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Abstract: Making use of uniformly minimum-variance unbiased estimators for the parameters of
two-parameter exponential distributions and the distribution of pivotal quantities, we propose one-
stage multiple comparison procedures for k mean lifetimes with the average under heteroscedasticity.
The multiple comparison procedures include one-sided and two-sided confidence intervals. These
intervals can be applied to identify which treatment’s mean lifetime is better than the average or
worse than the average in terms of the mean lifetimes of all treatments. Critical values are obtained
in order to assure users that the given confidence coefficient has been reached; they are organized in
table format for practical and convenient use. An example is provided to demonstrate the proposed
techniques, wherein the mean survival times of four different lung cancer categories are compared
with the average.

Keywords: one-stage procedure; simulation; ranking and selection: multiple comparison procedures
with the average; mean lifetimes

1. Introduction

Bechhofer [1] and Gupta [2] are recognized as trailblazers in the application of the
normal distribution model in the field of ranking and selection. In many cases of reliability
analysis and lifetime testing, the lifetime of products does not follow a normal distribution.
In this research, we focus on exponential distribution since it is one of the most frequently
used lifetime distributions. Please see Lawless [3], Johnson et al. [4], Bain and Engelhardt [5],
Lawless and Singhal [6], and Balakrishnan [7] for various applications of the exponential
distribution, which is widely utilized for the purpose of measuring lifetime distribution.
Balakrishnan and Joshi [8] proposed the product moments of order statistics from the
doubly truncated exponential distribution. Balakrishnan and Sandhu [9] investigated the
best linear unbiased and maximum likelihood estimators for the parameters of exponential
distributions under general progressive type-II censored samples. Khan et al. [10] investi-
gated the characterization of exponential distribution through the normalized spacing of
generalized order statistics. In this paper, we examine k (≥ 2) independent populations
π1, . . . , πk that conform to exponential distributions, represented by the notation E(θi, σi),
i = 1, . . . , k, where θ1, . . . , θk are unknown location parameters and σ1, . . . , σk are unknown
and possibly unequal scale parameters. Under homoscedasticity (with k equal scale pa-
rameters), i.e., σ1 = . . . = σk = σ, Ng et al. [11] compared several location parameters with
the control population by proposing multiple comparison procedures. Lam and Ng [12]
developed two-stage multiple comparison methods with a control for location parameters
when k scale parameters are unknown and there is a possibility of heteroscedasticity or
inequality among them. The two-stage procedures are design-oriented and the sample size
for the second stage is determined to attain the prespecified confidence length. Despite the
potential benefits of the two-stage multiple comparison methods with a control for location
parameters when dealing with unknown or unequal scale parameters, the increased sample
size needed during the second stage may be large and therefore make the second stage
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impractical in certain circumstances. Such a situation may arise due to budget constraints,
limitations on available resources, or other factors that prevent the allocation of sufficient
samples for the second stage of the experiment. To remedy this problem, Wu et al. [13]
introduced an alternative solution to this issue by proposing data-analysis-based one-stage
multiple comparison methods for comparing k − 1 exponential location parameters with
a control. Maurya [14] suggested a one-stage approach for comparing multiple exponen-
tial location parameters against multiple controls in the presence of heteroscedasticity.
Maurya [15] proposed another one-stage multiple comparison procedure with a control
under heteroscedasticity. In life testing experiments, it is crucial to compare not only
k location parameters but also the mean lifetimes of k treatments, which hold significant
importance. Therefore, Wu [16] proposed multiple comparison procedures to compare
the mean lifetimes of k treatments with the control. Under double censoring, Wu [17]
devised procedures for multiple comparisons with a control in terms of mean lifetimes
under double censoring. In the context of mean lifetimes, Wu [18] introduced procedures
for multiple comparisons involving multiple controls.

When the control population is not specified or not available, it is very important to
compare the mean lifetimes of k treatments with their average in order to evaluate the
ranking of k treatments. To compare k exponential location parameters with the average
under heteroscedasticity, Wu [19] presented one-stage multiple comparison procedures.

The objective of our research paper is to present one-stage procedures for multiple
comparisons, wherein we compare the mean lifetimes of k treatments with their average.
To the best of the author’s knowledge, no previous research on this particular topic has
been conducted. During dose–response experiments, the mean effective duration of k
drugs can be compared to the average. In reliability studies, the mean lifetimes of products
manufactured by k assembly lines or production processes can be compared to the average.
Section 2 of our paper outlines the procedures we propose for comparing k mean lifetimes
with their average, utilizing Lam’s [12,20] technique. We have included a table of critical
values for the convenience of users who may wish to apply the proposed procedures in
practice. In Section 3, we employ the survival data of patients with inoperable lung cancer
as an example to demonstrate the proposed procedures for multiple comparisons with
the average, focusing on exponential mean lifetimes under heteroscedasticity. Finally, the
final section of our paper is dedicated to summarizing the conclusions we have drawn
throughout our research.

2. One-Stage Multiple Comparisons with the Average for Exponential Mean Lifetimes
of k Treatments

Refer to the ith population πi following the exponential distribution denoted by
E(θi, σi), the mean lifetime is regarded as µi = θi + σi for the ith population, i = 1, . . . , k.
Take a one-stage random sample Xi1, . . . , Xim of size m (≥ 2) from the ith population. Let
Yi = min(Xi1, . . . , Xim) be the smallest order statistic and Si = ∑m

j=1 (Xij −Yi)/(m− 1).
Then Yi and Si are the uniformly minimum-variance unbiased estimators (UMVUEs) of θi
and σi, respectively. Furthermore, Yi + Si is the UMVUE of the mean lifetime µi = θi + σi
for the ith population, i = 1, . . . , k.

We define µ =
k
∑

i=1
µi/k as the average of k treatment mean lifetimes. We develop the one-

sided and two-sided confidence intervals for the difference between the ith mean lifetime with
the average denoted by µi − µ, i = 1, . . . , k. It appears that Yi −Y + Si − S is the UMVUE of

µi − µ, i = 1, . . . , k, where Y =
k
∑

i=1
Yi/k and S =

k
∑

i=1
Si/k. The pivotal quantities for building

our confidence intervals are given by Gi =
−mSi/σi+m−m(Yi−θi)/σi

Si/σi
, i = 1, . . . , k. Making use of

the UMVUE of µi − µ and these pivotal quantities, the one-sided and two-sided confidence
intervals for µi − µ, i = 1, . . . , k are proposed in the following theorem:
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Theorem 1. For a given confidence coefficient 0 < P∗ < 1, letting c∗i = max

(
Si
m ,

k
∑
l 6=i

Sl
m(k−1)

)
,

we have

(a) P(µi − µ ≤ Yi −Y + Si − S + c∗i s∗U , i = 1, . . . , k) ≥ P∗, where s∗U is the 100Pth percentile

of the distribution of max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k
)

multiplied by (k − 1)/k, with

W̃i = minl 6=iGl .
Thus, the upper confidence bound for µi − µ with confidence coefficient P∗ is
(Yi −Y + Si − S + c∗i s∗U), i = 1, . . . , k.

(b) P(µi − µ ≥ Yi −Y + Si − S− c∗i s∗L, i = 1, . . . , k) ≥ P∗, where s∗L is the 100Pth percentile
of the distribution of max( Wi,−Gi, Wi − Gi, i = 1, . . . , k) multiplied by (k − 1)/k, with
Wi = maxl 6=iGl .
Thus, the lower confidence bound for µi − µ with confidence coefficient P∗ is
(Yi −Y + Si − S− c∗i s∗L), i = 1, . . . , k.

(c) P(Yi − Y + Si − S− c∗i s∗t ≤ µi − µ ≤ Yi − Y + Si − S + c∗i s∗t , i = 1, . . . , k) ≥ P∗ where
s∗t is the 100Pth percentile of the distribution of max(|Gi|, Wi, Wi − Gi, −W̃i, Gi − W̃i,
i = 1, . . . , k) multiplied by (k − 1)/k with W̃i = minl 6=iGl and Wi = maxl 6=iGl .
Thus, (Yi −Y + Si − S± c∗i s∗t ) is the two-sided simultaneous confidence interval for µi − µ
with confidence coefficient P∗,i = 1, . . . , k.

In order to prove Theorem 1, it is necessary to utilize the Lemma 1 provided by
Lam [12,20].

Lemma 1. Suppose that X and Y are two random variables, and that a and b are two positive
constants, then we have [aX ≥ bY− dmax(a, b)] ⊇ [X ≥ −d, Y ≤ d and X ≥ Y− d].

Proof of Theorem 1 : For (a), we have

P
(
µi − µ ≤ Yi −Y + Si − S + c∗i s∗U , i = 1, . . . , k

)
= P

(
θi + σi − θ − σ ≤ Yi + Si −Y− S + c∗i s∗U , i = 1, . . . , k

)
= P

(
k−1

k (−Si + σi + θi −Yi) ≤
k
∑
l 6=i

(−Sl+σl+θl−Yl)
k + c∗i s∗U , i = 1, . . . , k

)

= P

(
Si
m

σi
Si

m(−Si+σi+θi−Yi)
σi

≤
k
∑
l 6=i

Sl
m

σl
Sl

m(−Sl+σl+θl−Yl)
(k−1)σl

+ k
k−1 c∗i s∗U , i = 1, . . . , k

)

= P

(
Si
m Gi ≤

k
∑
l 6=i

Sl
m

Gl
(k−1) +

k
k−1 c∗i s∗U , i = 1, . . . , k

)

= P

(
k
∑
l 6=i

Sl
m

Gl
(k−1) ≥

Si
m Gi − k

k−1 c∗i s∗U , i = 1, . . . , k

)

≥ P

(
k
∑
l 6=i

Sl
m(k−1)W̃i ≥ Si

m Gi − k
k−1 max

(
Si
m ,

k
∑
l 6=i

Sl
m(k−1)

)
s∗U , i = 1, . . . , k

)

where W̃i = minl 6=iGl

= ES1,...,Sk P

(
k
∑
l 6=i

Sl
m(k−1)W̃i ≥ Si

m Gi − k
k−1 max

(
Si
m ,

k
∑
l 6=i

Sl
m(k−1)

)
s∗U , i = 1, . . . , k

)
≥ P

(
W̃i ≥ − k

k−1 s∗U , Gi ≤ k
k−1 s∗U , W̃i − Gi ≥ − k

k−1 s∗U , i = 1, . . . , k
)
(using Lemma 1)

= P
(
−W̃i ≤ k

k−1 s∗U , Gi ≤ k
k−1 s∗U , Gi − W̃i ≤ k

k−1 s∗U , i = 1, . . . , k
)

= P
(

max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k) ≤ k
k−1 s∗U

)
= P∗

Solving the above equation, we see that ks∗U/(k − 1) is the 100Pth percentile of the dis-
tribution of max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k). Thus, s∗U is the 100Pth percentile of the
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distribution of max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k) multiplied by (k− 1)/k and the proof
is thus complete.
For (b), we have

P
(
µi − µ ≥ Yi −Y + Si − S− c∗i s∗L, i = 1, . . . , k

)
= P

(
θi + σi − θ − σ ≥ Yi + Si −Y− S− c∗i s∗L, i = 1, . . . , k

)
= P

(
k−1

k (−Si + σi + θi −Yi) ≥
k
∑
l 6=i

(−Sl+σl+θl−Yl)
k − c∗i s∗L, i = 1, . . . , k

)

= P

(
Si
m

σi
Si

m(−Si+σi+θi−Yi)
σi

≥
k
∑
l 6=i

Sl
m

σl
Sl

m(−Sl+σl+θl−Yl)
(k−1)σl

− k
k−1 c∗i s∗L, i = 1, . . . , k

)

= P

(
Si
m Gi ≥

k
∑
l 6=i

Sl
m

Gl
(k−1) −

k
k−1 c∗i s∗L, i = 1, . . . , k

)

≥ P

(
Si
m Gi ≥

k
∑
l 6=i

Sl
m(k−1)Wi − k

k−1 max

(
Si
m ,

k
∑
l 6=i

Sl
m(k−1)

)
s∗L, i = 1, . . . , k

)

where Wi = maxl 6=iGl

= ES1,...,Sk P

(
Si
m Gi ≥

k
∑
l 6=i

Sl
m(k−1)Wi − k

k−1 max

(
Si
m ,

k
∑
l 6=i

Sl
m(k−1)

)
s∗L, i = 1, . . . , k

)
≥ P

(
Gi ≥ − k

k−1 s∗L, Wi ≤ k
k−1 s∗L, Gi −Wi ≥ − k

k−1 s∗L, i = 1, . . . , k
)
(By Lemma 2)

= P
(

max(Wi,−Gi, Wi − Gi, i = 1, . . . , k) ≤ k
k−1 s∗L

)
= P∗

Solving the above equation, we see that ks∗L/(k − 1) is the 100Pth percentile of the dis-
tribution of max(Wi,−Gi, Wi − Gi, i = 1, . . . , k). Thus, s∗L is the 100Pth percentile of the
distribution of max(Wi,−Gi, Wi − Gi, i = 1, . . . , k) multiplied by (k− 1)/k and the proof is
thus complete.
For (c), combining (a) and (b), we have

P
(
Yi −Y + Si − S− c∗i s∗t ≤ µi − µ ≤ Yi −Y + Si − S + c∗i s∗t , i = 1, . . . , k

)
= ES1,...,Sk P

(
−W̃i ≤ k

k−1 s∗t , Gi ≤ k
k−1 s∗t , Gi − W̃i ≤ k

k−1 s∗t ∩

Gi ≥ − k
k−1 s∗t , Wi ≤ k

k−1 s∗t , Gi −Wi ≥ − k
k−1 s∗t , i = 1, . . . , k

)
≥ P

(
max(

∣∣∣Gi

∣∣∣, Wi, Wi − Gi,−W̃i, Gi − W̃i, i = 1, . . . , k) ≤ k
k−1 s∗t

)
= P∗

Solving the above equation, we see that ks∗t /(k − 1) is the 100Pth percentile of the dis-

tribution of max(
∣∣∣Gi

∣∣∣, Wi, Wi − Gi,−W̃i, Gi − W̃i, i = 1, . . . , k) . Thus, s∗t is the 100Pth per-

centile of the distribution of max(
∣∣∣Gi

∣∣∣, Wi, Wi − Gi,−W̃i, Gi − W̃i, i = 1, . . . , k) multiplied
by (k− 1)/k and the proof is thus complete. �

To determine the distribution of Gi, we require three distributional results from Rous-
sas [21] as follows:

(D1) 2(m− 1)Si/σi = Qi, i = 1, . . . , k follows a chi-squared distribution with 2m − 2 df
denoted by χ2

2m−2.
(D2) m(Yi − θi)/σi = Ei, i = 1, . . . , k follows a standard exponential distribution denoted
by Exp(1).
(D3) Ei and Qi are two independent variables.

The distribution function of Gi is presented in the following theorem:

Theorem 2. The cumulative distribution function (cdf) of Gi is FGi(x) =e−m
(

ν
ν−2(x+m)

)m−1
and

the probability density function (pdf) of Gi is fGi(x) = 2(m−1)
ν

(
e(ν−2(x+m))

ν

)−m
.
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Proof of Theorem 2: Utilizing the above distributional results D1–D3, we have

Gi =
−mSi/σi+m−m(Yi−θi)/σi

Si/σi
= −m(2m−2)Si/σi+(2 m− 2)(m−m(Yi−θi)/σi)

2(m−1)Si/σi

= −m + ν(m−Ei)
Qi

,

where Qi~χ2
2m−2, Ei~Exp(1) and ν = 2m − 2.

We can find the cumulative distribution function of Gi as

FGi(x) = P(Gi ≤ x) = P(−m + ν(m−Ei)
Qi

≤ x) = EP(−m + ν(m−Ei)
Qi

≤ x|Qi = y)
= EP(−(x + m)y/ν + m ≤ Ei|Qi = y)
= E(exp((x + m)y/ν−m)|Qi = y)

= e−m∫ ∞
0

exp(−
(

ν/2−(x+m)
ν )y)ym−2

Γ(m−1)2m−1 dy

= e−m∫ ∞
0

exp(−
(

ν−2(x+m)
2ν )y)ym−2

Γ(m−1)2m−1 dy

= e−m
(

2ν
ν−2(x+m)

)m−1
/2m−1

= e−m
(

ν
ν−2(x+m)

)m−1

Taking the derivative of FGi(x), we can find the probability density function (pdf) of

Gi given by fGi(x) = 2(m−1)
ν

(
e(ν−2(x+m))

ν

)−m
. The proof is thus complete. �

Using the probability integral transformation method, set FGi(x) =e−m
(

ν−2(x+m)
ν

)−m+1

= Ui, where Ui~U(0,1). Solving this equation for x, we have Gi =
(

ν− 2m− ν(emUi)
1

1−m
)

/2
coming from the distribution of Gi. The random variable Gi can be generated using the
equation above.

In order to find the critical values s∗U, s∗L and s∗t , we need to find the distributions of
max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k), max(Wi,−Gi, Wi − Gi, i = 1, . . . , k) and max(|Gi|,
Wi, Wi − Gi,−W̃i, Gi − W̃i, i = 1, . . . , k). Since their distributions are very difficult to find,
their empirical percentiles are found using the Monte Carlo method. The algorithm used to
obtain the critical values s∗U , s∗L and s∗t with confidence coefficient P* is developed as follows:

Step 1: We need to generate k independent random variables Ui~uni f orm(0, 1),

i = 1, . . . , k and then obtain k independent random variables Gi =
(

ν− 2m− ν(emUi)
1

1−m
)

/2,
i = 1, . . . , k.

Step 2: From Theorem 1, the critical values s∗U , s∗L and s∗t can be obtained by finding the
100Pth empirical percentiles of max(−W̃i, Gi, Gi − W̃i, i = 1, . . . , k), max(Wi, −Gi, Wi − Gi,
i = 1, . . . , k) and max(

∣∣∣Gi

∣∣∣, Wi, Wi − Gi, −W̃i, Gi − W̃i, i = 1, . . . , k) , respectively, where

W̃i = minl 6=iGl and Wi = maxl 6=iGl .
The critical values s∗U , s∗L and s∗t for k = 3, 4, 5, 6, 7, 8, 9, m = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,

20, 25, 30 and P* = 0.75, 0.80, and 0.85 are listed in Table A1. The critical values for P*=0.875,
0.90, and 0.925 are listed in Table A2. The critical values for P* = 0.95 and 0.975 are listed in
Table A3. The software we use to find the critical values is Fortran 90 and the programming
manual refers to Mourik [22]. In Tables A1–A3, it can be seen that the approximate critical
values s∗U , s∗L, and s∗t are increasing while P∗ is increasing for any given k and m or while
k is increasing for any given P∗ and m. Let L1 be the length of the two-sided confidence

intervals for µi − µ, and we have the average length L1 = 2cs∗t , where c =
k
∑

i=1
c∗t /k. From

the equation of L1 = 2cs∗t , it is evident that, as P∗ increases, the value of s∗t increases and
then the confidence length of L1 increases for any given k and m. Furthermore, we can also
see that, as the number of populations k increases, the value of s∗t increases, and then the
confidence length of L1 increases for any given m and P∗.
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3. A Biometrical Example

Referring to Maurya et al. [14], data comprising survival days of patients with four
categories of inoperable lung cancer are utilized to illustrate our proposed multiple com-
parison procedures with the average, as proposed in Theorem 1. The four histological
categories of tumor are squamous, small, adeno, and large. Table 1 presents the data on
survival days of nine patients for each type of lung cancer.

Table 1. The survival times of four categories of lung cancer.

Category m Survival Times

1 Squamous 9 72 10 81 110 100 42 8 25 11

2 Small 9 30 13 23 16 21 18 20 27 31

3 Adeno 9 8 92 35 117 132 12 162 3 95

4 Large 9 177 162 553 200 156 182 143 105 103

According to Maurya et al. [15], the data in the four categories are obtained from
exponential distributions with two parameters. To compare the mean survival days for
the ith category of lung cancer with the average survival days, the required statistics and
critical values of s∗t for P* = 0.90, 0.95, and 0.975 are summarized in Table 2.

Table 2. The required statistics and critical values.

Statistics Category 1 Category 2 Category 3 Category 4

Yi 8 13 3 103
Si 48.375 10.250 78.265 106.750
c∗i 7.232 8.644 8.696 11.861

Yi −Y + Si − S −36.285 −69.410 −11.395 117.090
P* s∗U= s∗L= s∗t

0.900 9.77
0.950 11.78
0.975 14.03

Table 3 displays the upper confidence bounds and the lower confidence bounds for
µi − µ, i = 1, . . . , 4 under confidence coefficients of 0.90, 0.95, and 0.975, which are obtained
by utilizing (a) and (b) of Theorem 1. For all confidence bounds, only the lower bound for
the mean survival time of the fourth category of inoperable lung cancer compared with
the average is positive under confidence coefficient 0.90. Hence, we can infer that, for
the confidence coefficient of 0.90, only this specific type of inoperable lung cancer has a
mean survival time that surpasses the average. The results indicate that the mean survival
time of this category of lung cancer is better than the average. The other three categories
do not differ greatly from the average. Under confidence coefficients 0.95 and 0.975, all
categories of inoperable lung cancer have mean survival times that do not differ greatly
from the average.

Table 3. The 90%, 95% and 97.5% upper confidence bounds and lower confidence bounds for the
mean survival times of four categories of lung cancer compared with the average.

Parameter
(Yi−

¯
Y+Si−

¯
S+c*

i s*
U),(Yi−

¯
Y+Si−

¯
S−c*

i s*
L)

90% 95% 97.5%

1. µ1 − µ (34.372), (−106.942) (48.908), (−121.478) (65.180), (−137.750)
2. µ2 − µ (15.043), (−153.863) (32.417), (−171.237) (51.87), (−190.686)
3. µ3 − µ (73.566), (−96.356) (91.045), (−113.835) (110.61), (−133.40)
4. µ4 − µ (232.973), (1.207) (256.81), (−22.634) (283.50), (−49.321)
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Table 4 displays the two-sided simultaneous confidence intervals for µi−µ, i = 1, . . . , 4
under confidence coefficients of 0.90, 0.95, and 0.975, which are obtained by utilizing (c) of
Theorem 1. For confidence coefficient 0.90, we can infer that only the fourth category of
lung cancer has a longer mean survival time than the average since both limits of the related
simultaneous two-sided confidence intervals are positive. For confidence coefficients 0.95
and 0.975, no categories have a mean survival time significantly different from the average.

Table 4. The 90%, 95% and 97.5% two-sided confidence intervals for the mean survival times of four
categories of lung cancer compared with the average.

Parameter
(Yi−

¯
Y+Si−

¯
S−c*

i s*
t , Yi−

¯
Y+Si−

¯
S+c*

i s*
t)

90% 95% 97.5%

1. µ1 − µ (−106.942, 34.372) (−121.478, 48.908) (−137.750, 65.180)
2. µ2 − µ (−153.863, 15.043) (−171.237, 32.417) (−190.686, 51.87)
3. µ3 − µ (−96.356, 73.566) (−113.835, 91.045) (−133.40, 110.61)
4. µ4 − µ (1.207, 232.973) (−22.634, 256.81) (−49.321, 283.50)

4. Conclusions

In many practical applications, researchers would like to compare the k mean lifetimes
with the average, especially when the control population is not identified or is unavailable.
The shortcoming of two-stage multiple comparison procedures is that the additional sample
required at the second stage can be so large that it is unavailable due to lack of budget
for experimental work or other factors relevant to the experiment. In such cases, one-
stage procedures should be considered as an alternative. We have proposed one-stage
one-sided and two-sided multiple comparison procedures for comparing k treatments
with the average. These procedures can be employed for multiple comparisons of the k
treatment mean lifetimes with the average for exponential distribution models. The critical
values are derived and are then tabulated using the Monte Carlo simulation method to
allow practical and convenient use. In Tables A1–A3, we can see that, as the number of
populations k increases, the value of the critical values increases; the confidence length then
increases for any given m and P*. As a final step, an example from biometrics is employed
to illustrate our proposed multiple comparison procedures that utilize the mean lifetimes
for comparisons with the average.
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Appendix A

Table A1. The critical values of s∗U = s∗L = s∗t for P* = 0.75, 0.80, and 0.85.

k

P* m 3 4 5 6 7 8 9

0.75 2 8.92 13.82 18.69 23.74 28.85 33.40 38.26
3 5.11 7.22 9.02 10.69 12.14 13.46 14.67
4 4.68 6.42 7.86 9.07 10.18 11.10 11.95
5 4.66 6.31 7.63 8.76 9.68 10.51 11.20
6 4.80 6.41 7.72 8.78 9.69 10.45 11.20
7 4.96 6.62 7.91 8.97 9.84 10.61 11.25
8 5.15 6.83 8.11 9.22 10.05 10.85 11.47
9 5.32 7.04 8.35 9.46 10.38 11.13 11.75
10 5.50 7.30 8.64 9.72 10.66 11.42 12.08
15 6.42 8.44 9.96 11.16 12.16 13.00 13.71
20 7.23 9.46 11.15 12.49 13.58 14.46 15.30
25 7.99 10.42 12.25 13.70 14.87 15.88 16.77
30 8.66 11.30 13.30 14.83 16.12 17.19 18.11

0.80 2 11.46 17.68 24.24 30.26 36.81 43.17 49.02
3 5.99 8.46 10.46 12.27 13.84 15.50 16.87
4 5.34 7.24 8.80 10.13 11.36 12.41 13.26
5 5.26 7.05 8.45 9.63 10.66 11.58 12.32
6 5.36 7.09 8.53 9.58 10.51 11.34 12.06
7 5.55 7.26 8.64 9.75 10.66 11.44 12.22
8 5.68 7.48 8.85 9.96 10.86 11.67 12.37
9 5.86 7.68 9.07 10.24 11.16 11.94 12.67
10 6.06 7.92 9.35 10.49 11.42 12.23 12.90
15 7.01 9.12 10.70 11.93 12.97 13.78 14.52
20 7.84 10.22 11.94 13.31 14.41 15.32 16.10
25 8.68 11.23 13.08 14.51 15.73 16.75 17.67
30 9.41 12.11 14.14 15.69 16.99 18.06 19.04

0.85 2 15.71 24.43 32.57 41.18 50.24 59.25 66.50
3 7.36 10.12 12.59 14.59 16.42 18.22 19.88
4 6.26 8.47 10.15 11.64 12.93 14.04 15.15
5 6.07 8.05 9.55 10.85 11.94 12.94 13.79
6 6.11 8.07 9.48 10.73 11.73 12.58 13.40
7 6.26 8.15 9.61 10.72 11.73 12.60 13.34
8 6.42 8.29 9.76 10.96 11.89 12.78 13.50
9 6.59 8.51 10.02 11.14 12.19 12.99 13.67
10 6.78 8.78 10.23 11.49 12.41 13.21 14.01
15 7.76 9.95 11.58 12.86 13.94 14.84 15.57
20 8.66 11.05 12.85 14.26 15.38 16.33 17.24
25 9.53 12.12 14.12 15.57 16.83 17.83 18.72
30 10.28 13.11 15.19 16.76 18.07 19.22 20.17
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Table A2. The critical values of s∗U = s∗L = s∗t for P* = 0.875, 0.90, and 0.925.

k

P* m 3 4 5 6 7 8 9

0.875 2 19.47 29.50 40.22 49.24 59.63 70.68 80.54
3 8.34 11.39 13.95 16.26 18.38 20.52 21.96
4 6.91 9.20 11.13 12.68 14.04 15.25 16.43
5 6.63 8.71 10.26 11.63 12.80 13.78 14.67
6 6.64 8.57 10.18 11.42 12.45 13.36 14.22
7 6.70 8.70 10.21 11.43 12.48 13.31 14.15
8 6.91 8.88 10.35 11.59 12.60 13.43 14.17
9 7.04 8.99 10.59 11.80 12.76 13.69 14.39
10 7.25 9.25 10.86 12.01 13.02 13.94 14.61
15 8.18 10.47 12.14 13.46 14.55 15.45 16.23
20 9.13 11.64 13.42 14.87 16.04 17.05 17.80
25 10.05 12.67 14.68 16.23 17.49 18.48 19.35
30 10.83 13.71 15.83 17.47 18.81 19.92 20.88

0.90 2 24.30 37.05 48.67 62.96 75.91 88.74 100.46
3 9.43 12.91 15.90 18.55 20.81 23.05 24.94
4 7.68 10.25 12.28 13.95 15.40 16.60 17.86
5 7.30 9.52 11.25 12.66 13.94 14.92 15.96
6 7.21 9.30 10.94 12.29 13.41 14.38 15.31
7 7.27 9.38 10.94 12.24 13.30 14.23 15.13
8 7.39 9.48 11.09 12.28 13.38 14.31 14.99
9 7.61 9.77 11.33 12.50 13.62 14.40 15.19
10 7.77 9.94 11.50 12.80 13.72 14.65 15.42
15 8.81 11.12 12.81 14.19 15.25 16.24 16.98
20 9.75 12.23 14.13 15.65 16.81 17.77 18.55
25 10.64 13.43 15.36 16.96 18.23 19.31 20.22
30 11.49 14.47 16.62 18.26 19.65 20.74 21.66

0.925 2 33.10 50.61 67.37 85.87 100.34 120.16 137.23
3 11.40 15.11 18.74 21.76 24.39 26.96 29.38
4 8.86 11.64 13.83 15.70 17.42 18.90 20.17
5 8.24 10.61 12.47 14.07 15.37 16.55 17.52
6 8.09 10.34 12.04 13.52 14.68 15.70 16.55
7 8.08 10.33 11.97 13.36 14.45 15.43 16.23
8 8.16 10.31 12.10 13.43 14.51 15.39 16.25
9 8.34 10.59 12.25 13.59 14.61 15.50 16.31
10 8.49 10.79 12.36 13.77 14.77 15.80 16.51
15 9.48 11.93 13.66 15.13 16.24 17.16 18.00
20 10.48 13.17 15.05 16.54 17.69 18.71 19.63
25 11.43 14.28 16.38 17.93 19.30 20.27 21.19
30 12.30 15.31 17.49 19.21 20.62 21.75 22.69
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Table A3. The critical values of s∗U = s∗L = s∗t for P* = 0.95 and 0.975.

k

P* m 3 4 5 6 7 8 9

0.95 2 51.54 75.5 100.76 129.26 153.89 174.7 213.25
3 14.57 19.25 23.27 27.37 30.45 33.50 36.48
4 10.70 13.96 16.63 18.79 20.45 22.19 23.80
5 9.69 12.31 14.51 16.30 17.49 18.78 20.13
6 9.30 11.78 13.71 15.23 16.60 17.58 18.57
7 9.24 11.64 13.43 14.96 16.23 17.25 18.19
8 9.22 11.65 13.45 14.93 16.04 17.04 17.94
9 9.38 11.78 13.47 14.98 16.11 17.06 17.96
10 9.56 11.94 13.67 15.10 16.27 17.30 17.98
15 10.56 13.04 14.95 16.32 17.57 18.56 19.40
20 11.55 14.29 16.32 17.85 19.12 20.07 20.92
25 12.50 15.49 17.65 19.18 20.58 21.75 22.66
30 13.46 16.57 18.81 20.52 22.06 23.14 24.15

0.975 2 101.01 154.17 205.49 252.59 312.71 367.33 409.42
3 21.18 28.17 34.28 39.45 43.91 47.80 53.06
4 14.46 18.52 21.83 24.50 26.34 28.85 30.63
5 12.47 15.65 18.48 20.47 22.19 23.54 24.74
6 11.67 14.60 16.86 18.66 20.11 21.52 22.51
7 11.23 14.19 16.16 17.82 19.12 20.44 21.52
8 11.37 13.89 15.85 17.59 18.81 20.14 20.92
9 11.26 14.03 15.91 17.54 18.73 20.07 20.87
10 11.38 14.05 16.08 17.50 18.79 19.82 20.78
15 12.22 15.05 17.06 18.78 19.86 20.81 21.89
20 13.19 16.19 18.38 20.07 21.35 22.44 23.35
25 14.37 17.51 19.80 21.47 22.98 23.98 25.05
30 15.30 18.61 21.00 22.86 24.36 25.59 26.54
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