation
functions that are the same, like the FDM method, or almost the same, like the Laplace
equation, are used to get close to surface derivatives. The name of the method comes from
the fact that each node in the mesh takes up a relatively small amount of space.

The primary advantage of this method over FDM is that it does not require the use of
structured grids. Additionally, the effort that would have been required to transform the
provided mesh into a structured numerical grid internally may be completely avoided. In
the same way as with FDM, the approximation that is reached results in a discrete solution;
however, the variables are often positioned at the centres of the cells rather than at the
nodal points. This is not always the case, however, as there are also approaches that centre
on the face of the volume. Interpolation is used to determine the values of field variables at
locations other than storage locations (such as vertices). This is the case regardless.

The finite volume technique is used a lot in optical tomography reconstructions [31,32],
because it uses less energy than other methods. It takes a long time to run [33], despite
the fact that it has a high level of mesh flexibility, which is necessary for modelling com-
plex shapes.

3.2.3. Boundary Element Method

The BEM has evolved as a viable alternative mathematical technique over the last
twenty years. Because it just necessitates surface discretisation and hence is less computa-
tionally expensive. BEM is like FDM and FEM in that it calculates values at discrete points
for solving PDEs. The simplicity of this method is derived from the fact that it meshes
only the boundary of the body rather than the full domainIn DOT, the BEM uses Green’s
second identity to describe the field via its integral on the surface, i.e., photon density and
fluxes. In large-scale geometries [34–39], it outperforms FEM in terms of performance,
but it cannot predict light propagation in complicated heterogeneous domains accurately.
This is attributed to the complex nature of the boundaries encountered between the tissue
interfaces. The hybrid or coupled BEM-FEM method has also been employed. It shows
that, compared to analytical solutions, the meshing task can be made easier and the size of
the problem can be reduced while the model’s correctness is kept.

The BEM is better than the FEM because you don’t have to break up the area you’re
looking at into smaller pieces. Instead, you only need to know the area’s edges. As a result,
meshing effort is reduced, and system matrices are smaller. However, the BEM has some
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disadvantages over the FEM; the BEM matrices are fully populated with complex and
frequency-dependent coefficients, which reduces the solution’s efficiency. Furthermore,
singularities may occur in the solution, which must be avoided [6].

3.2.4. Finite Element Method

In optical imaging applications [40–46] with irregular boundaries, FEM is one of the
most common ways to solve the DE. FEM is a mathematical method for approximating
boundary values and making absorption spectra and optical flux for a given distribution of
absorption and diffusion coefficients. The method employs a collection of basis functions
on a mesh, also known as interpolation functions, to convert the PDE into a system of
differential equations in finite-dimensional space [41]. As a result of its ability to handle ir-
regular geometries [47], it has been utilized to solve both the RTE and DE models [41,48,49].
As a result, numerical solutions are required. Because of its ease in handling complex
geometries and modeling boundary effects, the FEM is more versatile than other methods,
including the finite difference method. The FEM is a variational method that uses a family
of finite-dimensional basis functions to approximate the solution.

Researchers like the FEM because it uses a piecewise representation of the solution in
terms of certain basis functions. The computational domain is broken up into smaller areas
called “finite elements”, and the solution for each element is built from the basis functions.
The typical method for obtaining the actual equations is to restate the conservation equation
in weak form, write the field variables in terms of the basis functions, multiply the equation
by the appropriate test functions, and then integrate over an element. Because the FEM
solution is expressed in terms of specific basis functions, it is much better known than the
FDM or FVM solutions. This can be a double-edged sword because the selection of basis
functions is critical, and boundary conditions may be more difficult to formulate. Again, a
system of equations (usually for nodal values) is obtained and must be solved in order to
obtain a solution.

3.3. Stochastic Methods

The Monte-Carlo (MC) simulation is the most widely used stochastic approach for
modeling photon transport through tissue. It is used with random-walk or Markov-chain
models to provide the best results. A photon’s or a photon packet’s propagation across a
medium can be simulated using MC models, which helps make the process more efficient.
This process is accomplished by tracing the photon’s passage through the medium and
modeling each event the photon meets sequentially. More than two decades ago, it became
a standard method for simulating light transport in tissues because of its versatility and
rigorousness in dealing with turbid fluids with complicated structures.

The MC method entails the following steps: In the first step, voxels representing
various types of tissues are first divided into three-dimensional tissue geometry. In the
second step, the optical properties of each voxel, such as scattering and absorption, are
allocated to each voxel in the second step. The third step is to “inject” a photon at a specific
location on the surface of this shape. The photon’s movement is accomplished in the fourth
step through probabilistic scattering and absorption as it travels through tissue. Repeat
steps 3–4 hundred or even millions of times to figure out how much fluence (photon weight)
and how far each tissue type has travelled through it [50].

Interest in using MC to calculate the forward model for optical tomography has
resurfaced in recent years, thanks to the combination of efficient MC formulations with
improved processing capacity and geometrical complexity [51,52].

4. Types of Toolboxes for Forward Model Simulation

There is a wide variety of software/toolboxes available to simulate forward problems
that are currently in use. Some of them are listed and explained in greater detail below.
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4.1. MCML

Due to its user-friendliness, Researchers [50] first introduced the programming tool
known as MC simulation for light propagation in multi-layered tissue (MCML) in planner
geometry, which is still widely used today. The multilayer model was greatly simplified.
The simulation geometry was set by the number of layers and the thickness of each
layer. Each layer represented a homogeneous part of the simulated medium. The MCML
simulation code is written in ANSI C, which is a standard programming language. Figure 3
shows the main steps of the MCML simulation process, which are explained and shown
in [53].
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4.2. NIRFAST

The Near-infrared Frequency-domain Absorption and Scattering Tomography (NIR-
FAST) program is a FEM-based technique developed by the National Institute of Standards
and Technology in 2009 [54], and this software is offered free of charge. In this package,
many MATLAB.m files are produced and executables are included, which the user can
customise to incorporate the programme into their measurement apparatus (Figure 4, for
details, see [54]). NIRFAST requires that a finite element mesh be provided before any
simulation can be started. The user’s responsibility is to provide this mesh, which can be in
either 2D or 3D format. NIRFAST cannot produce a mesh on its own. The DE is changed
into a set of linear equations that can be solved on a finite element grid. A finite element
mesh represents the flux rate at each node.
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NIRFAST has been shown to work well for geometries with a single boundary condi-
tion, especially when the boundary condition is a modified Robin (or Type III) in which air
is assumed to surround the simulation region (as implemented in NIRFAST), also known
as a Neumann boundary condition. NIRFAST has been developed for 2D and 3D and is
widely used for FEM analysis in forward models with image reconstruction. It is available
for free via the following URL link: http://newton.ex.ac.uk/research/biomedical/hd/
NIRFAST.html (accessed on 5 October 2022).

4.3. TOAST++

To tackle DOT’s forward and inverse problems, Martin Schweiger and Simon R.
Arridge [55] developed an efficient open-source software framework that some researchers
are using. Originally built in C++, it was later rewritten as a toolbox that includes a set of
MATLAB routines and PYTHON code, which is now available. This software suite contains
libraries for computation of sparse matrices, finite-element, alternative numerical modeling,
nonlinear inverse, MATLAB and, python bindings, and visualization tools (see Figure 5).
This toolbox offers parallel matrix assembly and solver capabilities for distributed and
shared memory architectures and graphics processor platforms, which enable scalability
on distributed and collective memory architectures. In this way, researchers can quickly
design analysis tools without worrying about developing the low-level sparsity matrix and
finite-element subroutines beforehand.

http://newton.ex.ac.uk/research/biomedical/hd/NIRFAST.html
http://newton.ex.ac.uk/research/biomedical/hd/NIRFAST.html
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4.4. MCX/MMC

Qianqian Fang created open-source MC simulators called Monte Carlo eXtreme (MCX)
and Mesh-based Monte Carlo (MMC) in 2009 [56]. These simulators are two of the most
advanced Monte Carlo programs available today, and researchers use them to simulate
light propagation as photons across complex biological tissues [56,57]. Binary executable
software was used to develop the first versions of MCX and MMC. Because of MATLAB’s
popularity among academic researchers, MEX variants such as MCXLAB, MMCLAB, and
voxel-based MC (vMC) have been developed to make it more user-friendly for scien-
tists. These open-source MC programs are essential resources for academics and students
interested in modeling light interaction in tissue and comprehending fundamental the-
ories [58,59]. Figure 6 depicts the basic steps of the MCX simulation process for the
forward problem.
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4.5. ValoMC

Based on the MC method, Leino et al. [60] made ValoMC, an open-source program.
With this software package, you can solve problems like the number of photons in the
computing domain and their presence at the domain boundary. It is a useful tool for
researchers because it can simulate complex measurement geometries with different light
sources, intensity-modulated light, and optical parameter distributions that change in
different places. Also, the interface for MATLAB (The Math Works Inc., Natick, MA) is
made to be easy to use and to let users set up and solve problems quickly. The code for the
software simulation is written in C++, and the Open MP parallelization library is used to
make it work in multiple places at once. Visit the website at https://inverselight.github.
io/ValoMC/ (accessed on 5 October 2022) and click on the “Download” button to get
the software.

In the last few years, many ways to solve the forward problem have been written
about. Table 1 provides an overview of these methods.

https://inverselight.github.io/ValoMC/
https://inverselight.github.io/ValoMC/


Axioms 2023, 12, 326 12 of 22

Table 1. Details about the various methods and types of toolboxes/software used for the simulation
forward problem in fNIRs measurements.

References Forward Simulation Method Simulation
Software/Toolbox Data Type

B. W. Pogue et al., 1995 [61] FDM N/A N/A

M. A. Ansari et al., 2014 [62] BEM N/A N/A

Dehghani, Hamid, et al., 2009 [54] FEM NIRFAST Breast model data

Yalavarthy, Phaneendra K. et al.,
2007–2008 [7,63,64] FEM N/A Phantom

Brigadoi, Sabrina, et al., [65] FEM Toast++ Real resting-state data

Chiarelli, Antonio M., et al., 2016
[66] FEM NIRFAST Phantom

Lu, Wenqi, Daniel Lighter, and
Iain B. Styles. 2018 [67] FEM NIRFAST Realistic simulation data

Machado, A., et al., 2018 [68] MC MCX Realistic simulation data

Yu, Leiming, et al., 2018 [58] MC MCX Phantom

Jiang, Jingjing, et al., 2020 [69] MC and FEM MCX and Toast++ Silicon phantom
experiment

Fu, Xiaoxue, and John E. Richards.
2021 [70] MC MCX Realistic simulation data

Cai, Zhengchen, et al., 2021 [71] MC MCX Realistic

Mazumder, Dibbyan, et al., 2021
[72] MC MCX Realistic simulation data

5. Inverse Problem

In image reconstruction, the inverse problem is figuring out where the changes in
absorption along the path of the diffuse light are. This can be done by using the relationship
between the scalp and the law of propagation. In order to solve the image reconstruction
problem, the forward model must be turned around, which can be written as the linear
underdetermined inverse problem when there is noise.

y = Ax + γ (8)

γ is the noise present in the data and A is the Jacobian/sensitivity matrix.
The Jacobian matrix shows the relationship between how sensitively light intensity is

measured on the surface of the head and the optical properties of the head itself. The image
reconstruction problem requires the direct inversion of the Jacobian/sensitivity matrix,
which makes it a highly underdetermined and poorly posed problem. Because of the ill-
conditioning of the system, regularization techniques must be employed to obtain a reliable
solution. In the literature, several image reconstruction methods for the solution of inverse
problems have been developed. Regularization-based methods and Bayesian estimating
methods, which are two fundamental methodologies, have dominated the literature for a
very long time.

6. Methods for Inverse Problem Solution

The various methods employed to solve the inverse problem (Equation (2)) will be ex-
plained in further detail in this section. Among these methods are back projection, singular
value decomposition (SVD), truncated singular value decomposition (tSVD), lease square
QR decomposition (LSQR), regularized lease square QR decomposition (rLSQR), minimum
norm estimate (MNE), weighted minimum norm estimate (WMNE), low-resolution electro-
magnetic tomography (LORETA), L1-norm, hierarchical Bayesian (HB) as MAP estimate,
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expectation-maximization (EM), maximum entropy on the mean (MEM), and Bayesian
model averaging (BMA).

The basic formulation of the inverse methods for the solution of fNIRs is given in the
section. These methods are also described in terms of their mathematical form. According
to the previously published literature, the performance of the inverse methods is thoroughly
explained. The comparison is being made using a variety of parameters, including sparsity,
spatial resolution, localization error, image quality, root mean square error, and quantitative
and qualitative reconstructions, among other things.

6.1. Back Projection

Back projection is the inverse technique of projection. While projection aims to extract
data from an image, back projection seeks to extract the image from the data calculated
during the projection process. As a result, the back-projection process accepts as input
the results matrix returned by the projection process, as well as all data related to the
projection process that may be beneficial in completing the process. The BP method in
image reconstruction is more straightforward and consists of back projecting the boundary
measurements in the sensitivity matrix in the following manner [61,62]

xBP = ATy (9)

This method assumes that the sensitivity matrix is orthogonal in a broad sense (for
example, that it is an estimate of its pseudo-inverse), which is not always the case. Never-
theless, this method has been employed in the literature [62–64] even though it typically
overestimates the amplitude when multiple measurements are taken simultaneously.

Back projection is better than other iterative methods because it makes images faster
with less processing power. But it can be hard to know how much oxygen is in the blood
or to use breast mammography as a screening tool when there isn’t enough quantitative
information. Also, most diagnostic imaging techniques used today, like MRI and CT scans,
use only qualitative information to make important diagnoses, like finding tumors and
where they are. Back propagation is also efficient in terms of computing, but it has a low
spatial resolution, which makes it hard to tell apart multiple objects that absorb light.

6.2. Singular Value Decomposition (SVD) and Truncated Singular Value Decomposition (tSVD)

The SVD and its hybrid version, the tSVD, try to find the pseudo-inverse of the sensi-
tivity matrix while ignoring the smallest singular values that cause numerical instability
(this solution will show the main contribution of the sensitivity matrix) [65].

Consider Ui and Vi to be the i-th column vectors of U and V correspondingly, the SVD
decomposition as a decomposition of A into rank one matrices as

A =
n

∑
i=1

σiUiViT

U and V are orthonormal column vectors correspondingly, while σi are the nonnegative
singular values (in descending order); If the inverted form of the solution is multiplied by
the boundary measurements, the solution is found as follows:

xSVD/tSVD = ∑n
i=1

UiTy
σi

V (10)

As the literature shows, Gupta, Saurabh, et al. [66] compare the SVD method to
the Levenberg–Marquard method. SVD is computationally efficient and is applied to
experimental data. Furthermore, prior information is used in conjunction with SVD by
Zhan, Yuxuan, et al. [67] to significantly improve the crosswalk between the retrieved
parameter. On the other hand, the tSVD solution is known for reconstructed images that
are blurry [65].



Axioms 2023, 12, 326 14 of 22

6.3. Least Square by QR Decomposition (LSQR) and Regularized LSQR (rLSQR)

The LSQR method by Paige and Saunders [68] and its hybrid version, the rLSQR
method, are both based on Tikhonov regularization, but they also add a term that makes
the method more regular. The mathematical formulation for LSQR and rLSQR is given
under [69]:

xLSQR/rLSQR = argmin
{
‖y− Ax‖2 + α‖x− xinitial‖2

}
(11)

As opposed to the previous technique, this one does not require that the matrix A
be saved; rather, it requires that one matrix-vector product with A and one matrix-vector
product with AT be assessed for each iteration.

The LSQR was presented by Prakash, Jaya, and Phaneendra K. Yalavarthy [70] in
comparison to the regularized minimum residual approach (MRM). Compared to the MRM
method, the LSQR method outperforms it in terms of computational time, the number of
iterations, and image quality. It is applied to experimental data obtained from gelatine
phantoms. Furthermore, C. B. Shaw et al. [71] demonstrate the computational efficiency and
effectiveness of the LSQR using a simulated blood—vascular phantom experiment. Both
quantitative and qualitative reconstructions benefit from the LSQR technique. However,
hybrid algorithms, which incorporate the variation and modification of least square image
reconstruction algorithms, have been developed and used in the literature [72–74].

6.4. Minimum Norm Estimate (MNE) and Weighted Minimum Norm Estimate (WMNE)

MNE is the most common inverse method. It was created to solve the inverse prob-
lem of MEG, and the norm solution is used to find the location of the EEG source. The
mathematical formulation for MNE is given as under:

xMNE = argmin
{
‖y− Ax‖2 + α‖x‖2

}
(12)

Similarly, the WMNE can be written as follow:

xWMNE = argmin
{
‖y− Ax‖2 + α‖Wx‖2

}
(13)

The MNE solution, like tSVD, is known for producing scattered and blurry reconstruc-
tion images [75].

6.5. Low-Resolution Electromagnetic Tomographt (LORETA)

LORETA was initially created and used to locate EEG sources by Pascual-Marqui et al. [76].
LORETA has been used as a regularization method for fNIRs, which also considers L2-norm
formulation as described for the MNE method by incorporating the Laplacian operator [11].
The mathematical formula for LORETA is given as follows:

xLORETA = argmin
{
‖y− Ax‖2 + α‖Lx‖2

}
(14)

It is possible to interpret it as a weighted form of the MNE solution that aims to achieve
maximum smoothness across space. Despite this, it continues to generate results with a
vast spatial extent.

6.6. L1-Norm

L1-norm method has been developed and applied for EEG/MEG localization problem.
The mathematical formulation for the L1-norm is given as under:

xL1−norm = argmin
{
‖y− Ax‖2 + α‖x‖1

}
(15)
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The L1-norm method has been demonstrated to have improved noise tolerance quali-
ties and enhanced convergence features. It has also been shown to make solutions to other
linear estimating problems more L1-norm sparse.

According to Habermehl, Christina, et al. [65], the L1-norm delivers the best results on
experimental data (Gelatine cylindrical phantom that simulates breast tissues) compared
to L0, L2, tSVD, and wMNE. Additionally, it demonstrates that the incorporation of the
sparse algorithm into the procedure has the potential to improve accuracy. Meanwhile,
the inclusion of sparsity in the lp norm minimization (0 < p < 1) as presented by Prakash,
Jaya, et al. holds promise in improving the image quality compared to the L0-norm
method [77,78]. The results of a numerical experiment conducted by S. Okawa et al. [79]
demonstrate that lp sparsity regularisation improves spatial resolution. In addition, it
describes how the reconstructed region is affected by the value of p. A lower p-value
suggests that the target is highly localized.

Another image reconstruction approach is Bayesian estimation, which relies on a
probabilistic model of observations and constraints called the likelihood function and prior
distribution.

6.7. Hierarchical Bayesian as MAP Estimate

HB approach was initially developed and applied for the MEG localization prob-
lem [80]. In this method, observation and regularization are described as hierarchical
probabilistic models. The HB estimation method uses an ARD prior to introduce the reg-
ularization parameter at each voxel position, which controls the degree of penalty. The
basic formulation of the HB method for fNIRs is presented here (see [81] for detailed
information).

i. Considering the measurement noise γ as a Gaussian distribution N(0, ν) and the
forward problem as a probabilistic model as

P(y/x) ∼ N(Ax, ν) (16)

where ν is the covariance matrix.
ii. Assuming the data prior distribution and likelihood function as logP(x/y) and

logP(x/C) respectively.
iii. Computation of the posterior distribution of the unknown as

xMAP = argmax{logP(x/y) + logP(x/C)} (17)

where C anatomical prior image.

P(x, y, θ, ϑ) = P(y/x)P(x/θ, ϑ)P(θ)P(ϑ) (18)

iv. By applying the variational Bayesian (VB) method, the posterior could be written as
variational free energy

F(Q(x, θ, ϑ)) =
∫

Q(x, θ, ϑ)log
(

P(x, y, θ, ϑ)

Q(x, θ, ϑ)

)
dβdadx (19)

with
Q(x, θ, ϑ) = Q(x)Q(θ)Q(ϑ)

image by maximizing the free energy, providing the reconstruction, and applying the
Bayes rule to the posterior distribution.

In contrast to more traditional ways of regularizing, the idea of using Bayesian regu-
larization to solve fNIRs has only been around for a short time. In a Bayesian paradigm,
where all unknowns are thought of as random variables, the prior density is what is
thought about the solution before the facts are considered. As a result, in conventional
regularization, the prior functions similarly to the penalty term. The traditional Tikhonov
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regularized solution and the Bayesian maximum a posteriori (MAP) estimate have a well-
established relationship, with classes of penalty functions and priors favoring similar types
of solutions [82].

The HB algorithm for fNIRs has been proposed and used to make the changes in
blood flow in the cortex and scalp less random and smoother. Using phantoms to test
the performance and improve the accuracy of depth and spatial resolution [83]. Recent
research by Shimokawa, Takeaki, et al. [83] provides the HB method with an ARD prior
for fNIRs, as well as the inclusion of the two-step method. The sensitivity-normalized
Tikhonov regularisation is utilised in the initial step of the process to locate a preliminary.
In the second step, the result is refined through applying the hierarchical Bayesian estimate
method. Furthermore, in another study, T. Shimokawa et al. [84] provide the HB method
with Laplacian smooth prior to spatially variant Tikhonov regularization. This study
include Two-layer phantom experiments, as well as the inclusion of MRI-based head-
model simulations, are carried outBased on the results of that experiment, the proposed
algorithm estimates the smooth, superficial activity in the scalp while also assessing the
deep, localized activity in the cortical region. T. Aihara et al. also used the HB method to
estimate spontaneous changes in cortical hemodynamic [85], in contrast to the task-related
changes discussed in [86] for fMRI data. P. Hiltunen et al. [87] used the Bayesian and EM
methods, as well as Tikhonov regularisation, in another study. Estimates of both the spatial
organisation and the physical parameters can be obtained concurrently by using a Bayesian
technique with a Gaussian prior. The reconstructed images’ contrast is improved by the
algorithm that was proposed, which has a high degree of spatial precision.

6.8. Expectation-Maximization (EM)

The Expectation-Minimization (EM) method for fNIRs sense was developed and
employed by Cao et al. [88], and the mathematical description of the EM method can be
described as follows:

By incorporating misplaced data and maximising the comprehensive penalised log-
likelihood estimator, the maximum penalised log-likelihood estimator (MPLE) can
be obtained.

xEM = argmax

{
−‖y− Ax‖2

2δ2 − α‖x‖1

}
(20)

The EM procedure generates a sequence of approximations xk by alternating two
phases (as shown below) until some stopping requirement is fulfilled.

â E-step given the observed data y and the current estimate µk, the conditional anticipa-
tion of the whole log-likelihood could be computed as

xk = µk +
β2

δ2 AT
(

y− Aµk
)

(21)

â M-step: Update the estimated value of xk

xk+1 = argmax
{
−‖µ− xk‖2 − 2δ2α‖x‖1

}
(22)

Equation can be explained separately for each element xk+1
l as

xk+1
l = argmax

{
−µ2

l + 2µl xl − 2δ2α‖x‖1
}

(23)

xl is the element. It can be resolved using the soft threshold technique.

6.9. Maximum Entropy on the Mean (MEM)

The MEM method was first introduced by [89], and it has since been utilised and
rigorously analysed in the context of EEG/MEG source imaging research [90,91]. MEM is
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not a new statistical method in the traditional sense, but rather a novel stochastic approach
that leads to deterministic methods when some discretization step trends toward zero.
Cai et al. [92] recently employed and evaluated the MEM approach to solving the inverse
problem of fNIRs reconstruction.

Consider the variable x as an arbitrary variable with the probability distribution
dP(x) = P(x)dx then the unique solution dP(x) could be attained as

dP∗(x) = argmaxdP(x)∈Cm(Sv(dP(x))) (24)

where Sv(dP(x)) is the Kullback-Leiber divergence or v-entropy of dP(x) and define it as

Sv(dP(x)) = −
∫

x
log
(

dP(x)
dv(x)

)
dP(x) = −

∫
x

f (x) log( f (x))dv(x) (25)

dv(x) is the prior distribution, the MEM solution from the gradient of free energy Fv is
obtained as follows?

xMEM = ∇ξ Fv(ξ) = ATλ∗ (26)

where λ∗ = argmaxλD(λ), with the cost function D(λ) = λTy− Fv
(

ATλ
)
− 1

2 λTν(ν)Tλ.

6.10. Bayesian Model Averaging

The fundamental concept of BMA theory, which was initially developed and applied
to MEG/EEG, is a mixture of Bayesian hierarchical models that can be used to estimate
highly parameterized models [93]. Using Bayesian inference (BI) assumptions based on the
given model or data (prior probability distribution), BMA may be used to construct the
posterior distribution for quantities of interest [94]. The following is the basic mathematical
description of BMA for fNIRs image-based model reconstruction (see [11] for additional
information) and is given in more detail below:

i. Consider the basic assumption of the Bayesian formulization of the given problem as
a normal probability density function as

p(y/x, ϕ) = N(Ax, ϕ)

where ϕ represents as hyperparameters which is unknown [11].
ii. The estimation of the parameter as the first level of inference using the Bayes theorem

is described as the posterior probability density function a

(x/y, ϕ, Hk) =
p(y/x, ϕ, Hk)p(x/ϕ, Hk)∫
p(y/x, ϕ, Hk)p(x/ϕ, Hk)dϕ

where Hk represents as k-th model which is to be considered for the given problem.
iii. The estimation of the hyperparameters as 2nd level of inference is describing as the

posterior probability density function as

p(ϕ/y, Hk) =
p(y/ϕ, Hk)p(ϕ/Hk)∫
p(y/ϕ, Hk)p(ϕ/Hk)dϕ

iv. The estimation of the model as the third level of inference as the posterior probability
density function

p(Hk/y) =
p(y/Hk)p(Hk)∫
p(y/Hk)p(Hk)dϕ

v. Lastly, marginalizing the first, second, and third level of inference as posterior pdf as

p(x/y) =
∫

f orallHk

p(x/y, Hk)p(Hk) = ∑k p(x/y, Hk)p(Hk) (27)
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This procedure considers all possible solutions for every model (using 1st and 2nd
level of inference) and averages weighted by each model’s posterior model probability
(PMP).

Furthermore, J. Tremblay et al. [11] applied the BMA for fNIRs and their results show
that in terms of localization error, ROI, and RMSE, the BMA produces better results.

7. Conclusions

fNIRs is a practical approach due to their portability, little interference in magnetic
and electrical fields, hyper-scanning, ease of use for neonates, and the fact that they require
no ongoing maintenance. As a result of the rapid development of fNIRS devices and
analytic toolboxes and its findings’ reliability in various fields, the fNIRs approach can
be considered a versatile and promising instrument. In fNIRs, the image reconstruction
problem is divided into two parts: the model used to predict light distribution in tissue
(the forward problem) and the method used to estimate the optical properties of the
domain in tissue (the inverse problem). In order to achieve correct image reconstruction,
it is essential to do accurate forward model simulation and develop methods to address
inverse problems.

Concerning how to solve the problem, many researchers have used and presented
a wide range of methods, such as toolboxes. FEM and MC are the two most advanced
forward model simulation technologies today. Various toolboxes are being built and put
into operation to improve the accuracy and efficiency of the forward model simulations.
Regarding forward models, NIRFAST for FEM and MCX for the MC method are the most
often used and developed software packages up to this moment.

When it comes to the solution of the inverse problem, the inverse methods such as
back projection, SVD, tSVD, LSQR, rLSQR, MNE, WMNE, LORETA, l1-norm, HB as a MAP
estimate, EM, MEM, and BMA, have been employed thusly. According to the research,
while considering inverse methods, it is vital to consider factors such as computational time,
localization ability, localization error, energy error, system complexity, improved resolution,
and improved image quality, among others. According to the research reviewed above,
when numerous measurements are collected at the same time, the back-projection method
gives an overestimation of the amplitude. The SVD, tSVD, LSQR, and rLSQR methods are
all efficient in terms of computational resources. On the other hand, the L1-norm and lp
regularisation approaches have been found to be sparser than the other inverse methods,
which is a positive development.

Incorporating priors into the inverse approach improves image quality and spatial
accuracy. For this reason, the HB method has been employed in the literature and has
produced satisfactory outcomes. Based on the prior information, the EM method for
fNIRs has been used to increase the image quality and resolution by incorporating sparsity
regularisation into the image. Furthermore, in terms of localization error, ROI, and RMSE,
the BMA produces better results. Recently the MEM method has been used for fNIRs, and
it has been proven to be more accurate and robust than both MNE and wMNE.

Considering the preceding, it is evident and apparent that, while the methods em-
ployed thus far have produced satisfactory results, continuous improvement in inverse
problem solutions is ongoing. As a result, it may be possible to utilize the inverse method,
which incorporates the sparse algorithm and prior information, to improve image quality
and reduce localization error.
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