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Abstract: This work provides new adequate conditions for difference equations with forcing, positive
and negative terms to have non-oscillatory solutions. A few mathematical inequalities and the
properties of discrete fractional calculus serve as the fundamental foundation to our approach. To
help establish the main results, an analogous representation for the main equation, called a Volterra-
type summation equation, is constructed. Two numerical examples are provided to demonstrate
the validity of the theoretical findings; no earlier publications have been able to comment on their
solutions’ non-oscillatory behavior.

Keywords: non-oscillatory solutions; asymptotic behavior; caputo nabla fractional difference; nabla
fractional difference equations
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1. Introduction

Fractional order differential equations (FDEs) are generalized, non-integer order dif-
ferential equations that can be obtained in time and space with a power law memory kernel
of the nonlocal relationships; they offer an effective means of describing the memory of
various substances and the characteristics of inheritance. The authors, who have shown
a great deal of interest in studying the qualitative characteristics of the solution of FDEs,
such as existence, uniqueness, oscillation, stability, and control, have provided details of
significant findings in this area; see some of the illustrious monographs [1–3] and recent
papers [4–10]. In particular, the oscillation of solutions was a subject that was taken into
account for FDEs; the review paper in [11] is available to readers.

In recent years, academics have started to pay significant attention to discrete frac-
tional calculus. The arbitrary order difference and summation features have considerably
demonstrated their utility and validity due to their long memory nature and their flexible
capability in carrying out mathematical computations [12]. As a result, numerous studies
that investigate the qualitative traits of fractional difference equation solutions have been
published, including their oscillation properties [13–16].
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Let Nχ = {χ, χ + 1, χ + 2, . . .} for any χ ∈ R. Research on the oscillation of solu-
tions of nabla fractional difference equations was started by Alzabut et al. [15] with the
following problems:∇

η
σ+κ−2 ϕ(v) + ξ1(v, ϕ(v)) = ζ(v) + ξ2(v, ϕ(v)), v ∈ Nη+σ−1,

∇−(1−η)
σ+κ−2 ϕ(v)

∣∣∣
v=σ+κ−1

= χ, χ ∈ R,
(1)

and {
∇η

σ+κ−1∗ϕ(v) + ξ1(v, ϕ(v)) = ζ(v) + ξ2(v, ϕ(v)), v ∈ Nσ+κ−1,
∇my(σ +κ − 1) = χm, χm ∈ R, m = 0, 1, 2, · · · ,κ − 1,

(2)

where η > 0 and κ ∈ N1 such that κ − 1 < η < κ; ξ1, ξ2 : Nσ+κ−1 × R → R and
ζ : Nσ+κ−1 → R.

Then, Abdalla et al. [13,14] continued to study the oscillation of solutions of different
types of mixed nonlinear nabla fractional difference equations:∇

η
σ+κ−2 ϕ(v)− b(v)ϕ(v) + ∑k

j=1 bj(v)|ϕ(v)|αj−1 = ζ(v), v ∈ Nσ+κ ,

∇−(κ−η)
σ+κ−2 ϕ(v)

∣∣∣
v=σ+κ−1

= χ, χ ∈ R,
(3)

and{
∇η

σ+κ−1∗ϕ(v)− b(v)ϕ(v) + ∑k
j=1 bj(v)|ϕ(v)|αj−1 = ζ(v), v ∈ Nσ+κ−1,

∇m ϕ(σ +κ − 1) = χm, χm ∈ R, m = 0, 1, 2, · · · ,κ − 1,
(4)

where b, bj : Nσ+κ−1 → R, j = 1, 2, · · · k; α1, α2, · · · , and αk are the ratios of odd natural
numbers with α1 > · · · > αi > 1 > αi+1 > · · · > αk.

In this vein, Alzabut et al. [16] derived the conditions for the oscillation of solutions of
a forced and damped nabla fractional difference equation:(1− p(v))∇∇η

0 ϕ(v) + p(v)∇η
0 ϕ(v) + p2(v)ξ(ϕ(v)) = p1(v), v ∈ N1,

∇−(1−η)
0 ϕ(v)

∣∣∣
v=1

= χ, χ ∈ R,
(5)

where 0 < µ < 1; ξ : R→ R; p, p1 : N1 → R and p2 : N1 → R+.
Motivated by the above studies, which concentrated on oscillation discussion, and for

the sake of giving an affirmative response about the behavior of non-oscillatory solutions,
in this work, we consider the higher-order forced nabla fractional difference equation with
positive and negative terms of the following form:

∇x
c∗z(v) + φ(v, y(v)) = η(v) + ζ(v)yβ(v) + Φ(v, y(v)), v ∈ Nc+1, (6)

where
z(v) = ∇n−1

[
d(v)(∇y(v))β

]
, v ∈ Nc, n ∈ N1, (7)

where 0 < x < 1, β is the ratio of two odd natural numbers, c ∈ N1, and ∇x
c∗z denotes the

xth Caputo nabla fractional difference of z. Throughout this work, we need the following
conditions in the sequel.

(i) ζ, d : Nc → (0, ∞), η : Nc → R and Φ, φ : Nc ×R → R are real valued continuous
functions;

(ii) There exist two continuous functions Θ1 and Θ2 : Nc → (0, ∞), and positive real
numbers λ and γ, where λ > γ such that

yφ(v, y) ≥ Θ1(v)|y|λ+1, 0 ≤ yΦ(v, y) ≤ Θ2(v)|y|γ+1
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for y 6= 0 and v ∈ Nc.

Unlike most existing results, which often discuss the oscillation of solutions, the asymp-
totic behavior of the Equation (6)’s non-oscillatory solutions is examined in this study. Our
method is essentially based on some mathematical inequalities and the properties of dis-
crete fractional calculus. A Volterra-type summation equation is built as an analogous
representation for Equation (6) to aid in establishing the key conclusions. In order to
demonstrate the validity of the theoretical findings, we offer numerical examples.

2. Essential Preliminaries

The results in this section are adopted from the two main monographs [12,17].

Definition 1 (See [12]). For v ∈ R \ {. . . ,−2,−1, 0} and θ ∈ R such that (v + θ) ∈ R \
{. . . ,−2,−1, 0}, we define the generalized rising function by

vθ =
Γ(v + θ)

Γ(v)
.

Furthermore, if v ∈ {. . . ,−2,−1, 0} and θ ∈ R such that (v + θ) ∈ R \ {. . . ,−2,−1, 0}, then
vθ = 0.

Definition 2 (See [12]). Let κ be a real valued function defined on Nχ. The first nabla difference of
κ is given by

∇κ(v) = κ(v)− κ(v− 1), v ∈ Nχ+1.

Definition 3 (See [12]). Let κ be a real valued function defined on Nχ+1 and x > 0. The xth nabla
fractional sum of κ based at χ is given by

∇−x
χ κ(v) =

1
Γ(x)

v

∑
v1=χ+1

(v−v1 + 1)x−1κ(v1), v ∈ Nχ,

where, by convention, ∇−x
χ κ(χ) = 0.

Definition 4 (See [3]). Let 0 < x < 1 and κ be a real valued function defined on Nχ. The xth
Caputo nabla fractional difference of κ based at χ is given by

∇x
χ∗κ(v) = ∇−(1−x)

χ ∇κ(v), v ∈ Nχ+1.

Theorem 1. The initial value problem{
∇x

a∗κ(v) = ω(v), v ∈ Na+1,
κ(a) = κ0,

(8)

has the unique solution

κ(v) = κ0 +
1

Γ(x)

v

∑
v1=a+1

(v−v1 + 1)x−1ω(v1), v ∈ Na (9)

where 0 < x < 1 and ω : Na+1 → R.

Lemma 1. The following properties hold well.

1. If r3 < v ≤ v1, then v−r3
1 ≤ v−r3 ;

2. vr1(v + r1)
r2 = vr1+r2 ;
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3. If 0 < r3 < 1 and ϑ > 1, then

[
v−r3

]ϑ
≤ Γ(1 + r3ϑ)

[Γ(1 + r3)]
ϑ

v−r3ϑ, v > r3ϑ.

Lemma 2. Under the assumption that b, x and p are positive constants with b > 1 and
p(x− 1) + 1 > 0, we obtain

v

∑
v1=1

(v−v1 + 1)p(x−1)bpv1 ≤ Qbpt, v ∈ N1,

where

Q =

(
bp

bp − 1

)p(x−1)+1
Γ(p(x− 1) + 1).

Lemma 3. If R and S are nonnegative, 1
γ + 1

υ = 1, and γ > 1, then

RS ≤ 1
γ

Pγ +
1
υ

Sυ, (10)

where equality holds if and only if S = Rγ−1.

We denote

m(v) =

[
Θλ

2 (v)

Θγ
1 (v)

]( 1
λ−γ

)
, (11)

and

A(v, c) =
v

∑
v1=c+1

d−
1
β (v1). (12)

3. Main Results

In this section, we provide sufficient conditions for which any non-oscillatory solution
of (6) satisfies

|y(v)| = O
([

vn−1
] 1

β b
v
β A(v, c)

)
as v → ∞.

Theorem 2. Under the assumptions that (i)–(ii), 0 < x < 1, p(x− 1) + 1 > 0 for p > 1 and

∞

∑
v1=c+1

ζq(v1)
[
vn−1

1

]q
Aβq(v1, c) < ∞, q =

p
p− 1

, (13)

lim
v→∞

[
1

Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1|η(v1)|
]
< ∞, (14)

lim
v→∞

[
1

Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1m(v1)

]
< ∞, (15)

every non-oscillatory solution of (6) satisfies

lim sup
v→∞

|y(v)|[
vn−1

] 1
β b

v
β A(v, c)

< ∞. (16)
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Proof. Let y be a non-oscillatory solution of (6), say y(v) > 0 for v ∈ Nv1 for some
v1 ∈ Nc+1. Take z(c) = c0. Letting F(v) = Φ(v, y(v))− φ(v, y(v)), it follows from (6)
and (i)–(ii) that, for v ∈ Nc,

∇n−1
[
d(v)(∇y(v))β

]
= c0 +

1
Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1
[
η(v1) + ζ(v1)yβ(v1) + F(v1)

]
≤ |c0|+

1
Γ(x)

v1

∑
v1=c+1

(v−v1 + 1)x−1|F(v1)|+
1

Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1|η(v1)|

+
1

Γ(x)

v

∑
v1=v1+1

(v−v1 + 1)x−1
[
Θ2(v1)yγ(v1)−Θ1(v1)yλ(v1)

]
(17)

+
1

Γ(x)

v1

∑
v1=c+1

(v−v1 + 1)x−1ζ(v1)
∣∣∣yβ(v1)

∣∣∣
+

1
Γ(x)

v

∑
v1=v1+1

(v−v1 + 1)x−1ζ(v1)yβ(v1).

Applying Lemma 3 to
[
Θ2(v)yγ(v)−Θ1(v)yλ(v)

]
with

δ =
λ

γ
> 1, X = yγ(v), Y =

γ

λ

Θ2(v)

Θ1(v)
, η =

λ

λ− γ
,

we obtain

Θ2(v)yγ(v)−Θ1(v)yλ(v) =
λ

γ
Θ1(v)

[
yγ(v)

γ

λ

Θ2(v)

Θ1(v)
− γ

λ
(yγ(v))

λ
γ

]
=

λ

γ
Θ1(v)

[
XY− 1

δ
Xδ

]
≤ λ

γ
Θ1(v)

[
1
η

Yη

]
(18)

=

(
λ− γ

γ

)
Θ1(v)

[
γ

λ

Θ2(v)

Θ1(v)

] λ
λ−γ

= (λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
m(v).

Substituting (18) into (17) and applying Lemma 1, for v ∈ Nc, we obtain

∇n−1
[
d(v)(∇y(v))β

]
≤ |c0|+

1
Γ(x)

v1

∑
v1=c+1

(v1 −v1 + 1)x−1|F(v1)|+
1

Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1|η(v1)|

+
1

Γ(x)
(λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
v

∑
v1=v1+1

(v−v1 + 1)x−1m(v1) (19)

+
1

Γ(x)

v1

∑
v1=c+1

(v1 −v1 + 1)x−1ζ(v1)
∣∣∣yβ(v1)

∣∣∣
+

1
Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1ζ(v1)yβ(v1).
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In view of (14) and (15), we see from (19) that, for v ∈ Nc,

∇n−1
[
d(v)(∇y(v))β

]
≤ Cn−1 +

1
Γ(x)

v

∑
v1=v1+1

(v−v1 + 1)x−1ζ(v1)yβ(v1), (20)

where Cn−1 > 0 is defined by

Cn−1 = |c0|+
1

Γ(x)

v1

∑
v1=c+1

(v1 −v1 + 1)x−1|F(v1)|+
1

Γ(x)

v

∑
v1=c+1

(v−v1 + 1)x−1|η(v1)|

+
1

Γ(x)
(λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
v

∑
v1=v1+1

(v−v1 + 1)x−1m(v1)

+
1

Γ(x)

v1

∑
v1=c+1

(v−v1 + 1)x−1ζ(v1)
∣∣∣yβ(v1)

∣∣∣.
By the integer order variation of constants formula, it follows from (20) that

d(v)(∇y(v))β

≤
n−2

∑
k=0

(
∇k
[
d(v)(∇y(v))β

])
v=v1−1

(v−v1 + 1)k

Γ(k + 1)

+
v

∑
r=v1

(v− r + 1)n−2

Γ(n− 1)

[
Cn−1 +

1
Γ(x)

r

∑
v1=v1+1

(r−v1 + 1)x−1ζ(v1)yβ(v1)

]

≤
n−2

∑
k=0

∣∣∣∣(∇k
[
d(v)(∇y(v))β

])
v=v1−1

∣∣∣∣ (v−v1 + 1)k

Γ(k + 1)

+ Cn−1

v

∑
r=v1

(v− r + 1)n−2

Γ(n− 1)

+
v

∑
r=v1+1

(v− r + 1)n−2

Γ(n− 1)

[
1

Γ(x)

r

∑
v1=v1+1

(r−v1 + 1)x−1ζ(v1)yβ(v1)

]
(21)

=
n−2

∑
k=0

∣∣∣∣(∇k
[
d(v)(∇y(v))β

])
v=v1−1

∣∣∣∣ (v−v1 + 1)k

Γ(k + 1)

+ Cn−1
(v−v1 + 1)n−1

Γ(n)

+
v

∑
v1=v1+1

[
v

∑
r=v1

(v− r + 1)n−2

Γ(n− 1)
(r−v1 + 1)x−1

Γ(x)

]
ζ(v1)yβ(v1)

=
n−1

∑
k=0

Ck
(v−v1 + 1)k

Γ(k + 1)
+

v

∑
v1=v1+1

(v−v1 + 1)x+n−2

Γ(x + n− 1)
ζ(v1)yβ(v1).

where

Ck =

∣∣∣∣(∇k
[
d(v)(∇y(v))β

])
v=v1−1

∣∣∣∣ > 0, k = 0, 1, 2, · · · , n− 2.

Note that (21) holds for n = 1. Hence, (21) holds for all n ∈ N1 and for all v ∈ Nv1 . Next,
we proceed to estimate (21) as
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d(v)(∇y(v))β ≤
n−1

∑
k=0

Ck
vk

Γ(k + 1)
+

v

∑
v1=v1+1

(v−v1)
n−1(v−v1 + n)x−1

Γ(x + n− 1)
ζ(v1)yβ(v1)

≤ vn−1

[
n−1

∑
k=0

Ck
k!

+
1

Γ(x + n− 1)

v

∑
v1=v1+1

(v−v1 + 1)x−1ζ(v1)yβ(v1)

]
,

implying that

d(v)(∇y(v))β ≤ vn−1

[
Θ1 + Θ2

v

∑
v1=v1+1

(v−v1 + 1)x−1ζ(v1)yβ(v1)

]
, (22)

where

Θ1 =
n−1

∑
k=0

Ck
k!

> 0, Θ2 =
1

Γ(x + n− 1)
> 0.

Applying Lemmas 1 and 2, and Holder’s inequality to the sum on the far right in (22),
we have

v

∑
v1=v1+1

(v−v1 + 1)x−1ζ(v1)yβ(v1)

=
v

∑
v1=v1+1

[
(v−v1 + 1)x−1bv1

][
b−v1 ζ(v1)yβ(v1)

]

≤
(

v

∑
v1=v1+1

[
(v−v1 + 1)x−1

]p
bpv1

)1/p( v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

≤
(

A
v

∑
v1=v1+1

(v−v1 + 1)p(x−1)bpv1

)1/p( v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

(23)

≤
(

AQbpv
)1/p

(
v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

= (AQ)1/pbv

(
v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

,

where

A =
Γ(1 + (1− x)p)
[Γ(2− x)]p

.

Using (23) in (22), we obtain from (22) that

d(v)(∇y(v))β ≤ vn−1bvω(v), (24)

where

ω(v) = Θ1 + M3

(
v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

,

with
M3 = Θ2(AQ)1/p > 0.

We rewrite (24) as

∇y(v) ≤
(

vn−1bvω(v)

d(v)

) 1
β

, v ∈ Nv1 . (25)
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Noting that vn−1, bv, and ω(v) are all increasing, summing (25) from v1 + 1 to v
yields that

y(v) ≤ y(v1) +
v

∑
v1=v1+1

[
vn−1

1

] 1
β b

v1
β ω

1
β (v1)d

− 1
β (v1)

≤ y(v1) +
[
vn−1

] 1
β b

v
β ω

1
β (v)

v

∑
v1=v1+1

d−
1
β (v1)

= y(v1) +
[
vn−1

] 1
β b

v
β ω

1
β (v)A(v, v1)

=

 y(v1)[
vn−1

] 1
β b

v
β A(v, v1)

+ ω
1
β (v)

[vn−1
] 1

β b
v
β A(v, v1)

≤

 y(v1)[
vn−1

2

] 1
β b

v2
β A(v2, v1)

+ ω
1
β (v)

[vn−1
] 1

β b
v
β A(v, v1),

holds for v ∈ Nv2 with v2 > v1. Thus,

y(v)[
vn−1

] 1
β b

v
β A(v, v1)

≤ M4 + ω
1
β (v), v ∈ Nv2 , (26)

where

M4 =
y(v1)[

vn−1
2

] 1
β b

v2
β A(v2, v1)

.

Applying one of the elementary inequalities

(y + z)q ≤
{

2q−1(yq + zq), q ≥ 1,
yq + zq, 0 < q < 1,

(27)

with y, z ≥ 0, to (26) gives y(v)[
vn−1

] 1
β b

v
β A(v, v1)


β

≤ M5 + M6ω(v), v ∈ Nv2 , (28)

where M5 and M6 > 0 are defined by

M5 =

{
2β−1Mβ

4 , q ≥ 1,

Mβ
4 , 0 < q < 1,

(29)

and

M6 =

{
2β−1, q ≥ 1,
1, 0 < q < 1.

(30)
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Recalling the definition of ω(v), from (28), we have that y(v)[
vn−1

] 1
β b

v
β A(v, v1)


β

≤ M7 + M8

(
v

∑
v1=v1+1

b−qv1 ζq(v1)yβq(v1)

)1/q

, (31)

holds for v ∈ Nv2 , where

M7 = M5 + Θ1M6 > 0, M8 = M3M6 > 0.

Applying the inequality (27) to (31) gives that y(v)[
vn−1

] 1
β b

v
β A(v, v1)


βq

≤ M9 + M10

v

∑
r=v1+1

b−qrζq(r)yβq(r), (32)

holds for v ∈ Nv2 , where

M9 = 2β−1Mq
7 > 0, M10 = 2β−1Mq

8 > 0.

Denoting the left-hand side of (32) by w(v), (32) yields that

w(v) ≤ M9 + M10

v

∑
v1=v1+1

[
vn−1

1

]q
Aβq(v1, v1)ζ

q(v1)w(v1), (33)

holds for v ∈ Nv2 , and this can be rewritten as

w(v) ≤ M11 + M10

v

∑
v1=v2+1

[
vn−1

1

]q
Aβq(v1, v1)ζ

q(v1)w(v1), (34)

which holds for v ∈ Nv2 , where

M11 = M9 + M10

v2

∑
v1=v1+1

[
vn−1

1

]q
Aβq(v1, v1)ζ

q(v1)w(v1) > 0.

Using (13) and Gronwall’s inequality, we have the conclusion to the theorem. The proof
for an eventually negative solution is similar. So, we omit it here. Thus, the theorem
is proved.

Next, we consider β = 1 and we provide sufficient conditions for which any non-
oscillatory solution of (6) is bounded.

Theorem 3. Assume that (i) − (ii), 0 < x < 1, p(x − 1) + 1 > 0 for p > 1 and that (14)
and (15) hold. Furthermore, assume that there exist real numbers S > 0 and τ > 1 such that(

vn−1

d(v)

)
≤ v1b−τv (35)

and
∞

∑
v1=c+1

b−qv1 ζq(v1) < ∞, q =
p

p− 1
, (36)

hold; then, all non-oscillatory solutions of (6) are bounded.
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Proof. Let y be a non-oscillatory solution of (6), say y(v) > 0 for v ∈ Nv1 for some
v1 ∈ Nc+1. Proceeding as in the proof of Theorem 2, we obtain (25) when β = 1. Since ω is
increasing, summing (25) from v1 + 1 to v yields

y(v) ≤ y(v1) +
v

∑
v1=v1+1

vn−1
1 bv1 ω(v1)

d(v1)

≤ y(v1) +
v

∑
v1=v1+1

Sb(1−τ)v1 ω(v1)

≤ y(v1) + Sω(t)
v

∑
v1=v1+1

b(1−τ)v1

≤ y(v1) + Sω(t)
v

∑
v1=v1+1

(
1

b(τ−1)

)s

= y(v1) + Sω(t)

(
b(τ−1)

b(τ−1) − 1

)[(
1

b(τ−1)

)v1+1
−
(

1
b(τ−1)

)v+1
]

= y(v1) + Sω(t)
(

1
b(τ−1) − 1

)[(
1

b(τ−1)

)v1

−
(

1
b(τ−1)

)v]
≤ y(v1) + Sω(t)

(
1

b(τ−1) − 1

)(
1

b(τ−1)

)v1

.

Using the definition of ω, we obtain

y(v) ≤ M12 + M13

(
v

∑
v1=v1+1

b−qv1 ζq(v1)yq(v1)

)1/q

, (37)

for v ∈ Nv2 , where

M12 = y(v1) + Θ1S
(

1
b(τ−1) − 1

)(
1

b(τ−1)

)v1

> 0,

and

M13 = M3S
(

1
b(τ−1) − 1

)(
1

b(τ−1)

)v1

> 0.

Using the inequality (27) to (37), we have

yq(v) ≤ M14 + M15

v

∑
v1=v1+1

b−qv1 ζq(v1)yq(v1), (38)

for v ∈ Nv1 , where

M14 = 2q−1Mq
12 > 0, M15 = 2q−1Mq

13 > 0.

Now, using (36) and Gronwall’s inequality, we have the conclusion to the theorem. The proof
for an eventually negative solution is similar. So, we omit it here. The theorem is proved.
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4. Examples

We conclude this paper with the following examples to illustrate our main results.

Example 1. Consider the equation

∇0.75
1∗

(
∇3(e3v(∇y(v))3))+ φ(v, y(v))

= (v− 1)−0.9 +
y(v)

v(v + 1)(v + 2)ev/2 + Φ(v, y(v)), v ∈ N2. (39)

Here, we have z(v) = ∇3(e3v(∇y(v))3), n = 4, x = 0.75, c = 1, β = 3, d(v) = e3v,
η(v) = (v− 1)−0.9, ζ(v) = 1

v(v+1)(v+2)ev/2 , and

A(v, c) = A(v, 1) =
v

∑
v1=2

d−
1
3 (v1) =

v

∑
v1=2

e−v1 =
1

e(e− 1)

[
1−

(
1
e

)v−1
]
≤ 1

e(e− 1)
.

Clearly, condition (i) holds. Let b = e and p = 2. Clearly, p(x− 1) + 1 > 0. Additionally,
we have q = 2, and

∞

∑
v1=c+1

ζq(v1)
[
vn−1

1

]q
Aβq(v1, c) ≤ 1

e2(e− 1)2

∞

∑
v1=2

e−v1 < ∞,

implying that (13) holds. Considering φ(v, y(v)) = Θ1(v)|y(v)|λ−1y(v) and Φ(v, y(v))

= Θ2(v)|y(v)|γ−1y(v) with λ > γ, Θ1(v) = Θ2(v) = (v− 1)−0.9, we see that (ii) holds.
To check (14), we assume

1
Γ(0.75)

v

∑
v1=1+1

(v−v1 + 1)0.75−1|η(v1)| =
1

Γ(0.75)

v

∑
v1=2

(v−v1 + 1)0.75−1
∣∣∣(v1 − 1)−0.9

∣∣∣
=

1
Γ(0.75)

v

∑
v1=2

(v−v1 + 1)0.75−1(v1 − 1)−0.9

= ∇−0.75
1 (v− 1)−0.9

=
Γ(1− 0.9)

Γ(1− 0.9 + 0.75)
(v− 1)−0.9+0.75

=
Γ(0.1)
Γ(0.85)

(v− 1)−0.15

≤ Γ(0.1)
Γ(0.85)

1−0.15

= Γ(0.1),

that is,

lim
v→∞

[
1

Γ(0.75)

v

∑
v1=1+1

(v−v1 + 1)0.75−1|e(v1)|
]
< ∞.

Similarly, it is easy to verify that (15) holds. Therefore, all conditions of Theorem 2 are
satisfied. Thus, every non-oscillatory solution of (6) satisfies

lim sup
v→∞

|y(v)|[
v3
] 1

2 e
v
2 A(v, 1)

< ∞. (40)
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Example 2. Consider the equation

∇0.5
1∗

(
∇2
(

v(v + 1)e5v
(
∇v(v)

)))
+ φ(v, y(v))

= (v− 1)−0.75 + e2v/3y(v) + Φ(v, y(v)), v ∈ N2. (41)

Here, we have z(v) = ∇2(v(v + 1)e5v
(
∇v(v)

))
, c = 1, x = 0.5, n = 3, d(v) =

v(v + 1)e5v, e(v) = (v− 1)−0.75, and ζ(v) = e2v/3. Hence, condition (i) holds. Assum-
ing b = e, v1 = 1, and τ = 5, we find(

v2

d(v)

)
= e−5v.

Therefore, (35) holds. Now, if we take p = 3/2, then we have q = 3, and

∞

∑
v1=c+1

b−qv1 ζq(v1) =
∞

∑
v1=2

e−3v1 e2v1 =
∞

∑
v1=2

e−v1 =
1

e(e− 1)
< ∞,

that is, (36) holds. Again, if

φ(v, y(v)) = Θ1(v)|y(v)|λ−1y(v) and Φ(v, y(v)) = Θ2(v)|y(v)|γ−1y(v)

with λ > γ, Θ1(v) = Θ2(v) = (v − 1)−0.75, then it is easy to verify that condition (ii)
holds. To check that (14) holds, we assume

1
Γ(0.5)

v

∑
v1=1+1

(v−v1 + 1)0.5−1|η(v1)| =
1

Γ(0.5)

v

∑
v1=2

(v−v1 + 1)0.5−1
∣∣∣(v1 − 1)−0.75

∣∣∣
=

1
Γ(0.5)

v

∑
v1=2

(v−v1 + 1)0.5−1(v1 − 1)−0.75

= ∇−0.5
1 (v− 1)−0.75

=
Γ(1− 0.75)

Γ(1− 0.75 + 0.5)
(v− 1)−0.75+0.5

=
Γ(0.25)
Γ(0.75)

(v− 1)−0.25

≤ Γ(0.25)
Γ(0.75)

1−0.25

= Γ(0.25),

that is,

lim
v→∞

[
1

Γ(0.5)

v

∑
v1=1+1

(v−v1 + 1)0.5−1|e(v1)|
]
< ∞.

Similarly, it is easy to verify that (15) holds. Therefore, all conditions of Theorem 3 are
satisfied. Thus, every non-oscillatory solution of (41) is bounded.

5. Concluding Remarks

Unlike most existing results in the literature that have been dedicated to oscillation
criteria, we introduced a number of additional necessary conditions for non-oscillatory
solutions to forced nabla difference equations with positive and negative terms. The main
equation is of a general nature, and it covers many particular cases. By creating an equiva-
lent representation of the primary equation in the form of a summation equation similar to
Volterra and using some mathematical inequalities, the results are stated and proved. Some
earlier findings in the literature were enhanced by the results. In fact, we give two brand-
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new cases, the non-oscillatory behavior of whose solutions has never been discussed in
earlier studies. The existing methodology can be used in the future to produce comparable
outcomes for higher order dynamic equations with forcing, positive and negative terms.
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