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Abstract: In this paper, we aim to establish several estimates concerning the generalized Euclidean
operator radius of d-tuples of A-bounded linear operators acting on a complex Hilbert space H ,
which leads to the special case of the well-known A-numerical radius for d = 1. Here, A is a positive
operator on H . Some inequalities related to the Euclidean operator A-seminorm of d-tuples of
A-bounded operators are proved. In addition, under appropriate conditions, several reverse bounds
for the A-numerical radius in single and multivariable settings are also stated.
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1. Introduction

The theory of inequalities remains a very attractive area of research in the last few
decades. In particular, the investigation of numerical radius inequalities in Hilbert and
semi-Hilbert spaces has occupied an important and central role in the theory of operator
inequalities. For further details, interested readers are referred to the very recent book by
Bhunia et al. [1].

Throughout the present article, H stands for a non-trivial complex Hilbert space with
inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. By B(H ), we denote the C∗-algebra
of all bounded linear operators acting on H . The identity operator on H will be simply
written as I. Let T ∈ B(H ). The range and the adjoint of T will be denoted by R(T)
and T∗, respectively. An operator T ∈ B(H ) is called positive and we write T ≥ 0 if
〈Tx, x〉 ≥ 0 for all x ∈H . If T ≥ 0, then T1/2 denotes the square root of T.

If S is a subspace of H , then we mean by S the closure of S in the norm topology of
H . Let C be a closed subspace of H . We denote by PC the orthogonal projection onto C.

For the rest of this work, by an operator, we mean a bounded linear operator acting on
H . We also assume that A ∈ B(H ) is a non-zero, positive operator. Such an A defines the
following semi-inner product on H :

〈x, y〉A = 〈Ax, y〉 = 〈A1/2x, A1/2y〉,

for all x, y ∈H . The seminorm on H induced by 〈·, ·〉A is stated as: ‖x‖A = ‖A1/2x‖ for
every x ∈H . Hence, we see that the above seminorm is a norm on H if and only if A is a
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one-to-one operator. Furthermore, one can prove that the semi-Hilbert space (H , ‖ · ‖A) is
a complete space if and only ifR(A) = R(A). The A-unit sphere of H is defined as

S1
A =

{
y ∈H ; ‖y‖A = 1

}
.

We refer the reader to the following list of recent works on the theory of semi-Hilbert
spaces [1–6].

Let T ∈ B(H ). We recall from [7] that an operator R ∈ B(H ) is called an A-adjoint
of T if the equality

〈Ty, z〉A = 〈y, Rz〉A
holds for all y, z ∈H , that is, AR = T∗A. In general, the existence and the uniqueness of
an A-adjoint of an arbitrary bounded operator T are not guaranteed. By using a famous
theorem due to Douglas [8], we see that the sets of all operators that admit A-adjoint and
A1/2-adjoint operators are, respectively, given by

BA(H ) = {S ∈ B(H ) ; R(S∗A) ⊂ R(A)},

and

BA1/2(H ) =
{

S ∈ B(H ) ; ∃ ζ > 0 such that ‖Sx‖A ≤ ζ‖x‖A, ∀ x ∈H
}

.

When an operator S belongs to BA1/2(H ), we say that S is A-bounded. It is not difficult
to check that BA(H ) and BA1/2(H ) represent two subalgebras of B(H ). Moreover,
the following inclusions

BA(H ) ⊆ BA1/2(H ) ⊆ B(H )

hold and are, in general, proper. For more details, we refer to [7,9–11] and the references
therein. We recall now that an operator S ∈ B(H ) is called A-self-adjoint if AS is self-
adjoint. Clearly the fact that S is A-self-adjoint implies that S ∈ BA(H ). Furthermore, we
say that an operator S is called A-positive (and we write S ≥A 0) if AS ≥ 0. Obviously,
A-positive operators are A-self-adjoint. For S ∈ BA1/2(H ), the operator A-seminorm and
the A-numerical radius of S are given, respectively, by

‖S‖A = sup
x∈S1

A

‖Sx‖A and ωA(S) = sup
x∈S1

A

∣∣〈Sx, x〉A
∣∣. (1)

The quantities in (1) are also intensively studied when A = I, and the reader is referred
to [12–22] as a recent list of references treating the numerical radius and operator norm of
operators on complex Hilbert spaces.

If S ∈ BA(H ), then by the Douglas theorem [8], there exists a unique solution,
denoted by S†A , of the problem: AX = S∗A andR(X) ⊆ R(A). We emphasize here that if
S ∈ BA(H ), then S†A ∈ BA(H ) and (S†A)†A = PR(A)

SPR(A)
.

Now, let T = (T1, . . . , Td) ∈ BA1/2(H )d be a d-tuple of operators. According to [23],
the following two quantities

ωA(T ) := sup
y∈S1

A

√√√√ d

∑
k=1
|〈Tky, y〉A|2,

and

‖T ‖A := sup
y∈S1

A

√√√√ d

∑
k=1
‖Tky‖2

A
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generalize the notions in (1) and define two equivalent norms on BA1/2(H )d. Namely,
we have

1

2
√

d
‖T ‖A ≤ ωA(T ) ≤ ‖T ‖A, (2)

for every operator tuple T = (T1, . . . , Td) ∈ BA1/2(H )d. Note that ωA(T ) and ‖T ‖A
are called the joint A-numerical radius and joint operator A-seminorm of T , respectively.
The above two quantities have been investigated by several authors when A = I (see for
instance [24–27]). Another joint A-seminorm of A-bounded operators has been recently in-
troduced [28]. Namely, the Euclidean A-seminorm of an operator tuple T = (T1, . . . , Td) ∈
BA1/2(H )d is given by

‖T ‖e,A = sup
(ν1,...,νd)∈Bd

‖ν1T1 + . . . + νdTd‖A, (3)

where Bd denotes the closed unit ball of Cd, i.e.,

Bd :=

{
ν = (ν1, . . . , νd) ∈ Cd ; ‖ν‖2

2 :=
d

∑
k=1
|νk|2 ≤ 1

}
,

where C denotes the set of all complex numbers. It is important to note that the following
inequalities,

1√
d
‖T ‖A ≤ ‖T ‖e,A ≤ ‖T ‖A,

hold for any d-tuple of operators T = (T1, . . . , Td) ∈ BA1/2(H )d (see [28]).
Our aim in the present article is to establish several estimates involving the quantities

ωA(T ), ‖T ‖A and ‖T ‖e,A, where T = (T1, . . . , Td) is a d-tuple of A-bounded operators.
Some inequalities connecting the A-numerical radius and operator A-seminorm for A-
bounded operators are established. One main target of this work is to derive, under appro-
priate conditions, several reverse bounds for ωA(T ) in both single and multivariable settings.
In particular, for T ∈ BA1/2(H ), ν ∈ C and r > 0, we will demonstrate under appropriate
conditions on T, ν and r that

‖T‖2
A ≤ ω2

A(T) +
2r2

|ν|+
√
|ν|2 − r2

ωA(T).

2. Results

This section is devoted to present our contributions. By <ez, we will denote the real
part of any complex number z ∈ C. In the next theorem, we state our first result.

Theorem 1. Let T ∈ BA1/2(H ) and ρ, σ ∈ C with ρ 6= σ. If

<e
〈
ρx− Tx, Tx− σx

〉
A ≥ 0 for any x ∈ S1

A (4)

or, equivalently ∥∥∥∥Tx− ρ + σ

2
x
∥∥∥∥

A
≤ 1

2
|ρ− σ| for any x ∈ S1

A, (5)

then
‖T‖2

A ≤ ω2
A(T) +

1
4
|ρ− σ|2. (6)

Proof. Notice first that the following assertions,

(i) <e
〈
u− y, y− z

〉
A ≥ 0,

(ii)
∥∥y− z+u

2

∥∥
A ≤

1
2‖u− z‖A,
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are equivalent for every y, z, u ∈H . Indeed, one can see that

1
4
‖u− z‖2

A −
∥∥∥∥y− z + u

2

∥∥∥∥2

A
=

1
4
‖u− y + y− z‖2

A −
1
4
‖y− z + y− u‖2

A

=
1
4

(
‖u− y‖2

A + 2<e
〈
u− y, y− z

〉
A + ‖y− z‖2

A

)
− 1

4

(
‖y− z‖2

A + 2<e
〈
y− z, y− u

〉
A + ‖u− y‖2

A

)
=

1
2

(
<e
〈
u− y, y− z

〉
A −<e

〈
y− z, y− u

〉
A

)
=

1
2

(
<e
〈
u− y, y− z

〉
A −<e

〈
y− u, y− z

〉
A

)
= <e

〈
u− y, y− z

〉
A.

Hence, the equivalence is proved.
By taking u = ρx, z = σx and y = Tx in the statements (i) and (ii), we deduce that (4)

and (5) are equivalent.
Now, for x ∈ S1

A, we define

I1 := <e
[(

ρ−
〈

Tx, x
〉

A

)(〈
Tx, x

〉
A − σ

)]
and

I2 := <e
〈
ρx− Tx, Tx− σx

〉
A.

Then,

I1 = <e
[
ρ
〈

Tx, x
〉

A + σ
〈

Tx, x
〉

A

]
−
∣∣∣〈Tx, x

〉
A

∣∣∣2 −<e(ρσ)

and
I2 = <e

[
ρ
〈

Tx, x
〉

A + σ
〈

Tx, x
〉

A

]
− ‖Tx‖2

A −<e(ρσ).

This gives

I1 − I2 = ‖Tx‖2
A −

∣∣∣〈Tx, x
〉

A

∣∣∣2,

for any x ∈ S1
A and σ, ρ ∈ C. This is an interesting identity itself as well.

If (4) holds, then I2 ≥ 0 and thus

‖Tx‖2
A −

∣∣∣〈Tx, x
〉

A

∣∣∣2 ≤ <e
[(

ρ−
〈

Tx, x
〉

A

)(〈
Tx, x

〉
A − σ

)]
. (7)

Furthermore, it can be checked that for every u, v ∈ C, we have

<e(uv) ≤ 1
4
|u + v|2.

By letting
u := ρ−

〈
Tx, x

〉
A, v :=

〈
Tx, x

〉
A − σ

in the above elementary inequality, we obtain

<e
[(

ρ−
〈

Tx, x
〉

A

)(〈
Tx, x

〉
A − σ

)]
≤ 1

4
|ρ− σ|2. (8)

Making use of the inequalities (7) and (8), we deduce that

‖Tx‖2
A ≤

∣∣∣〈Tx, x
〉

A

∣∣∣2 + 1
4
|ρ− σ|2 (9)

and by taking the supremum over all x ∈ S1
A in (9), we obtain the required result (6).
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Remark 1. Let S ∈ B(H ). We say that S is an A-accretive operator, if

<e
〈
Sx, x

〉
A ≥ 0, for all x ∈H .

Now, let T ∈ BA(H ). If θ ≥ µ > 0 are such that either
(
T†A − µI

)
(θ I − T) is A-accretive

or
(
T†A − µI

)
(θ I − T) ≥A 0, then by (6), we obtain

‖T‖2
A ≤ ω2

A(T) +
1
4
(θ − µ)2,

which gives

‖T‖A ≤
√

ω2
A(T) +

1
4
(θ − µ)2.

As an application of Theorem 1, we state the following result.

Corollary 1. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and ρ, σ ∈ C be such that ρ 6= σ and∥∥∥∥Tix−
ρ + σ

2
x
∥∥∥∥

A
≤ 1

2
|ρ− σ|,

for any x ∈ S1
A and every i ∈ {1, . . . , d}. Then,

‖T ‖2
e,A ≤ d

(
max

k∈{1,...,d}
ω2

A(Tk) +
1
4
|ρ− σ|2

)
. (10)

Proof. Let (ν1, . . . , νd) ∈ Bd. From Theorem 1, we have

‖Ti‖2
A ≤ ω2

A(Ti) +
1
4
|ρ− σ|2

for i ∈ {1, . . . , d}. This gives,

d

∑
i=1
|νi|2‖Ti‖2

A ≤
d

∑
i=1
|νi|2ω2

A(Ti) +
1
4
|ρ− σ|2

d

∑
i=1
|νi|2. (11)

By using the triangle and Cauchy–Schwarz inequalities, we have

1
d

∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
2

A

≤ 1
d

(
d

∑
i=1
‖νiTi‖A

)2

≤
d

∑
i=1
|νi|2‖Ti‖2

A. (12)

Moreover, since

d

∑
i=1
|νi|2ω2

A(Ti) ≤ max
k∈{1,...,d}

ω2
A(Tk)

d

∑
i=1
|νi|2,

then, by applying (11) and (12), we obtain

1
d

∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
2

A

≤ max
k∈{1,...,d}

ω2
A(Tk)

d

∑
i=1
|νi|2 +

1
4
|ρ− σ|2

d

∑
i=1
|νi|2

for all (ν1, . . . , νd) ∈ Bd.
By taking the supremum over all (ν1, . . . , νd) ∈ Bd in the last inequality and then using

the identity in (3), we reach (10) as desired.

An important application of the inequality (9) can be stated as follows.
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Corollary 2. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and ρi, σi ∈ C with ρi 6= σi for i ∈ {1, . . . , d}.
Assume that for every x ∈ S1

A, we have∥∥∥∥Tix−
ρi + σi

2
x
∥∥∥∥

A
≤ 1

2
|ρi − σi|, ∀ i ∈ {1, . . . , d}. (13)

Then,

‖T ‖A ≤

√√√√ω2
A(T ) +

1
4

d

∑
i=1
|ρi − σi|2. (14)

Proof. Let x ∈ S1
A. By applying (9), we obtain

‖Txi‖2
A ≤

∣∣∣〈Tix, x
〉

A

∣∣∣2 + 1
4
|ρi − σi|2

for i ∈ {1, . . . , d}.
By summing over i = 1, . . . , d, we obtain

d

∑
i=1
‖Txi‖2

A ≤
d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2 + 1
4

d

∑
i=1
|ρi − σi|2

Finally, by taking the supremum over x ∈ S1
A, we obtain

‖T ‖2
A ≤ ω2

A(T ) +
1
4

d

∑
i=1
|ρi − σi|2.

This establishes (14).

The following lemma is needed for the sequel.

Lemma 1 ([29] p. 9). Let σ, ρ ∈ C and ζ j ∈ C be such that∣∣∣∣ζ j −
σ + ρ

2

∣∣∣∣ ≤ 1
2
|ρ− σ|

for all j ∈ {1, . . . , d}. Then,

d
d

∑
j=1

∣∣ζ j
∣∣2 − ∣∣∣∣∣ d

∑
j=1

ζ j

∣∣∣∣∣
2

≤ 1
4

d2|ρ− σ|2. (15)

We can now prove the next proposition.

Proposition 1. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and ρ, σ ∈ C with ρ 6= σ. Assume that

ωA

(
Tj −

σ + ρ

2
I
)
≤ 1

2
|ρ− σ| for any j ∈ {1, . . . , d}. (16)

Then,

ω2
A(T ) ≤

1
d

ω2
A

(
d

∑
j=1

Tj

)
+

1
4

d|ρ− σ|2. (17)
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Proof. Assume that (16) is valid. Let x ∈ S1
A and take ζ j =

〈
Tjx, x

〉
A for all j ∈ {1, . . . , d}.

Then, we see that ∣∣∣∣ζ j −
σ + ρ

2

∣∣∣∣ = ∣∣∣∣〈Tjx, x
〉

A −
σ + ρ

2
〈

x, x
〉

A

∣∣∣∣
=

∣∣∣∣〈(Tj −
σ + ρ

2
I
)

x, x
〉

A

∣∣∣∣
≤ sup

x∈S1
A

∣∣∣∣〈(Tj −
σ + ρ

2
I
)

x, x
〉

A

∣∣∣∣
= ωA

(
Tj −

σ + ρ

2

)
≤ 1

2
|ρ− σ|,

for any j ∈ {1, . . . , d}.
By using (15), we obtain

d

∑
j=1

∣∣∣〈Tjx, x
〉

A

∣∣∣2 ≤ 1
d

∣∣∣∣∣〈 d

∑
j=1

Tjx, x
〉

A

∣∣∣∣∣
2

+
1
4

d|ρ− σ|2.

So, by taking the supremum over all x ∈ S1
A, we obtain (17) as desired.

We now have the following result.

Theorem 2. Let T ∈ BA1/2(H ). If ν ∈ C\{0} and r > 0 are such that

‖T − νI‖A ≤ r. (18)

Then,

‖T‖A ≤ ωA(T) +
1
2
· r2

|ν| .

Proof. Let x ∈ S1
A. It follows from (18) that

‖Tx− νx‖A ≤ ‖T − νI‖A ≤ r.

This implies that

‖Tx‖2
A + |ν|2 ≤ 2<e

[
ν
〈

Tx, x
〉

A

]
+ r2 ≤ 2|ν|

∣∣∣〈Tx, x
〉

A

∣∣∣+ r2.

Taking the supremum over x ∈ S1
A in the last inequality, we obtain

‖T‖2
A + |ν|2 ≤ 2ωA(T)|ν|+ r2. (19)

Moreover, it is clear that

2‖T‖A|ν| ≤ ‖T‖
2
A + |ν|2, (20)

thus, by applying (19) and (20), we infer that

2‖T‖A|ν| ≤ 2ωA(T)|ν|+ r2.

So, we immediately obtain the desired result.

The following corollary is now in order.
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Corollary 3. Let T ∈ BA1/2(H ) and α, β ∈ C with α /∈ {−β, β}. Assume that

<e
〈
αx− Tx, Tx− βx

〉
A ≥ 0 ∀ x ∈ S1

A. (21)

Then,

‖T‖A ≤ ωA(T) +
1
4
|α− β|2

|α + β| . (22)

Proof. According to the proof of Theorem 1, we observe that (21) is equivalent to∥∥∥∥Tx− α + β

2
x
∥∥∥∥

A
≤ 1

2
|α− β| for any x ∈ S1

A, (23)

which is, in turn, equivalent to the following operator norm inequality:∥∥∥∥T − α + β

2
I
∥∥∥∥

A
≤ 1

2
|α− β|.

Now, applying Theorem 2 for ν = α+β
2 and r = 1

2 |α− β|, we deduce the desired
result.

Another sufficient condition under which the inequality (22) hold is presented in terms
of A-positive operators and reads as follows.

Corollary 4. Let α, β ∈ C with α /∈ {−β, β} and T ∈ BA(H ). If(
T†A − β̄I

)
(αI − T) ≥A 0,

then

‖T‖A ≤ ωA(T) +
1
4
|α− β|2

|α + β| .

Corollary 5. Suppose that T, ν and r are as in Theorem 2. If, in addition,∣∣∣|ν| −ωA(T)
∣∣∣ ≥ ρ, (24)

for some ρ > 0, then
(0 ≤)‖T‖2

A −ω2
A(T) ≤ r2 − ρ2.

Proof. From the inequality (19), we see that

‖T‖2
A −ω2

A(T) ≤ r2 −ω2
A(T) + 2ωA(T)|ν| − |ν|2

= r2 − (|ν| −ωA(T))
2.

Hence, an application of (24) leads to the desired inequality.

Remark 2. If, in particular, ‖T − νI‖A ≤ r with |ν| = ωA(T), ν ∈ C, then

(0 ≤)‖T‖2
A −ω2

A(T) ≤ r2.

Our next result reads as follows.

Theorem 3. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and αi, βi ∈ C with αi /∈ {−βi, βi} for
i ∈ {1, . . . , d}. If ∥∥∥∥Ti −

αi + βi
2

I
∥∥∥∥

A
≤ 1

2
|αi − βi|, (25)
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for i ∈ {1, . . . , d}, then

‖T ‖e,A ≤
(

d

∑
i=1

ω2
A(Ti)

) 1
2

+
1
4

(
d

∑
i=1

|αi − βi|4

|αi + βi|2

) 1
2

(26)

and

‖T ‖A ≤ ωA(T ) +
1
4

d

∑
i=1
|αi − βi|2(

d

∑
i=1
|αi + βi|2

) 1
2

. (27)

Proof. Using Corollary 3, we have

‖Ti‖A ≤ ωA(Ti) +
1
4
|αi − βi|2

|αi + βi|

for i ∈ {1, . . . , d}.
Let (ν1, . . . , νd) ∈ Bd, multiply by |νi| and sum to obtain

d

∑
i=1
‖νiTi‖A ≤

d

∑
i=1
|νi|ωA(Ti) +

1
4

d

∑
i=1
|νi|
|αi − βi|2

|αi + βi|
. (28)

By the triangle inequality, we have∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
A

≤
d

∑
i=1
‖νiTi‖A,

while by the Cauchy–Schwarz inequality, we obtain

d

∑
i=1
|νi|ωA(Ti) ≤

(
d

∑
i=1
|νi|2

) 1
2
(

d

∑
i=1

ω2
A(Ti)

) 1
2

≤
(

d

∑
i=1

ω2
A(Ti)

) 1
2

and

d

∑
i=1
|νi|
|αi − βi|2

|αi + βi|
≤
(

d

∑
i=1
|νi|2

) 1
2
(

d

∑
i=1

|αi − βi|4

|αi + βi|2

) 1
2

≤
(

d

∑
i=1

|αi − βi|4

|αi + βi|2

) 1
2

.

From (28), we then obtain∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
A

≤
(

d

∑
i=1

ω2
A(Ti)

) 1
2

+
1
4

(
d

∑
i=1

|αi − βi|4

|αi + βi|2

) 1
2

for all (ν1, . . . , νd) ∈ Bd.
By taking the supremum over (ν1, . . . , νd) ∈ Bd and using the representation (3), we

obtain (26).
The inequality (25) is equivalent for x ∈ S1

A to

‖Tix‖2
A − 2<e

[
αi + βi

2
〈

Tix, x
〉

A

]
+

1
4
|αi + βi|2 ≤

1
4
|αi − βi|2
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for i ∈ {1, . . . , d}. Therefore,

‖Tix‖2
A +

1
4
|αi + βi|2 ≤

1
4
|αi − βi|2 + 2<e

[
αi + βi

2
〈

Tix, x
〉

A

]
(29)

≤ 1
4
|αi − βi|2 + |αi + βi|

∣∣∣〈Tix, x
〉

A

∣∣∣
for i ∈ {1, . . . , d}.

If we sum and apply the Cauchy–Schwarz inequality, we then obtain

d

∑
i=1
‖Tix‖2

A +
1
4

d

∑
i=1
|αi + βi|2

≤ 1
4

d

∑
i=1
|αi − βi|2 +

d

∑
i=1
|αi + βi|

∣∣∣〈Tix, x
〉

A

∣∣∣
≤ 1

4

d

∑
i=1
|αi − βi|2 +

(
d

∑
i=1
|αi + βi|2

) 1
2
(

d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2) 1
2

.

On the other hand, an application of the arithmetic-geometric mean inequality shows
that (

d

∑
i=1
‖Tix‖2

A

) 1
2
(

d

∑
i=1
|αi + βi|2

) 1
2

≤
d

∑
i=1
‖Tix‖2

A +
1
4

d

∑
i=1
|αi + βi|2.

Therefore, we deduce that(
d

∑
i=1
‖Tix‖2

A

) 1
2
(

d

∑
i=1
|αi + βi|2

) 1
2

≤ 1
4

d

∑
i=1
|αi − βi|2 +

(
d

∑
i=1
|αi + βi|2

) 1
2
(

d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2) 1
2

.

If we take the supremum over all x ∈ S1
A, we obtain

‖T ‖A

(
d

∑
i=1
|αi + βi|2

) 1
2

≤ 1
4

d

∑
i=1
|αi − βi|2 +

(
d

∑
i=1
|αi + βi|2

) 1
2

ωA(T ),

which gives (27). Hence, the proof is complete.

An immediate application of Theorem 3 is derived in the next corollary.

Corollary 6. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and σ, ρ ∈ C with ρ 6= ±σ. Assume that∥∥∥∥Tj −
σ + ρ

2
I
∥∥∥∥

A
≤ 1

2
|ρ− σ| (30)

for i ∈ {1, . . . , d}. Then,

‖T ‖e,A ≤
(

d

∑
i=1

ω2
A(Ti)

) 1
2

+
1
4

√
d
|ρ− σ|2

|σ + ρ|

and

‖T ‖A ≤ ωA(T ) +
1
4

√
d
|ρ− σ|2

|σ + ρ| .
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Now, we state in the next lemma a reverse of the Cauchy–Schwarz inequality (see for
instance ([29] p. 32) for a more general result).

Lemma 2. Under the same assumptions of Lemma 1, we have

(
d

∑
j=1

∣∣ζ j
∣∣2) 1

2

≤ 1√
d

(∣∣∣∣∣ d

∑
j=1

ζ j

∣∣∣∣∣+ 1
4

d
|ρ− σ|2

|ρ + σ|

)
. (31)

We state our next result as follows.

Theorem 4. Let T = (T1, . . . , Td) ∈ BA1/2(H)d and σ, ρ ∈ C with ρ 6= ±σ. Assume that

ωA

(
Tj −

σ + ρ

2
I
)
≤ 1

2
|ρ− σ| for any j ∈ {1, . . . , d}. (32)

Then,

ωA(T ) ≤
1√
d

ωA

(
d

∑
j=1

Tj

)
+

1
4

√
d
|ρ− σ|2

|ρ + σ| .

Proof. Let x ∈ S1
A and T = (T1, . . . , Td) ∈ BA1/2(H )d with the property (32). By letting

ζ j =
〈

Tjx, x
〉

A and then proceeding as in the proof of Proposition 1, we see that∣∣∣∣ζ j −
σ + ρ

2

∣∣∣∣ ≤ ωA

(
Tj −

σ + ρ

2

)
≤ 1

2
|ρ− σ|,

for any j ∈ {1, . . . , d}. So, by employing (31), we obtain

(
d

∑
j=1

∣∣∣〈Tjx, x
〉

A

∣∣∣2) 1
2

≤ 1√
d

(∣∣∣∣∣ d

∑
j=1

〈
Tjx, x

〉
A

∣∣∣∣∣+ 1
4

d
|ρ− σ|2

|ρ + σ|

)

=
1√
d

(∣∣∣∣∣〈 d

∑
j=1

Tjx, x
〉

A

∣∣∣∣∣+ 1
4

d
|ρ− σ|2

|ρ + σ|

)

for every x ∈ S1
A. By taking the supremum over all x ∈ S1

A in the last inequality, we reach
the desired result.

Remark 3. Since ωA(T ) ≤ ‖T ‖A, then (30) implies (32).

Now, we aim to establish several reverse inequalities for the A-numerical radius of
operators acting on semi-Hilbert spaces in both single and multivariable settings under
some boundedness conditions for the operators. Our first new result in this context may be
stated as follows.

Theorem 5. Let T ∈ BA1/2(H ) be such that AT 6= 0. If ν ∈ C\{0} and r > 0 are such that
|ν| > r and

‖T − νI‖A ≤ r,

then √
1− r2

|ν|2
≤ ωA(T)
‖T‖A

(≤ 1). (33)

Proof. By (19), we have
‖T‖2

A + |ν|2 − r2 ≤ 2|ν|ωA(T).
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Dividing by
√
|ν|2 − r2 > 0, we obtain

‖T‖2
A√

|ν|2 − r2
+

√
|ν|2 − r2 ≤ 2|ν|ωA(T)√

|ν|2 − r2
. (34)

Further, it is easy to verify that

2‖T‖A ≤
‖T‖2

A√
|ν|2 − r2

+

√
|ν|2 − r2.

So, by using (34), we deduce

‖T‖A ≤
ωA(T)|ν|√
|ν|2 − r2

,

which is immediately equivalent to (33).

Remark 4. (1) Squaring the inequality (33), we obtain the following inequality:

(0 ≤)‖T‖2
A −ω2

A(T) ≤
r2

|ν|2
‖T‖2

A.

(2) For every operator T ∈ BA1/2(H ), we have the relation ωA(T) ≥ 1
2‖T‖A (see [23]). Inequality

(33) would produce an improvement of the above classic fact only in the case when

1
2
≤
(

1− r2

|ν|2

) 1
2

,

which is, in turn, equivalent to r
|ν| ≤

√
3

2 .

The next corollary holds.

Corollary 7. Let α, β ∈ C with <e
(
αβ̄
)
> 0. Additionally, let T ∈ BA1/2(H ) be such that

AT 6= 0. Assume that either (21) or (23) holds. Then, we have

2
√
<e
(
αβ̄
)

|α + β| ≤ ωA(T)
‖T‖A

(≤ 1) (35)

and

(0 ≤)‖T‖2
A −ω2

A(T) ≤
∣∣∣∣α− β

α + β

∣∣∣∣2‖T‖2
A.

Proof. If we consider ν = α+β
2 and r = 1

2 |α− β|, then

|ν|2 − r2 =

∣∣∣∣α + β

2

∣∣∣∣2 − ∣∣∣∣α− β

2

∣∣∣∣2 = <e
(
αβ̄
)
> 0.

Now, by applying Theorem 5, we deduce the desired result.

Remark 5. If |α− β| ≤
√

3
2 |α + β| and <e

(
αβ̄
)
> 0, then (35) is a refinement of the inequality

ωA(T) ≥ 1
2‖T‖A.



Axioms 2023, 12, 316 13 of 20

Corollary 8. Let α, β ∈ C with <e
(
αβ̄
)
> 0. Additionally, let T = (T1, . . . , Td) ∈ BA1/2(H )d

be such that the condition ∥∥∥∥Tj −
α + β

2
I
∥∥∥∥

A
≤ 1

2
|α− β| (36)

is true for i ∈ {1, . . . , d}. Then,

‖T ‖e,A ≤
|α + β|

2
√
<e
(
αβ̄
)
(

d

∑
i=1

ω2
A(Ti)

) 1
2

. (37)

Proof. Notice, first, that since (36) holds, then we infer that∥∥∥∥Tix−
α + β

2
x
∥∥∥∥

A
≤ 1

2
|α− β|,

for any x ∈ S1
A and all i ∈ {1, . . . , d}. Therefore, it follows from (35) that

‖Ti‖A ≤
|α + β|

2
√
<e
(
αβ̄
)ωA(Ti)

for i ∈ {1, . . . , d}.
Let (ν1, . . . , νd) ∈ Bd, multiply by |νi| and sum to obtain

d

∑
i=1
‖νiTi‖A ≤

|α + β|

2
√
<e
(
αβ̄
) d

∑
i=1
|νi|ωA(Ti).

Therefore, we see that∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
A

≤
d

∑
i=1
‖νiTi‖A

≤ |α + β|

2
√
<e
(
αβ̄
) d

∑
i=1
|νi|ωA(Ti).

≤ |α + β|

2
√
<e
(
αβ̄
)
(

d

∑
i=1
|νi|2

) 1
2
(

d

∑
i=1

ω2
A(Ti)

) 1
2

.

By taking the supremum over (ν1, . . . , νd) ∈ Bd and using the representation (3), we
obtain (37).

In the next result, we prove under appropriate conditions a new relation connecting
the joint A-seminorms ‖ · ‖A and ωA(·).

Proposition 2. Let αi, βi ∈ C with <e
(
αi β̄i

)
> 0 for all i ∈ {1, . . . , d}. Additionally, let

T = (T1, . . . , Td) ∈ BA1/2(H)d be such that (25) is valid for i ∈ {1, . . . , d}. Then,

‖T ‖A ≤
1
2

(
d

∑
i=1
|αi + βi|2

) 1
2

(
d

∑
i=1
<e
(
αi β̄i

)) 1
2

ωA(T ). (38)
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Proof. From (29), we obtain

‖Tix‖2
A +

1
4
|αi + βi|2 −

1
4
|αi − βi|2 ≤ |αi + βi|

∣∣∣〈Tix, x
〉

A

∣∣∣
for i ∈ {1, . . . , d}. This is equivalent to

‖Tix‖2
A +<e

(
αi β̄i

)
≤ |αi + βi|

∣∣∣〈Tix, x
〉

A

∣∣∣
for i ∈ {1, . . . , d}.

If we sum and then apply the Cauchy–Schwarz inequality, we then obtain

d

∑
i=1
‖Tix‖2

A +
d

∑
i=1
<e
(
αi β̄i

)
≤

d

∑
i=1
|αi + βi|

∣∣∣〈Tix, x
〉

A

∣∣∣
≤
(

d

∑
i=1
|αi + βi|2

) 1
2
(

d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2) 1
2

.

By applying the famous arithmetic–geometric mean inequality, we observe that

2

(
d

∑
i=1
‖Tix‖2

A

) 1
2
(

d

∑
i=1
<e
(
αi β̄i

)) 1
2

≤
d

∑
i=1
‖Tix‖2

A +
d

∑
i=1
<e
(
αi β̄i

)
.

Therefore,

(
d

∑
i=1
‖Tix‖2

A

) 1
2

≤ 1
2

(
d

∑
i=1
|αi + βi|2

) 1
2

(
d

∑
i=1
<e
(
αi β̄i

)) 1
2

(
d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2) 1
2

and by taking the supremum over x ∈ S1
A, we obtain (38).

Remark 6. With the assumptions of Corollary 8, we can prove that

‖T ‖A ≤
1
2
|α + β|√
<e
(
αβ̄
)ωA(T ).

The following lemma plays a fundamental role in the proof of our next proposition.

Lemma 3 ([29] p. 26). If σ, ρ ∈ C and ζ j ∈ C, j ∈ {1, . . . , d} with the property that <e(ρσ̄) > 0
and ∣∣∣∣ζ j −

σ + ρ

2

∣∣∣∣ ≤ 1
2
|ρ− σ|

for each j ∈ {1, . . . , d}, then

d

∑
j=1

∣∣ζ j
∣∣2 ≤ 1

4d
|ρ + σ|2

<e(ρσ̄)

∣∣∣∣∣ d

∑
j=1

ζ j

∣∣∣∣∣
2

. (39)

By proceeding as in the proof of Theorem 4 and using Lemma 3, we state without
proof the following result.
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Proposition 3. Let T = (T1, . . . , Td) ∈ BA1/2(H )d, σ, ρ ∈ C with <e(ρσ̄) > 0. Suppose that
(32) is satisfied. Then,

ωA(T ) ≤
|α + β|

2d
√
<e
(
αβ̄
)ωA

(
d

∑
j=1

Tj

)
.

The following result also holds.

Theorem 6. Let T ∈ BA1/2(H ) and ν ∈ C\{0}, r > 0 with |ν| > r. If

‖T − νI‖A ≤ r, (40)

then

‖T‖2
A ≤ ω2

A(T) +
2r2

|ν|+
√
|ν|2 − r2

ωA(T). (41)

Proof. Let x ∈ S1
A. It follows from (40) that

‖Tx− νx‖A ≤ ‖T − νI‖A ≤ r,

which yields that

‖Tx‖2
A + |ν|2 ≤ 2<e

[
ν
〈

Tx, x
〉

A

]
+ r2. (42)

By using (42), it can be seen that |ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ 6= 0. So, by taking (42) into account, we
obtain

‖Tx‖2
A

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ ≤
2<e

[
ν
〈

Tx, x
〉

A

]
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ +
r2

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ − |ν|∣∣∣〈Tx, x
〉

A

∣∣∣ .
Moreover, we see that

‖Tx‖2
A

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
∣∣∣〈Tx, x

〉
A

∣∣∣
|ν|

≤
2<e

[
ν
〈

Tx, x
〉

A

]
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ +
r2

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
∣∣∣〈Tx, x

〉
A

∣∣∣
|ν| − |ν|∣∣∣〈Tx, x

〉
A

∣∣∣
=

2<e
[
ν
〈

Tx, x
〉

A

]
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ − |ν|2 − r2

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
∣∣∣〈Tx, x

〉
A

∣∣∣
|ν|

=
2<e

[
ν
〈

Tx, x
〉

A

]
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −


√
|ν|2 − r2√
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
√∣∣∣〈Tx, x

〉
A

∣∣∣√
|ν|


2

− 2

√
|ν|2 − r2

|ν| .

Since
<e
[
ν
〈

Tx, x
〉

A

]
≤ |ν|

∣∣∣〈Tx, x
〉

A

∣∣∣
and 

√
|ν|2 − r2√
|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
√∣∣∣〈Tx, x

〉
A

∣∣∣√
|ν|


2

≥ 0,
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then, we deduce that

‖Tx‖2
A

|ν|
∣∣∣〈Tx, x

〉
A

∣∣∣ −
∣∣∣〈Tx, x

〉
A

∣∣∣
|ν| ≤

2
(
|ν| −

√
|ν|2 − r2

)
|ν| ,

which gives the inequality

‖Tx‖2
A ≤

∣∣∣〈Tx, x
〉

A

∣∣∣2 + 2
∣∣∣〈Tx, x

〉
A

∣∣∣(|ν| −√|ν|2 − r2
)

. (43)

By taking the supremum over x ∈ S1
A in (43), we obtain

‖T‖2
A ≤ ω2

A(T) + 2ωA(T)
(
|ν| −

√
|ν|2 − r2

)
. (44)

So, we immediately obtain (41).

By making use of the inequalities (44) and (43), we are ready to establish the next two
corollaries as applications of our previous result.

Corollary 9. Let ρ, σ ∈ C be such that ρ 6= σ and <e(ρσ) ≥ 0. Additionally, let T ∈ BA1/2(H )
be such that either (4) or (5) holds. Then:

‖T‖2
A ≤ ω2

A(T) +
[
|ρ + σ| − 2

√
<e(ρσ)

]
ωA(T). (45)

Proof. Set ν := ρ+σ
2 and r := |ρ−σ|

2 . Clearly, |ν| > r. Moreover, since (5) holds, then so is
(40). So, the desired result follows by applying (44) and then observing that

|ν|2 − r2 =

∣∣∣∣ρ + σ

2

∣∣∣∣2 − ∣∣∣∣ρ− σ

2

∣∣∣∣2 = <e(ρσ). (46)

Remark 7. Assume that T ∈ BA(H ). If θ ≥ µ > 0 are such that either
(
T†A − µI

)
(θ I − T) is

A-accretive or (
T†A − µI

)
(θ I − T) ≥A 0

then, by applying (45), we infer that

‖T‖2
A ≤ ω2

A(T) +
(√

θ −√µ
)2

ωA(T).

Corollary 10. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and ρi, σi ∈ C with ρi 6= σi, <e(ρiσi) ≥ 0
for i ∈ {1, . . . , d}. Assume that ∥∥∥∥Ti −

ρi + σi
2

I
∥∥∥∥

A
≤ 1

2
|ρi − σi|, (47)

for all i ∈ {1, . . . , d}. Then,

‖T ‖2
A ≤ ω2

A(T )
[

d

∑
i=1

(
|ρi + σi| − 2

√
<e(ρiσi)

)2
] 1

2

ωA(T ).
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Proof. Let x ∈ S1
A. Set νi := ρi+σi

2 and ri =
|ρi−σi |

2 for all i ∈ {1, . . . , d}. Clearly, we have
|νi| > ri and ‖Ti − νi I‖A ≤ ri for every i. Thus, an application of (43) shows that

‖Tix‖2
A ≤

∣∣∣〈Tix, x
〉

A

∣∣∣2 + 2
∣∣∣〈Tix, x

〉
A

∣∣∣(|νi| −
√
|νi|2 − r2

i

)
.

This yields, through (46), that

‖Tix‖2
A ≤

∣∣∣〈Tix, x
〉

A

∣∣∣2 +(|ρi + σi| − 2
√
<e(ρiσi)

)∣∣∣〈Tix, x
〉

A

∣∣∣
for i ∈ {1, . . . , d}.

If we sum and then apply the Cauchy–Schwarz inequality, we then obtain

d

∑
i=1
‖Tix‖2

A

≤
d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2 + d

∑
i=1

(
|ρi + σi| − 2

√
<e(ρiσi)

)∣∣∣〈Tix, x
〉

A

∣∣∣
≤

d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2 + [ d

∑
i=1

(
|ρi + σi| − 2

√
<e(ρiσi)

)2
] 1

2
(

d

∑
i=1

∣∣∣〈Tix, x
〉

A

∣∣∣2) 1
2

.

By taking the supremum over this inequality, we derive the desired result.

Another application of the inequality (45) provides an upper bound for the Euclidean op-
erator A-seminorm of d-tuples of operators in BA1/2(H )d and stated in the next proposition.

Proposition 4. Let T = (T1, . . . , Td) ∈ BA1/2(H )d. Let also ρ, σ ∈ C with ρ 6= σ and
<e(ρσ) ≥ 0. Suppose that ∥∥∥∥Tix−

ρ + σ

2
x
∥∥∥∥

A
≤ 1

2
|ρ− σ|, (48)

for any x ∈ S1
A and all i ∈ {1, . . . , d}. Then,

‖T ‖2
e,A ≤ d max

k∈{1,...,d}
ωA(Tk)

{
max

k∈{1,...,d}
ωA(Tk) +

[
|ρ + σ| − 2

√
<e(ρσ)

]}
.

Proof. From (45), we see that

‖Ti‖2
A ≤ ω2

A(Ti) +

[
|ρ + σ| − 2

√
<e(ρσ)

]
ωA(Ti)

for i ∈ {1, . . . , d}.
Let (ν1, . . . , νd) ∈ Bd, multiply by |νi|2 and sum to obtain

d

∑
i=1
|νi|2‖Ti‖2

A ≤
d

∑
i=1
|νi|2ω2

A(Ti) +

[
|ρ + σ| − 2

√
<e(ρσ)

] d

∑
i=1
|νi|2ωA(Ti)

≤
(

d

∑
i=1
|νi|2

)
max

k∈{1,...,d}
ω2

A(Tk)

+

(
d

∑
i=1
|νi|2

)
max

k∈{1,...,d}
ωA(Tk)

[
|ρ + σ| − 2

√
<e(ρσ)

]
≤ max

k∈{1,...,d}
ω2

A(Tk) +

[
|ρ + σ| − 2

√
<e(ρσ)

]
max

k∈{1,...,d}
ωA(Tk).
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Moreover, since

1
d

∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
2

A

≤
d

∑
i=1
|νi|2‖Ti‖2

A,

hence

1
d

∥∥∥∥∥ d

∑
i=1

νiTi

∥∥∥∥∥
2

A

≤ max
k∈{1,...,d}

ω2
A(Tk) +

[
|ρ + σ| − 2

√
<e(ρσ)

]
max

k∈{1,...,d}
ωA(Tk).

By taking the supremum over (ν1, . . . , νd) ∈ Bd and using the representation (3), we
obtain the desired result.

The next lemma plays a crucial role in establishing our final result in this paper.

Lemma 4 ([30]). If σ, ρ, ζ j ∈ C are such that <e(ρσ̄) > 0 and∣∣∣∣ζ j −
σ + ρ

2

∣∣∣∣ ≤ 1
2
|ρ− σ|

for each j ∈ {1, . . . , d}, then we have

d

∑
j=1

∣∣ζ j
∣∣2 ≤ (1

d

∣∣∣∣∣ d

∑
j=1

ζ j

∣∣∣∣∣+ |ρ + σ| − 2
√
<e(ρσ̄)

)∣∣∣∣∣ d

∑
j=1

ζ j

∣∣∣∣∣.
Now, we are ready to state our final proposition.

Proposition 5. Let T = (T1, . . . , Td) ∈ BA1/2(H )d and let ρ, σ ∈ C be such that ρ 6=
σ,<e(ρσ̄) > 0. Assume that the condition (16) is valid. Then,

ω2
A(T ) ≤

[
1
d

ωA

(
d

∑
j=1

Tj

)
+ |ρ + σ| − 2

√
<e(ρσ̄)

]
ωA

(
d

∑
j=1

Tj

)
.

Proof. The proof follows by proceeding as in the proof of Proposition 2 and then taking
Lemma 4 into consideration.

3. Conclusions

In this paper, we established several inequalities involving the generalized Euclidean
operator radius of d-tuples of A-bounded linear operators acting on a complex Hilbert
space H . The obtained bounds lead to the special case of the classical A-numerical
radius of semi-Hilbert space operators. We proved also some estimates related to the
Euclidean operator A-seminorm of d-tuples of A-bounded operators. In addition, we
stated, under appropriate conditions, several reverse inequalities for the A-numerical
radius in single and multivariable setting.

These inequalities can be further utilized to provide reverse triangle inequalities
for the operator A-seminorm and A-numerical radius of semi-Hilbert space operators
that play an important role in the geometrical structure of the A-inner product space
under consideration.

Additionally, the techniques and ideas of this article can be useful for future inves-
tigations in this area of research. In future papers, we aim to investigate the connections
between the joint A-numerical radius and joint operator A-seminorm of some special
classes of multivariable operators such that the class of jointly A-hyponormal operators in
semi-Hilbert spaces.
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