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Abstract: Most of the existing quantum-inspired models are based on amplitude-phase embedding
to model natural language, which maps words into Hilbert space. In quantum-computing theory, the
vectors corresponding to quantum states are all complex values, so there is a gap between these two
areas. Presently, complex-valued neural networks have been studied, but their practical applications
are few, let alone in the downstream tasks of natural language processing such as sentiment analysis
and language modeling. In fact, the complex-valued neural network can use the imaginary part
information to embed hidden information and can express more complex information, which is
suitable for modeling complex natural language. Meanwhile, quantum-inspired models are defined
in Hilbert space, which is also a complex space. So it is natural to construct quantum-inspired models
based on complex-valued neural networks. Therefore, we propose a new quantum-inspired model
for NLP, ComplexQNN, which contains a complex-valued embedding layer, a quantum encoding
layer, and a measurement layer. The modules of ComplexQNN are fully based on complex-valued
neural networks. It is more in line with quantum-computing theory and easier to transfer to quantum
computers in the future to achieve exponential acceleration. We conducted experiments on six
sentiment-classification datasets comparing with five classical models (TextCNN, GRU, ELMo, BERT,
and RoBERTa). The results show that our model has improved by 10% in accuracy metric compared
with TextCNN and GRU, and has competitive experimental results with ELMo, BERT, and RoBERTa.

Keywords: quantum theory; sentiment analysis; machine learning; natural language processing

MSC: 68T07; 68T50

1. Introduction

A quantum-inspired model is a new neural-network model constructed by combining
quantum-computing theory and deep-learning theory. It is a heuristic method proposed
when the quantum hardware development is limited in the noisy intermediate-scale quan-
tum (NISQ) era. It draws lessons from the ideas of quantum-computing theory and adopts
classical computing methods. A quantum-inspired language model is based on the math-
ematical framework of quantum-computing theory to model natural language, which
is inspired by the similarity between natural language and the quantum system, such
as the polysemous phenomenon of language and superposition of particles, the change
in language over time and space and the continuous evolution of particles over time,
the semantic determination of language in a specific scene and the collapse of particles
to a certain ground state after measurement. Compared with classical neural networks,
quantum-inspired language models are more consistent with the characteristics of natu-
ral language, and have better interpretability and exponential acceleration potential [1].
Moreover, the quantum-inspired language model is defined in Hilbert space, which has a
stronger representation ability.
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In recent years, natural language processing (NLP), benefiting from the development
of deep learning, has made significant progress in many fields, including sentiment analy-
sis [2], question answering [3], text generation [4], and so on. Recurrent neural networks
(RNNs), which can learn strong correlations from text sequences, are commonly used
neural-network modules in NLP. Long short-term memory (LSTM) and gated recurrent
units (GRU) are two widely used RNNs. However, gradient explosion and gradient dis-
appearance are problems with RNNs that make it hard to build a deep neural network.
Based on self-attention mechanisms and residual structure, Transformer [5] can focus on
key information in text and remember previous knowledge, which is suitable for building
deep neural networks. Currently, the main technology used in NLP is the pretraining
language model. Common pretraining language models include BERT [6], RoBERTa [7],
GPT-3 [8], etc. Using fine-tuning techniques, these pretraining models can serve as text
encoders that are easily adaptable to various downstream tasks. At present, the research
direction of NLP has begun to develop towards larger datasets and larger models, such
as GPT-3, where the size of the training corpus has reached 750 GB, and the number of
references is as high as 175 billion. Although computing power is increasing year by year,
researchers still feel constrained in the face of such large datasets and models with more
than 100 billion references.

Quantum computing is a brand new computing theory. It has been demonstrated that
quantum computers have an exponential computational complexity acceleration advantage
for some tasks. For example, the famous Shor algorithm [9] can complete integer prime
factorization with polynomial complexity, which threatens the communication process
based on the classical RSA encryption algorithm. At present, there are also some works on
modeling natural language based on quantum-computing theory, which is mainly due to
two reasons. First, human language and quantum systems share a lot of similarities, such
as language ambiguity and quantum superposition state, language evolution and quantum
state evolution. The second is that quantum computing has the potential advantage of
exponential speedup, which is very attractive for current pretraining methods that require
significant resources to train networks. There have been some studies on quantum natural-
language processing (QNLP). For example, Bob Coecke et al. proposed DisCoCat [10] and
lambeq [11], which encode natural languages into string diagrams and then encode them
into quantum circuits. Through parameterized quantum-circuit learning, text classification
tasks can be realized. However, the experimental progress of quantum machine learning
is still in its preliminary stage due to the limitations of quantum bits and error correction
capabilities in quantum-computing devices. Therefore, if running on a real quantum
computer, we can only handle a dataset of 100 sentences containing more than 10 words [12].
Some researchers use the mathematics behind quantum-computing theory to build models
that look like quantum computers. These models do not need to run on real quantum
computers, but just draw on relevant concepts in quantum-computing theory to help with
natural-language modeling, so they are not bound by the development of hardware.

The quantum-inspired model aims to simulate natural language using the theory
of quantum computation, analogizing natural language to a quantum system, and using
a classical neural-network model to simulate this process. However, the existing quan-
tum language models, such as NNQLM [13], CNM [14], etc., simulate the construction of
quantum states by amplitude-phase embedding and obtaining the complex-valued repre-
sentation of quantum states using Euler’s formula. In fact, it is also feasible to directly use
complex-valued neural networks to construct quantum-inspired models. There are many
researchers working on complex-valued neural networks. Trabelsi et al. [15] proposed a
deep complex-valued convolutional network that has demonstrated good performance in
image classification, music transcription, and speech spectrum prediction.

In this work, our motivation is to learn how to design a quantum-inspired model that
is more suitable for transfer to quantum computers to reduce the complexity of future
language models. Under the condition that the development of existing quantum hardware
be limited, the mathematical framework of quantum computing is used to realize the
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quantum-inspired model so that it can run on a classical computer. However, previous
quantum-inspired language models are rarely based on complex-valued neural networks.
These works use real-valued neural networks that are not suitable for transfer to quantum
computers defined in Hilbert space. Therefore, we propose a quantum-inspired fully
complex-valued neural network, ComplexQNN, and use it to solve sentiment-classification
tasks. At the end of the experiment, we discuss the advantages of ComplexQNN compared
with classical neural-network models.

In summary, as the existing quantum-inspired models are rarely based on complex-
valued neural networks, we proposed a new quantum-inspired fully complex-valued
neural network, ComplexQNN. Our contributions are as follows:

• Based on quantum computation theory and complex-valued neural networks, we
propose the theory and architecture of the ComplexQNN.

• We introduce the detailed modules of the ComplexQNN fully based on complex-
valued neural networks, including a complex-valued embedding layer, a quantum
encoding layer, and a measurement layer.

• The ComplexQNN is evaluated with six sentiment-classification datasets, including
binary classification and multi-classification. We adopt two metrics—accuracy and
F1-score—to evaluate our model and compare it with five classical neural models
(TextCNN, GRU, ELMo, BERT, and RoBERTa). The experimental results show that the
ComplexQNN has 10% improved accuracy compared with TextCNN and GRU, and
has competitive experimental results with ELMo, BERT, and RoBERTa.

The rest of the paper is organized as follows: Section 2 reviews the literature and
summarizes related works; Section 3 describes the materials and methods used throughout
the study; Section 4 explains and discusses our experimental results; and Section 5 describes
our conclusions.

2. Related Works

In this section, we will introduce the knowledge related to quantum-inspired complex-
valued neural networks, including quantum computing, complex-valued neural networks,
and the research progress of quantum-inspired neural networks.

2.1. Preliminary

Quantum computing is a new way of computing based on the idea of quantum
mechanics. Classical computers can simulate quantum computers, but not very efficiently.
Some quantum algorithms have been proposed to prove that quantum computers have the
ability to accelerate classical computational problems. Peter Shor proposed in 1994 that
quantum computers could solve the prime-factor problem of finding integers and solve
the so-called discrete logarithm problem [9] . Lov Grover proved in 1995 that quantum
computers can speed up the search problem in unstructured search spaces [16] . Wang
et al. [17] proposed in 2021 a quantum AdaBoost algorithm with a quadratic speedup.
Apers et al. [18] proposed in 2022 a continuous-time quantum walks (CTQWs) search
algorithm, which achieves a general quadratic speedup over classical random walks on an
arbitrary graph. Huang et al. [19] proposed a quantum principal component analysis that
achieved almost four orders of magnitude of reduction over the best-known classical lower
bounds. We will introduce some basic concepts in quantum computing, such as quantum
state, quantum system, quantum state evolution, and quantum measurement (The most of
these basic concepts are from Nielsen et al.’s book “Quantum computation and quantum
information” [20]).

2.1.1. Quantum State

In classical computing, a bit is used to represent two different states, such as 0 and
1. In quantum computing, a qubit is the basic unit, and the Dirac symbol is usually used
to describe a qubit [20], such as |0〉 and |1〉. Moreover, a qubit can be in a superposition
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state of |0〉 and |1〉. A total of 2n data can be stored in n qubits, which has the advantage of
parallel computing and can bring exponential improvements to classical methods.

A qubit can be a linear combination of ground states |0〉 and |1〉, such as

|ψ〉 = α|0〉+ β|1〉, (1)

where |ψ〉 is often called a superposition state, and both α and β are complex-valued
numbers. In addition, it is impossible to obtain all the information about an unknown
qubit completely. You can obtain |0〉 or |1〉 by measuring, where |α|2 is the probability of
obtaining |0〉 and |β|2 is the probability of obtaining |1〉, and satisfy |α|2 + |β|2 = 1. Such
as 1√

2
|0〉+ 1√

2
|1〉, there is 50% of obtaining |0〉 and 50% of obtaining |1〉. Therefore, the

equation can also be expressed as

|ψ〉 = eiγ(cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉), (2)

where γ, θ, ϕ are all real numbers. Additionally, eiγ can be omitted since it does not have
any observable effect.

2.1.2. Quantum System

Two qubits have four ground states, and a pair of qubits can also be in the superposi-
tion of these four ground states, such as

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, (3)

where αij(i, j ∈ {0, 1}) is called the amplitude. In a two-qubit system, you can measure
only one of the qubits, such as the second bit. Assuming that the measurement result is 1,
the measured state |ψ〉 will collapse to

|ψ′〉 = α01|01〉+ α11|11〉√
|α01|2 + |α11|2

. (4)

The factor
√
|α01|2 + |α11|2 is used for normalization. The Bell state |00〉+|11〉√

2
is a very

important two-quantum state because it satisfies a property: the measurement result of
two qubits is always the same. It is an indispensable part of quantum teleportation and
ultra-dense coding. Consider n-qubit system, where the ground state is |x1x2...xn〉 and has
2n amplitudes. Compared with classical systems, n qubit systems have an exponential
increase in storage and computation.

2.1.3. Quantum State Evolution

A quantum computer consists of quantum circuits and quantum gates, which are used
to process quantum information. In a classical computer, logic gates are used to process
classical information, such as NOT gates can change the state of a bit, changing 0 to 1 and
1 to 0. Similarly, there is a quantum NOT gate X in a quantum computer, which can be
expressed as

X =

[
0 1
1 0

]
. (5)

The outcome of the NOT gate of quantum state |ψ〉 = α|0〉+ β|1〉 = [α, β]T is

X
[

α
β

]
=

[
β
α

]
. (6)

A single-qubit quantum gate can be given by a 2× 2 matrix. Since the qubit has a
normalization condition, the corresponding matrix of the single-qubit gate must satisfy the
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unitary property U†U = I, where U† is the conjugate transpose of U, and I is the identity
matrix of 2× 2 [20]. The Hadamard gate is another single-qubit gate that is often used. It is
described by a matrix as

H =
1√
2

[
1 1
1 −1

]
. (7)

It changes |0〉 to the intermediate state |+〉 = (|0〉+ |1〉)/
√

2. Similarly, change |1〉 to
the intermediate state |−〉 = (|0〉 − |1〉)/

√
2. In addition, any quantum computation on

any number of qubits can be produced with a finite set of gates.

2.1.4. Quantum Measurement

By measuring quantum the state |ψ〉 = α|0〉+ β|1〉, |0〉 and |1〉 can be obtained. In
fact, this is to take the ground state as |0〉 and |1〉. You can also choose |+〉 and |−〉, the
quantum state |ψ〉 can be re-expressed as

|ψ〉 = α|0〉+ β|1〉 = α + β√
2
|+〉+ α− β√

2
|−〉. (8)

So, there is a probability of |α+β|2
2 of obtaining |+〉 and |α−β|2

2 of obtaining |−〉. More
generally, take a set of measurement operators {Mk} to measure the quantum system
|ψ〉—the probability of the measurement result being k is

p(k) = 〈ψ|M†
k Mk|ψ〉, (9)

where † means conjugate transpose. The state of the system after measurement is

|ψ′〉 = Mk|ψ〉√
〈ψ|M†

k Mk|ψ〉
, (10)

where the operators satisfies ∑k M†
k Mk = I. Therefore, the sum of the probabilities of all

measurement results is 1 and it is described as

∑
k
〈ψ|M†

k Mk|ψ〉 = ∑
k

p(k) = 1. (11)

At present, quantum computers are facing problems such as high R&D costs, sus-
ceptibility to noise, and difficulty in exiting the experimental environment [21]. It is very
difficult to realize a universal quantum computer, and it still needs a long period of in-
depth research [22]. Meanwhile, the design of quantum algorithms needs to address two
challenges [20]. First, quantum computing uses qubits instead of classical bits, so quantum
algorithms need to consider how to use the superposition and entanglement properties
of qubits to achieve parallel computing. Second, quantum algorithms need to be more
efficient than existing classical algorithms. Otherwise, there is no need to use a quantum
computer. This is difficult to achieve with current hardware constraints, and most quantum
algorithms can only be theoretically proven to have an acceleration advantage. Therefore,
many researchers have begun to study hybrid quantum classical algorithms and quantum-
inspired algorithms. These methods do not rely on expensive quantum devices and can be
run directly on a classical computer.

2.2. Complex Neural Network

Most of the existing deep-learning technologies are based on real-valued operations
and representations [13,14,23]. In fact, complex numbers may have richer representation
capabilities. Some works have proved that complex-valued neural networks have some
unique advantages [15]: it is possible to achieve easier optimization [24], better generaliza-
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tion features [25], faster learning [26], and noise-resistant memory mechanisms [27]. In 2018,
Chiheb Trabelsi et al. [15] proposed a deep complex-valued neural network, proposed key
modules for training complex-valued neural networks such as complex-valued batch nor-
malization and complex-valued weight initialization, and also proposed a complex-valued
convolutional neural-network architecture, and passed experiments on image classifica-
tion, music transcription, and speech spectrum prediction were conducted to validate the
effectiveness of the proposed networks.

The following introduces the principle of complex-valued neural networks, including
complex-valued linear layers, complex-valued CNNs and complex-valued RNNs.

2.2.1. Complex-Valued Linear Layers

The linear layer is also called a fully connected layer [28]. Each neuron in the linear
layer is connected to all neurons in the previous layer, which is the most common network
structure in neural networks. Its calculation process is described by

f = WX + b, (12)

where W represents the weight matrix in the network, and b represents the bias in the
network layer. Trabelsi et al. [15] implemented complex-valued linear layers based on the
PyTorch (https://pytorch.org/, accessed on 3 October 2016) library. The complex-valued
linear layer uses two real-valued linear layers to calculate the real part and imaginary
part, respectively, and obtain new real and imaginary parts based on the complex-valued
calculation principle. Specifically, the calculation process is as follows:

fr(X) = WrX + br, (13)

fi(X) = WiX + bi, (14)

fc(X) = fr(Xr)− fi(Xi) + i× [ fr(Xi) + fi(Xr)] (15)

= WrXr −WiXi + br − bi + i× [WrXi + WiXr + br + bi], (16)

where i is the imaginary part. The complex-valued linear layer is the basic module of the
complex-valued neural network, and both the complex-valued CNNs and the complex-
valued RNNs rely on this module.

2.2.2. Complex-Valued CNNs

CNNs have made great achievements in the field of computer vision, such as
LeNet [29], AlexNet [30], Visual Geometry Group (VGG) [31],
Residual Network (ResNet) [32], You Only Look Once (YOLO) [33], etc. There is also
TextCNN for NLP. CNNs include convolutional layers, pooling layers, and fully connected
layers [34]. The convolutional layer is the core of the CNNs. A convolutional layer usually
includes multiple convolution kernels of the same size, and the number of convolution
kernels determines the size of the output. Similar to classical CNNs, complex-valued
convolutional neural networks also contain complex-valued convolutional layers [15]. The
complex-valued convolution layer contains the real part convolution and the imaginary
part convolution, and the calculation process is shown in Figure 1. MR and MI are fea-
ture maps with real and imaginary parts, respectively, and KR and KI are convolution
kernels with real and imaginary parts, respectively. The output of the complex-valued
convolutional layer is MRKR −MIKI + i(MRKI + MIKR).

https://pytorch.org/
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Figure 1. Convolutional layer calculation process of complex-valued CNN.

2.2.3. Complex-Valued RNN

Unlike linear layers, RNNs are able to learn information from previous neurons
because the output of each layer depends on the output of the previous one. RNNs are
often used to process sequence data and has a wide range of applications in NLP [35].
LSTM and GRU are two commonly used RNNs. We take complex-valued LSTM as an
example to introduce complex-valued RNNs. As shown in Figure 2, LSTM has multiple
gates: forget, input, and output gates that selectively let information through. The LSTM is
computed as follows [36].

ft = σ(Wx f Xt + Wh f Ht−1 + b f ), (17)

it = σ(WxiXt + Whi Ht−1 + bi), (18)

ot = σ(WxoXt + Who Ht−1 + bo), (19)

C̃t = tanh(Wxcxt + Whcht−1 + bc), (20)

Ct = ft · Ct−1 + it · C̃t, (21)

Ht = ot · tanh(Ct), (22)

where · represents vector dot multiplication, ft represents forget gate, which is used to
discard insignificant information from the past, it represents the input gate, ot represents
the output gate, c̃t represents the candidate memory cell, Ct represents the output cell state,
and Ht represents the output hidden state.

σForget 
Gate 𝐹𝐹𝑡𝑡

σInput 
Gate 𝐼𝐼𝑡𝑡

σOutput 
Gate𝑂𝑂𝑡𝑡

Memory 𝐶𝐶𝑡𝑡−1

Hidden State H𝑡𝑡−1

Memory 𝐶𝐶𝑡𝑡

Hidden State H𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡Candidate 
Memory�𝐶𝐶𝑡𝑡

⨀ ⨁

𝑡𝑡𝑡𝑡𝑡𝑡𝑡

⨀

⨀

Figure 2. The architecture of LSTM.
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Complex-valued LSTM requires the forget gate, input gate, and output gate to be
implemented using complex-valued linear layers. The sigmoid activation function and
tanh function and vector multiplication are also calculated using complex values. Based on
complex-valued linear layers, the above procedures are relatively easy to implement.

2.3. Quantum-Inspired Model

Sordoni et al. [37] proposed in 2013 the quantum language model, which is the first
successful practice of quantum probability theory in NLP. QLM combines quantum theory
with the research of NLP, which is of great significance in theory. However, QLM is limited
in many ways. For example, the term is represented as a vector in the form of a one-hot
vector. Compared with the current commonly used distributed representation, the one-hot
vector does not have the ability to take into account the global semantic information of
the text, so it takes up more storage space and wastes a lot of storage resources due to its
unique representation form. Second, QLM is difficult to embed the density matrix obtained
through iterative calculation into an end-to-end neural network that can be trained by
a backpropagation algorithm, so it is difficult to obtain practical application. In 2018,
Peng Zhang et al. [13] built deep-learning networks using quantum-like mechanics theory
based on QLM. The end-to-end quantum-like language models (NNQLM) are proposed to
complete the question-answer matching task in NLP [13], which is the earliest combination
of quantum-like mechanics theory and deep-learning technology. The application of
the end-to-end neural-network model in NLP is realized. However, because the model
adopts a real-number vector, it cannot simulate a quantum particle quantum state in a real
sense, nor can it make full use of the probability attribute of quantum mechanical density
matrix. Therefore, the purpose of the research and implementation of NNQLM is to extend
quantum mechanics and NLP theories.

Li et al. [23] adopted a complex word vector to simulate quantum states and proposed
quantum-inspired complex word embedding in 2018 . Combined with the theoretical basis
of quantum mechanics, they represented text statements in the form of density matrix, used
projection measurement to observe and measure text statements in the form of density
matrix, and used the measured probability value to infer the polarity of text statements.
Then, complete the text classification task for NLP. The density matrix represented by
the vector of complex words completely conforms to the theory of quantum mechanics.
The network model proposed based on quantum mechanics improves the interpretability
of network in NLP tasks. Meanwhile, compared with some classical machine learning
models such as Unigram-TFIDF, the model based on complex basis vector simulation
quantum state design has better performance on five English binary datasets. Therefore,
the model that combines quantum mechanics theory and deep neural network is one of
the current research hotspots. Benyou Wang et al. proposed a complex-valued network
for matching (CNM) [14] to complete question and answer matching task, which using
complex word vectors to simulate quantum states. They used complex density matrix to
represent questions-answers, respectively, and carried out projection measurement on the
questions and answers in the form of density matrix, respectively. Finally, the similarity
of question and answer sentences is evaluated based on the probability value obtained by
projection measurement, so as to select the correct answer to the question.

Jiang and Zhang [38] proposed a quantum interference-inspired neural-network match-
ing model (QINM) for processing information extraction tasks in 2020, which could embed
interference phenomena into the information extraction process. The experimental re-
sults showed that it was superior to the quantum-inspired information extraction models
and some neural-network information extraction models previously proposed. Zhang
et al. [39] proposed TextTN in 2021, a text tensor network based on quantum theory, for
processing text classification tasks. TextTN can be divided into two sub-models. First,
word generation tensor network (word-GTN) is used to encode words into vectors, and
then sentence discrimination tensor network (sentence-DTN) is used to classify sentences.
Zhang et al. [40] proposed a complex-valued fuzzy neural network for conversational
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sarcasm recognition, which successfully combines quantum theory with fuzzy logic the-
ory. Shi et al. [41] proposed two end-to-end quantum-inspired deep neural networks
ICWE-QNN and CICWE-QNN for text classification. These two models use GRU, CNN
and attention mechanism to improve the quantum-inspired model, which can solve the
problem of ignoring the internal language characteristics of the text in CE-Mix model.

Quantum-inspired algorithm only uses the mathematical framework of quantum
theory and therefore does not need to run on a real quantum computer. Recent applications
of the quantum-inspired models in NLP show that this research direction is feasible.
Compared with the neural-network model, the advantage of quantum-inspired algorithm
is that it can give the model physical meaning, so that the model has better interpretability.
In addition, the quantum-inspired algorithm can also embed quantum characteristics such
as quantum interference and quantum entanglement into the model, thus enhancing the
learning ability of the model.

To sum up, the neural network and quantum mechanics theory can be used together
in the field of NLP. At the same time, the existing quantum-inspired models are rarely
constructed based on complex-valued neural networks, which do not make full use of the
advantages of quantum computing and have gaps in migrating to quantum computers in
the future.

3. Materials and Methods

In this section, we first introduce the datasets used in our sentiment-classification
experiment, then introduce our quantum-inspired fully complex-valued neural network
ComplexQNN, and finally introduce the metrics used to evaluate the model and the loss
function used in the experiment.

3.1. Datasets

We use six sentiment-classification datasets: Customer Review (CR) [42], Opinion
polarity dataset (MPQA) [43], Movie Review (MR) [44], Stanford Sentiment Treebank (SST,
including SST-2 and SST-5) and Sentence Subjectivity (SUBJ) [44]. The details of the datasets
are shown in Table 1 as follows.

Table 1. Description of six benchmarking sentiment-classification datasets.

Dataset Description Type Count

CR Product reviews pos/neg 4k

MPQA Opinions pos/neg 11k

MR Movie reviews pos/neg 11k

SST-2 Movie reviews pos/neg 70k

SUBJ Subjectivity subj/obj 10k

SST-5 Movie reviews five labels 11k

3.2. ComplexQNN

We propose a quantum-inspired fully complex-valued neural network (ComplexQNN)
which is also based on the mathematical theory of quantum computing. In the following, we
will introduce the theory of the ComplexQNN, the model architecture, the implementation
details and the application in sentiment classification.

3.2.1. Theory of the ComplexQNN

Quantum-inspired models are used to model natural language in a quantum informa-
tion way, so the first step is to represent words as quantum states. In a single-atom model,
electrons can be in the ground state or the excited state, or in a superposition between
the two [20]. Similarly, natural language due to the phenomenon of polysemy can also
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be represented as a superposition. A word w has n different semantics (n = 2m, m ≥ 0),
denoted as ei, then the quantum state of the word is

|w〉 =
n

∑
i=1

α|ei〉, (23)

where α is a n-dimensional complex-valued vector, and |αi|2 represents the probability that
the word w represents the meaning ei. For example, the quantum state of a word with
n = 4 is denoted by

|w〉 =
4

∑
i=1

α|ei〉

= α00|e0〉+ α01|e1〉+ α10|e2〉+ α11|e3〉

=


α00
α01
α10
α11

.

(24)

From the Equation (24), we can see that the quantum state of the word w is mapped
to a n-dimensional complex vector space. A sentence usually consists of multiple words,
just like a quantum system consists of multiple microscopic particles. A quantum system
is usually represented by a density matrix in quantum computing. Suppose there are m
words in the sentence, then the density matrix of a sentence S is represented as

ρ = |S〉〈S| =
m

∑
i=1

β|wi〉(
m

∑
i=1

β|wi〉)†, (25)

where β is a n-dimensional complex vector, and |βi|2 represents the weight of the word wi
in the sentence S. Similar to the attention mechanism, different weights are beneficial for
the neural network to focus on the key words in the sentence. In sentiment classification,
some adjectives such as “good”, “bad”, “excellent” have a great influence on the final
prediction results, and can be assigned larger weights. After the sentence is represented
as a density matrix, we want to further learn the connection between the words in the
sentence. Corresponding to the quantum system, this operation is called evolution, i.e., the
quantum state changes with time or other external interference, which is represented by

ρ′ = Uρ, (26)

where U is a n× n complex matrix, and ρ′ is the system state after evolution. In the past
quantum-inspired language models, it is usually to extract the real part and imaginary
part of the density matrix ρ, and use RNNs or CNNs to train them separately, and finally
integrate the output features. We believe that this operation will cut off the information
in the quantum system, which will lead to incomplete features learned and cannot cor-
rectly simulate the change of the quantum system state. Therefore, when constructing the
quantum-inspired model, we simulate the change of the quantum state through complex-
valued neural networks, and the whole evolution process will be based on complex values,
and the output result will also remain in the complex state.

Finally, the measurement in quantum computing can obtain the probability value
of the quantum system collapsing to a set of base states, which is applied to the text
classification task in natural language processing. Suppose Mi(i = 1, ..., k) is a set of



Axioms 2023, 12, 308 11 of 21

measurement operators representing k classification labels. The measurement probability
of the sentence corresponding to the i-th label is

pi = ρ† M†
i Miρ. (27)

We applied the model to the sentiment analysis task to verify the sentiment polarity
of sentences, including binary classification and multi-classification, and the details of the
experiment can be seen in Section 4. The following introduce the ComplexQNN from
three aspects: the architecture of the ComplexQNN, the implementation details of the
ComplexQNN, and its application in sentiment analysis.

3.2.2. Architecture of the ComplexQNN

The architecture of the ComplexQNN is depicted in Figure 3. We can see that it
consists of four modules: complex embedding, projection, evolution and classifier. First,
the input data of the ComplexQNN need to obtain through preprocessing, as with case
conversion, word segmentation, word index mapping, filling and truncation. Moreover,
in order to mask the additional token sequence brought by filling sequence, the mask
sequences composed of 0 and 1 is also needed to be constructed. To sum up, The token
sequences and mask sequences are the input data of the ComplexQNN. The following
describes four essential modules of the ComplexQNN.

Input_ids Density Matrix

1.Complex Embedding 2.Projection 4.Classification3.Evolution

Embedded Tokens Output Features

Predict logits

Figure 3. The architecture of the ComplexQNN.

1. Complex embedding: The complex embedding is to map the token number corre-
sponding to the word (which is the position of the corresponding integer word in
the vocabulary) into the n-dimensional complex vector space, which corresponds
to the quantum state construction process in quantum computing. Each word is
mapped from discrete space to high-dimensional Hilbert space, which corresponds to
a complex-valued column vector.

2. Projection: The projection is the mapping of discrete words in a sentence into a com-
plex value space of n× n. In the previous step, plural word embeddings have mapped
words into an n−dimensional complex-valued vector space. From
Equation (25), the density matrix representation of the sentence can be calculated,
where the weight β of the words can be trained by the attention mechanism, and by
default all words take the same weight.

3. Evolution: The evolution process is to simulate the change of the quantum system. In
the theory of quantum computation, the change of quantum state and density matrix
is realized using quantum gates. A quantum gate corresponds to a unitary matrix
whose dimension corresponds to the number of qubits it operates on (n = 2m). In
the ComplexQNN, we simulate the changes of quantum systems through complex-
valued linear layers, complex-valued recurrent neural networks and complex-valued
convolutional neural networks. The dimensions of the input and output of the
evolution module that we designed are both n× n. Therefore, the dimension of the
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original quantum system will not be changed after learning the features inside the
sentence.

4. Classifier: The classifier uses the high-dimensional features learned by the previous
modules as input to predict the classification result. Based on the theory of quantum
computing, we can directly predict the output from the measurement, as shown in
Equation (27). It is necessary to construct a set of linearly independent measurement
bases. The number of measurement bases depends on the number of classification re-
sults performed. The result predicted by the final model takes the label corresponding
to the measurement basis with the largest probability value.

The above introduces the four essential modules of the ComplexQNN and shows the
progression of text sequences from input to predictive output. The specific design of the
module is described as follows.

3.2.3. Implementation Details of the ComplexQNN

The ComplexQNN needs to include complex word embedding, projection, evolution,
and classifier among which complex word embedding and evolution are the core of model
construction. In our implementation, we designed three modules using Allennlp (https:
//allenai.org/allennlp, accessed on 25 January 2018) library: complex embedder, quantum
encoder and Classifier. Projection and evolution operations are included in the quantum
coding layer.

The complex embedder is the first module of the ComplexQNN. Its input is the
preprocessed text Token sequence, which is an integer vector. Complex word embedding
consists of real and imaginary embedding layers. Figure 4 shows the processing of complex
word embedding. The text Token sequence is passed through these two embedding layers,
respectively, and finally the complex word vector representation of each Token is calculated
by Equation (28). The real and imaginary embedding layers can conveniently use classical
word embedding as

[w1, ..., wi, ..., wn] = [r1, ..., ri, ..., rn] + i× [i1, ..., ii, ..., in]. (28)

𝑖𝑖 ×
Token
(Integer)

Imaginary vocabulary

Real vocabulary

Imaginary vectors
(float32)

Real vectors
(float32)

⨁

Complex vectors
(complex64)

Figure 4. The processing of complex word embedding.

The classic word embedding layer has many different embedding methods. According
to the level of word segmentation, it can be divided into character level, wordpiece level
and word level. According to the training method, it can be divided into non-contextual
word embedding (static word embedding) and contextual word embedding (dynamic
word embedding) [45]. Word2vec [46] and GloVe [47] are two classic non-contextual word
embedding methods. Context word embeddings are derived from the pretraining models,

https://allenai.org/allennlp
https://allenai.org/allennlp
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and the contextual word vectors related to the downstreaming dataset is obtained through
fine-tuning.

We have considered different schemes to construct the complex word embedding
layer. (1) Use different pretraining models as the embedding layer of the real and imaginary
parts, such as BERT for the real part and RoBERTa for the imaginary part, so that different
information can be encoded into the quantum state. (2) The real part and the imaginary part
encode different types of text information. For example, the real part encodes wordpiece-
level word vectors, and the imaginary part uses the NLTK library to encode semantic
information such as word polarity. (3) The real part encodes the forward word order
feature, and the imaginary part encodes the reverse word order feature.

The first method, which uses different pretraining models to extract features at the
same time, can achieve the best experimental results, but it requires a lot of memory
resources for training. The second and third methods are fast to train, but the results
are not as good as the pretraining models. Considering the experimental results and the
resources required for training, RoBERTa is used as the real part of ComplexEmbedder, and
self-training word embedding layer is used as the imaginary part. In general, we hope that
the real part and the imaginary part embed different types of text features, make full use of
the heterogeneous characteristics of complex-valued neural networks, and then improve
the semantic expression ability of the model.

The second module of the ComplexQNN is a quantum encoder for projection and
evolution. As we mentioned earlier, we need to projection obtaining the density matrix
representation of the sentence. The Equation (25) shows the process of calculating the
density matrix. Evolution is the process of simulating the operation of quantum gates. This
needs to meet some conditions, i.e., the input and output dimensions are unchanged and
the dimension is 2n. We build our encoding layers based on the following basic building
blocks: complex-valued fully connected layers, complex-valued recurrent neural networks,
and complex-valued convolutional neural networks [15]. We construct three intermediate
module layers for encoding: a complex-valued deep neural-network encoding layer, a
complex-valued recurrent neural-network encoding layer (based on ComplexLSTM), and a
complex-valued convolutional neural-network encoding layer.

As shown in Figure 5, we construct the ComplexTextCNN. The input of this module is
the projected density matrix ρ representing the sentence. We use three different convolution
kernel sizes with [3, 4, 5], the number of each convolution kernel is 2, and the stride is 1.
Then, the features are extracted by max pooling, and the features learned in different dimen-
sions are concated together. So far, the biggest difference between the ComplexTextCNN
and classic TextCNN is that all calculation operations are calculated in complex-valued
networks. Finally, in order to obtain a new sentence density matrix representation after
learning features, we use a complex-valued fully connected network layer to restore the
vector dimension to the input dimension. Through the outer product operation, the matrix
form of the same dimension as the input is obtained.

The third module is a classifier, which predicts the output of the model based on
quantum-computing measurements. Specifically, it is realized through Equation (27). We
can design different numbers of measured ground states for text multi-classification. In the
following experiments, the number of measurement basis vectors needs to be determined
according to the number of classification labels. The final classification result is to take the
one with the largest predicted value as the final result. In addition, considering that the
output of the measurement is a real value, we can take the probability value of each label to
construct a prediction vector, and then splice it with the prediction results of other models
to achieve model fusion and achieve better experimental results.
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Figure 5. The architecture of ComplexTextCNN.

3.2.4. Application in Sentiment Analysis

Sentiment classification is a common task in NLP, which aims to predict the sentiment
polarity corresponding to a sentence. We conduct this task to validate the experimental
performance of the ComplexQNN. At the same time, we will compare some classic network
models. Figure 6 is the flow chart of the ComplexQNN for sentiment-classification task, and
the data dimensions are annotated. First, the text is preprocessed to normalize case, segment
words and remove stop words. Second, the quantum states of words are simulated by the
complex word embedding layer. The quantum encoder layer is then used for projection
and evolution. Finally, the prediction results are output by the simulated measurement
operation of the classifier.

Token 
Sentience

Output

Real 
Embedding

Imaginary 
Embedding

Projection ComplexDNN Measurement

[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑙𝑙𝑆𝑆𝑙𝑙]

[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑙𝑙𝑆𝑆𝑙𝑙,𝐸𝐸𝐸𝐸𝐸𝐸_dim]

[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸_dim,𝐸𝐸𝐸𝐸𝐸𝐸_dim] [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐸𝐸𝐸𝐸𝐸𝐸_dim,𝐸𝐸𝐸𝐸𝐸𝐸_dim] [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑁𝑁𝑁𝑁𝐸𝐸_𝐵𝐵𝑙𝑙𝐵𝐵𝑐𝑐𝑐𝑐𝑆𝑆𝑐𝑐]

𝒊𝒊 ×

Text 
Sequence
[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑙𝑙𝑆𝑆𝑙𝑙]

Complex Embedder Quantum Encoder Classfier

Figure 6. The flow chart of the ComplexQNN for sentiment-classification tasks.

3.3. Evaluation Metrics

We use five sentiment binary classification datasets (CR, MPQA, MR, SST-2 and
SUBJ) and a sentiment five classification dataset (SST-5). In the sentiment-classification
experiment, we use two evaluation metrics (accuracy and F1-score) to comprehensively
evaluate the performance of different models. The specific calculation methods are as
follows.
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• Accuracy: Accuracy is the ratio of correctly predicted terms to the total terms:

Accuracy =
TP + TN

TP + TN + FP + FN
. (29)

TP, TN, FP and FN denote the true positives, true negatives, false positives and false
negatives, respectively.

• F1-score: F1-score is the harmonic mean of Precision and Recall:

F1-score = 2× Precision× Recall
Precision + Recall

. (30)

The calculation of precision and recall is as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (31)

The loss function we used in our experiment is the cross-entropy loss defined as

Loss = − 1
n ∑

i
[yi log(pi) + (1− yi) log(1− pi)], (32)

where n is the number of samples, yi is the i-th label and pi is the predicted probability
value of positive class.

4. Experimental Results and Discussion

In this section, we conduct experiments on sentiment classification to verify our pro-
posed method (Our code is available at Github: https://github.com/Levyya/ComplexQNN,
accessed on 15 March 2023). We introduce the models used for comparison, present and
analyze our experimental results, and discuss the advantages of ComplexQNN compared
to classical neural networks.

4.1. Comparison Models

We use five classical models, TextCNN, GRU, Embeddings from Language Models
(ELMo), Bidirectional Encoder Representations from Transformers (BERT) and Robustly
Optimized BERT Pretraining Approach (RoBERTa), as the comparison models for our
experiments, which are described below.

TextCNN [48] is built on convolutional neural networks with pretrained vectors
word2vec. The experimental results shown below are CNN-non-static model .

GRU is a kind of RNNs. Like LSTM, it is also designed to solve long-term memory
and gradient problems, but GRU is faster than LSTM.

ELMo [49] is composed of bidirectional LSTMS as the basic components. With lan-
guage model as the training target, ELMo is pretrained with large corpus to obtain a
common semantic representation, which is then migrated to the downstream NLP task. It
can significantly improve the model performance of downstream tasks. ELMo provides
word-level semantic representation and performs well in many downstream tasks.

BERT [6] is a pretraining language model (PLM). For example, ELMo and GPT are
Auto Regressive (AR) models, which only consider unilateral information, i.e., predicting
the next word with reference to previous words with reference to context. BERT reconstructs
original data from noisy data using context information, which belongs to Auto Encoding
model. Two tasks were used during pretraining: Masked Language Model (MLM) and
Next Sentence Prediction (NSP). The output of BERT is the 768-dimensional vector for each
Token in the sentence, and a special Token ([CLS]).

RoBERTa [7] is an improved version of BERT that uses larger model parameters,
larger batch sizes, and more pretraining data, while improving the training method and
removing the NSP task. Using dynamic mask and BPE Encoding (Byte-Pair Encoding), the
experimental results are better than BERT’s.

https://github.com/Levyya/ComplexQNN
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4.2. Results and Analysis

In the experiment of sentiment classification, we choose some classic models in NLP
such as TextCNN, GRU, and popular pretraining models such as ELMo, BERT and RoBERTa
as comparison models. Tables 2 and 3 show the experimental results on six sentiment-
classification datasets. The former is the experimental results under the accuracy metric,
while the latter is the experimental result under the F1-score metric. Figure 7 shows the
graph of experimental results under F1-score. The following is a detailed analysis of the
experimental results.

Table 2. Experimental results on six benchmarking sentiment-classification datasets evaluated with
accuracy.

Model CR MPQA MR SST-2 SUBJ SST-5

TextCNN 78.8 74.4 75 81.5 90.3 34.9
GRU 80.1 84.3 76 81.6 91.7 37.6

ELMo 85.4 84.4 81 89.3 94.9 48
BERT 88.8 89.5 84.9 93 95.2 52.5

RoBERTa 90.4 90.9 89.8 88.8 96.7 53.1
ComplexQNN 91.2 91.5 89.9 90.4 97.3 54.3

Table 3. Experimental results on six benchmarking sentiment-classification datasets evaluated with
F1-score.

Model CR MPQA MR SST-2 SUBJ SST-5

TextCNN 71.2 75.5 75.9 80.9 90.1 48.8
GRU 71 73.3 75.5 82.3 91.8 46.7

ELMo 79.9 74.2 82.3 88.4 94.9 48.3
BERT 85.2 82.3 84.6 88 95.2 52.5

RoBERTa 85.8 85.6 89.9 89.7 96.7 52.7
ComplexQNN 86 86.4 90.3 88.4 97.3 53.1

1. Compared with classical models TextCNN and GRU, popular pretraining models
(ELMo, BERT, RoBERTa) and our model has significant advantages. Specifically, we
show the improvement effect of the ComplexQNN by comparing the results. The
comparison results of the ComplexQNN and TextCNN under the accuracy metric
for the considered datasets are: CR (+12.4%), MPQA (+17.1%), MR (+14.9%), SST-2
(+8.9%), SUBJ (+7.0%), SST-5 (+19.4%), average improvement (+13.28%); Compari-
son results of the ComplexQNN and TextCNN under the F1-score metric: CR (+14.8),
MPQA (+10.9), MR (+14.4), SST-2 (+7.5), SUBJ (+7.2), SST-5 (+4.3), average improve-
ment (+9.85). The above data show that the ComplexQNN has a great performance
improvement compared to TextCNN, because the ComplexQNN is a network model
designed based on quantum-computing theory, which can learn more complex text
features.

2. Compared with the pretraining models, the ComplexQNN has better experimental
results than ELMo and BERT. Compared to RoBERTa, ComplexQNN has better results
in CR, MPQA, MR, SUBJ and SST-5 (under the F1-score metric): CR (+0.2), MPQA
(+0.8), MR (+0.4), SUBJ (+0.6), SST-5 (+0.4); on the SST-2 dataset, the F1-score
result of the ComplexQNN is slightly lower than that of RoBERTa (−1.3), but the
ComplexQNN has a better experimental result (+1.6%) under the accuracy metric.
From a numerical point of view, the improvement of ComplexQNN compared to
RoBERTa is small, but in fact this is because RoBERTa has achieved good experimental
results on these six datasets, which is why our model is slightly lower than RoBERTa
on one of these datasets.

3. From Figure 7, we can clearly see that the ComplexQNN is almost always at the
highest level (except for slightly lower results in the SST-2 dataset), which indicates



Axioms 2023, 12, 308 17 of 21

that the ComplexQNN has a significant performance advantage over the six sentiment-
classification datasets.

4. Table 4 shows the training time of six different models on six sentiment-classification
datasets. We use an Nvidia 2080Ti GPU and set the batch size as 32. The results are
use the format of “minutes:seconds”, and it means that a model costs training time on
an epoch. According to this table, we can see that in order of training speed from fast
to slow, they are TextCNN, GRU, ELMo, BERT (RoBERTa), and ComplexQNN. The
reason about our model need the most training time is that the ComplexQNN uses
classical computation to simulate quantum computation. Complex-valued calcula-
tions require additional imaginary part parameters to simulate. However, we can see
that our model can also complete the training in a very short time.

40

50

60

70

80

90

100

CR MPQA MR SST-2 SUBJ SST-5

TextCNN GRU ELMo BERT RoBERTa ComplexQNN

Figure 7. The F1-score results of six models on six sentiment-classification datasets.

Table 4. The training time of six models on six sentiment-classification datasets.

Model
Training Time

CR MPQA MR SST-2 SUBJ SST-5

TextCNN 0:03 0:07 0:07 0:47 0:04 0:05
GRU 0:04 0:04 0:10 1:25 0:09 0:09
ELMo 0:12 0:12 0:30 2:39 0:33 0:53
BERT 0:12 0:15 0:33 4:31 0:38 0:35
RoBERTa 0:12 0:15 0:33 4:31 0:38 0:35
ComplexQNN 0:32 0:32 1:17 10:23 1:48 1:34

4.3. Discussion

ChatGPT (https://openai.com/api/, accessed on 30 November 2022) has been a big
shock, and it has made many people realize that NLP technology based on classical neural
networks has reached a very high level. RoBERTa is an excellent language model in the
NLP area, achieving human-level performance on many datasets. Therefore, we are not
surprised that the results of our proposed model ComplexQNN are close to RoBERTa
on multiple datasets. Below, we discuss some of the advantages ComplexQNN has over
popular classical models such as RoBERTa. We summarize the following three points.

First, let us look at the difference between ComplexQNN and RoBERTa. RoBERTa
is an improvement on the BERT model. It is a multi-layer transformer structure, which
can extract features in real value space. The ComplexQNN is defined in the Hilbert space,
the word vector will be represented as a complex value, and the representation space is
larger than the real value space. The real part can represent the semantic information of
the context, and the imaginary part can be used to represent the information outside the

https://openai.com/api/
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semantics, such as the position information of the words in the sentence, the sentiment
information of the words, and the ambiguity information of the words. Compared with
the real-number space, the complex number space gives deep-learning algorithms more
representation possibilities, which is conducive to expanding the boundaries of model
development.

Second, most classical models are black-box models. In the existing natural-language
model, the text is mapped to a vector, and then through the multi-layer neural-network
structure, and the meaning of the intermediate vector can only be described by the low-
dimensional and high-dimensional features of the text. The quantum-inspired model
based on quantum computing regards natural language as a quantum system: words are
represented as quantum states, sentences are represented as density matrices, interactions
of words in sentences are represented as quantum state evolution, and the corresponding
labels of sentences are represented as quantum state measurement followed by collapse to
the ground state. This brings physical meaning to the model, which is beneficial to people’s
understanding of the model. Some characteristics of natural language can be explained
by quantum phenomena, i.e., polysemy of words can be well represented by quantum
entanglement, which increases the interpretability of the model to a certain extent.

Finally, there is the issue of computational complexity. As of now, it takes twice as
many resources (real and imaginary parts) to implement a quantum-inspired complex-
valued network, but that is because of simulating quantum operations in a classical com-
puter. Since n qubits need to be simulated with 2n classical bits (or 2n+1 when considering
complex values), an n−bits quantum gate needs 2n × 2n classical bits to be simulated. The
neural-network layers designed by ComplexQNN are based on complex-valued neural
networks, which are easily transferable to future quantum computers. However, when our
algorithm runs in a real quantum computer, the storage and computing resources spent
will be exponentially reduced. Existing quantum computers have exceeded 100 qubits
and are capable of handling classification tasks on small-scale natural-language-processing
datasets. We look forward to implementing our proposed algorithms in real quantum
computers in the future.

In summary, compared to classical neural-network models such as RoBERTa, Com-
plexQNN has stronger representation power, better interpretability, and the possibility of
exponential complexity reduction. However, we still face some challenges to overcome.
First, this algorithm uses classical neural networks, including complex-valued neural net-
works, to simulate the quantum-computing process. Therefore, additional parameters are
required to represent the imaginary parts. Second, the complex-valued network space is
more complex than the real-number space, and the design of complex-valued networks,
such as optimizers and network modules, needs further research. Third, the scale of exist-
ing quantum computers is too small and too expensive to use. It is difficult to completely
migrate the existing quantum-inspired methods to real quantum computers.

5. Conclusions

We propose a quantum-inspired fully complex-valued model, ComplexQNN, based
on complex-valued neural networks. We describe the construction principle of the model
as well as the implementation details and verify the effectiveness of ComplexQNN on six
sentiment-classification datasets, including binary and multi-classification. Future research
could consider two directions: the first is to encode deeper semantics, such as by developing
complex-valued transformer network modules suitable for larger datasets and applying
them in more complex scenarios, such as machine translation and recommendation systems;
the second is to build network modules using quantum-circuit models, although this is
limited in the dataset that can be processed in the NISQ era.
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