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tions, they usually fail to accomplish their intended functions. This study considers estimating the 
stress–strength reliability, for a component with a strength ( X ) that is independent of the opposing 
lower bound stress (Y ) and upper bound stress ( Z ). We assumed that the strength and stress ran-
dom variables followed a generalized inverse exponential distribution with different shape param-
eters. Under ranked set sampling (RSS) and simple random sampling (SRS) designs, we obtained 
four reliability estimators using the maximum likelihood method. The first and second reliability 
estimators were deduced when the sample data of the strength and stress distributions used the 
sample design (RSS/SRS). The third reliability estimator was determined when the sample data for 
Y  and Z  were received from the RSS and the sample data for X  were taken from the SRS. The 
fourth reliability estimator was derived when the sample data of Y  and Z  were selected from 
the SRS, while the sample data of X  were taken from the RSS. The accuracy of the suggested esti-
mators was compared using a comprehensive computer simulation. Lastly, three real data sets were 
used to determine the reliability. 
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1. Introduction 
In reliability theory, a component’s life is defined using stress–strength (SS) models, 

which include a random strength ( X ) exposed to a random stress (Y ). When the stress 
level applied to a component exceeds its strength level, the component fails immediately. 
The basic SS model ( )R P Y X= <   was first considered in [1]. Another important SS 
model is the type of [ ]P Y X Z= < < , which illustrates the situation where a strength X  
should not only be larger than a stress Y  but also smaller than a stress .Z  As a concrete 
example, it is common that electronic devices are unable to function at excessively low 
and high temperatures, and the SS model becomes of interest to model this phenomenon. 
Recently, a lot of effort has been put into estimating SS models for different stress and 
strength distributions. The maximum likelihood estimator (MLE) and uniform minimum 
unbiased estimator for   were developed in [2]. Ref. [3] constructed estimators of , 
where X  , Y   and Z   were all random variables that follow the normal distribution. 
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Abstract: In many real-world situations, systems frequently fail due to demanding operating condi-
tions. In particular, when systems reach their lowest, highest, or both extremes operating conditions,
they usually fail to accomplish their intended functions. This study considers estimating the stress–
strength reliability, for a component with a strength (X) that is independent of the opposing lower
bound stress (Y) and upper bound stress (Z). We assumed that the strength and stress random
variables followed a generalized inverse exponential distribution with different shape parameters.
Under ranked set sampling (RSS) and simple random sampling (SRS) designs, we obtained four relia-
bility estimators using the maximum likelihood method. The first and second reliability estimators
were deduced when the sample data of the strength and stress distributions used the sample design
(RSS/SRS). The third reliability estimator was determined when the sample data for Y and Z were
received from the RSS and the sample data for X were taken from the SRS. The fourth reliability
estimator was derived when the sample data of Y and Z were selected from the SRS, while the
sample data of X were taken from the RSS. The accuracy of the suggested estimators was compared
using a comprehensive computer simulation. Lastly, three real data sets were used to determine the
reliability.

Keywords: stress-strength model; generalized inverse exponential distribution; ranked set sample;
maximum likelihood method
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1. Introduction

In reliability theory, a component’s life is defined using stress–strength (SS) models,
which include a random strength (X) exposed to a random stress (Y). When the stress level
applied to a component exceeds its strength level, the component fails immediately. The
basic SS model R = P(Y < X) was first considered in [1]. Another important SS model is
the type of R = P[Y < X < Z], which illustrates the situation where a strength X should
not only be larger than a stress Y but also smaller than a stress Z. As a concrete example, it is
common that electronic devices are unable to function at excessively low and high temper-
atures, and the SS model becomes of interest to model this phenomenon. Recently, a lot of
effort has been put into estimating SS models for different stress and strength distributions.
The maximum likelihood estimator (MLE) and uniform minimum unbiased estimator for
R were developed in [2]. Ref. [3] constructed estimators of R, where X, Y and Z were all
random variables that follow the normal distribution. Ref. [4] investigated an estimator
of R, where the stresses and strength were exponentially distributed. Ref. [5] offered an
estimate of R for the Weibull distribution in the presence of outliers. The estimation of R

Axioms 2023, 12, 302. https://doi.org/10.3390/axioms12030302 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12030302
https://doi.org/10.3390/axioms12030302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4442-8458
https://orcid.org/0000-0001-8884-8281
https://orcid.org/0000-0002-1333-3862
https://orcid.org/0000-0003-0262-205X
https://doi.org/10.3390/axioms12030302
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12030302?type=check_update&version=2


Axioms 2023, 12, 302 2 of 21

when the strength and stress random variables follow the Dagum distribution was explored
in [6,7]. Ref. [8] studied the reliability estimator of R = P[Y < X < Z] from the inverse
Rayleigh distribution using data outliers. Ref. [9] looked into some classical estimation
methods, assuming an inverse Rayleigh distribution for both stresses and strength random
variables. Ref. [10] dealt with the SS parameter, when X, Y and Z had three independent
Kumaraswamy distributions.

On the other hand, an efficient and successful alternative for simple random sampling
(SRS) is ranked set sampling (RSS). When the sampling units are expensive and challenging
to measure, this is frequently used to obtain samples that are more representative of the
underlying population, simple and inexpensive to order in accordance with the variable
of interest. Numerous studies have been conducted on alterations of the RSS procedure.
The reader can find further information on the RSS system in, for example, [11–14]. Several
authors have performed studies concerning the reliability estimation of SS models under
the RSS, including [15–19].

To the best of our knowledge, there have been no papers published that employed
RSS design to assess the reliability parameter of type R = P[Y < X < Z] in the literature.
Thus, our motivation here was to assess the reliability estimator of R using the maximum
likelihood procedure, given that stresses and strength are three independent random
variables that follow the generalized inverse exponential distribution (GIED) with distinct
shape parameters and a similar scale parameter. The reliability estimator of R is discussed
in the following cases:

(i) The first and second reliability estimators of R = P[Y < X < Z] were derived
when X, Y and Z are independent random variables with the same sampling design
(RSS or SRS).

(ii) The third estimator of R was constructed when the observed stress random variables
Y and Z came from the RSS and the data for strength random variable X came from
the SRS.

(iii) Finally, we obtained the fourth estimator, assuming that the observed samples of Y
and Z came from the SRS design, and the data of X came from the RSS scheme.

Furthermore, a simulation study employing iterative methods, such as the Newton–
Raphson algorithm, was used to compare the performance of various estimators, based on
certain accuracy measures. Finally, real datasets were analyzed for illustrative purposes.

The rest of this article is organized as follows: A description of the RSS scheme is
given in Section 2. Section 3 contains the exact formulation of R based on the GIED. The
MLE of R is derived using the SRS and RSS in Sections 4 and 5, respectively. Section 6 gives
the reliability estimator of R, assuming the observed samples of Y and Z come from the
RSS, and the selected samples of X come from the SRS. Section 7 provides the reliability
estimator of R, assuming the collected samples of Y and Z are selected from the RSS, and
the selected samples of X are taken from the SRS. Section 8 contains a simulation study and
its results. Three real data sets are provided in Section 9, to examine the behavior of the
proposed estimators. Finally, in Section 10, we bring the paper to a close.

2. Structure of Ranked Set Sampling

In contrast to the same number of observations collected from SRS, the goal of RSS
design is to collect observations from a population that are more likely to cover the entire
range of values in the population. RSS has numerous applications in science, particularly in
environmental and ecological studies, where the main focus is on cost-effective and efficient
sampling techniques. Ref. [20] pioneered the theory of RSS in cases where the quantification
of sample items is too expensive or impossible, but the variable to be monitored may be
ranked more readily and cheaply than measured. The authors claimed that using RSS
to estimate a population’s mean is far more useful and preferable to using SRS. Ref. [21]
demonstrated mathematically that the RSS mean estimator outperformed SRS.
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2.1. RSS Description

The steps listed below provide an explanation of RSS

1. Randomly select n2 units from the targeted population and arrange them into n sets,
each of size n. We denote the result by

X11 X12 . . . X1n
X21 X22 . . . X2n

...
...

. . .
...

Xn1 Xn2 . . . Xnn


2 The n units within each set are sorted according to the variable of interest using visual

examination or any other inexpensive approach. The number of units, n, in each row
is called the set size. The result is presented as

X(1)1 X(2)1 . . . X(n)1
X(1)2 X(2)2 . . . X(n)2

...
...

. . .
...

X(1)n X(2)n . . . X(n)n

 which will be one cycle.

3 After ranking all sets, the smallest ranked unit is quantified from the first set. Similarly,
the second smallest ranked unit is quantified from the second set, and the procedure
continues until the largest ranked unit is quantified from the last set. As a result,
the RSS associated with this cycle will be

(
X(1)1; X(2)2; . . . ; X(n)n

)
. The measured

observations
(

X(1)1; X(2)2; . . . ; X(n)n

)
constitute a balanced RSS of size n, where the

descriptor “balanced” refers to the fact that we have collected one judgment order
statistic (OS) for each of the ranks 1, 2, . . . ,n.

4 Repeat steps (1)–(3) d times (cycles) until obtaining a sample of size n∗∗ = nd, where n

is the set size. The RSS of sample size n∗∗, will be
{

X(i)ia, i = 1, 2, . . . n, a = 1, . . . , d
}

.
It should be noted that we use the notations Xia, rather than X(i)ia, for the sake of
brevity, then the RSS can be written as {Xia, i = 1, 2, . . . n, a = 1, . . . , d}.
If the judgment ranking is perfect, the probability density function (PDF) of ith OS Xia

is given by

fia(xia) =
n!

(i− 1)!(n− i)!
[FX(xia)]

i−1 fX(xia)[1− FX(xia)]
n−i, −∞ < xia < ∞. (1)

2.2. Choices of Set Size and Cycle Number

Any RSS procedure’s performance is highly dependent on the set size. Each measured
RSS observation uses additional information derived from its ranking compared to n − 1
other units in the population for a given set size n. Perfect rankings is preferable to use a
set size n that is as large as is economically feasible, given the resources at our disposal. In
order to achieve ideal rankings, we would like to increase the set size n to the maximum
level that is economically feasible given the resources at our disposal. It is also evident that
the likelihood of ranking errors increases with the set size, i.e., the larger n is, the more
probable ranking errors are to occur. As a result, in order to best choose the set size n, one
must be able to estimate the probability of imperfect rankings and evaluate how they will
affect the RSS statistical methods [22]. Ref. [20] suggested that set sizes larger than five
would probably not improve the efficiency of the RSS very much because set sizes this
large would likely result in too many ranking errors.
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3. Description of the Model

In this section, we provide an expression for system reliability R = P[Y < X < Z],
assuming that the random variables X, Y and Z follow the GIED with different shape
parameters. For this, we need a short review of the GIED.

Inverted distributions were created to address certain laws in several widely used
distributions in a variety of fields, including the biological sciences, survival research, and
engineering sciences. Different aspects of the behavior of the related probability functions
may be seen in these distributions. Ref. [23] proposed a useful two-parameter extension
of the inverted exponential distribution, known as the GIED. They mentioned that the
GIED offers a superior fit than the gamma, Weibull, generalized exponential, and inverted
exponential distributions in a number of situations. The probability density function (PDF)
of the GIED with the shape parameter ϑ1 and the scale parameter δ is given by

fX(x) =
δϑ1

x2 e−(δ/x)
(

1− e−(δ/x)
)ϑ1−1

; x, δ, ϑ1 > 0. (2)

The cumulative distribution function (CDF) of the GIED is given by

FX(x) = 1−
(

1− e−(δ/x)
)ϑ1

; x, δ, ϑ1 > 0. (3)

The hazard rate function (HRF) of the GIED is given by

HX(x) =
δϑ1

x2
(
1− e−(δ/x)

) e−(δ/x); x, δ, ϑ1 > 0. (4)

Ref. [24] mentioned that the GIED is a special case of the exponentiated Fréchet
distribution. Due to the CDF closed shape, the GIED is frequently used in studies, including
accelerated life testing, horse racing, grocery store lines, sea currents, wind speeds, and a
variety of other topics (see [25]). Figure 1 displays the different forms achieved with the
PDF. We can observe that it is right-skewed and unimodal. Depending on the distribution’s
shape parameter, the HRF of the GIED increases then decreases, in an upside-down shape,
but it is not constant, as illustrated in Figure 2.

Figure 1. Plots of the PDF of the GIED for different parameter values.
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Figure 2. Plots of the HRF for the GIED for different parameter values.

Researchers have made various contributions and applications in various fields using
different types of data relevant to the GIED. For example, in reliability studies, Ref. [26]
explored reliability estimates for the GIED in progressively censored samples. A parameter
estimation for the GIED using different methods and schemes was provided in [27,28]. In
statistical quality control, Ref. [29] discussed a two-stage acceptance sampling plan for the
GIED. Under hybrid random censoring, Ref. [30] presented the Bayesian inference on the
GIED parameters. In life testing experiments, Ref. [31] investigated the estimation and
prediction for the GIED based on progressively censored first-failure data. Ref. [32] looked
into Bayesian estimators and SS reliability (SSR) estimators related to the GIED, based on
progressively censored first-failure data. Ref. [33] investigated parameter estimation in
the context of the GIED using an adaptive progressive hybrid censoring scheme. Ref. [34]
investigated the reliability of Bayesian analysis in multicomponent SS for the GIED using
upper record data. Ref. [35] investigated a competing risks model where the lifetimes were
independent random variables that followed the GIED.

To obtain SSR, R = P[Y < X < Z], let the strength X~GIED(δ, ϑ1), the stress
Y~GIED(δ, ϑ2), and stress Z~GIED(δ, ϑ3), where X, Y and Z are independent random
variables (the tilde notation meaning “follows the distribution”). According to Ref. [3], the
reliability formula of the SS model of R = P[Y < X < Z], takes the following form:

R = P[Y < X < Z] =
∫ ∞

−∞
GY(x)HZ(x)dFX(x) , (5)

where FX(x) is the CDF of X, GY(x) is the CDF of Y at x, and HZ(x) is the survival function
of Z at x. Hence, R = P[Y < X < Z], is derived as follows:

R = P[Y < X < Z] = δϑ1

∫ ∞

0

(
1− e−(δ/x)

)ϑ3
[

1−
(

1− e−(δ/x)
)ϑ2
]

x−2e−(δ/x)
(

1− e−(δ/x)
)ϑ1−1

dx. (6)

Let y = e−(δ/x) → dy = δx−2e−(δ/x)dx, then R obtains the following ratio-parametric
formula:

R =
ϑ1

ϑ1 + ϑ3
− ϑ1

ϑ1 + ϑ2 + ϑ3
=

ϑ1ϑ2

(ϑ1 + ϑ3)(ϑ1 + ϑ2 + ϑ3)
. (7)
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It is worth noting that the SS parameter in (7) is dependent on the parameters ϑ1, ϑ2
and ϑ3.

4. Estimator of R1 = P[YSRS < XSRS < ZSRS]

In this section, the MLE ofR1, say R̂1, is discussed, where X1, X2, . . . , Xn∗1 , Y1, Y2, . . . , Yn∗2

and Z1, Z2, . . . , Zn∗3 are independent random variables of the GIED with parameters (δ, ϑ1),
(δ, ϑ2), and (δ, ϑ3), respectively, under the SRS. To calculate the MLE of R1, we first ob-
tain the MLE of ϑ1, ϑ2, ϑ3, and δ. The joint log likelihood function of the random samples
x1, x2, . . . , xn∗1 ,y1, y2, . . . , yn∗2 , and z1, z2, . . . , zn∗3 is

ln `1 = n∗1 ln ϑ1 + n∗2 ln ϑ2 + n∗3 ln ϑ3 + (n∗1 + n∗2 + n∗3) ln δ− 2

[
n∗1
∑

i1=1
ln xi1 +

n∗2
∑

i2=1
ln yi2 +

n∗3
∑

i3=1
ln zi3

]
−

n∗1
∑

i1=1

δ
xi1
−

n∗2
∑

i2=1

δ
yi2
−

n∗3
∑

i3=1

δ
zi3

+ (ϑ1 − 1)
n∗1
∑

i1=1
Ai1 (δ) + (ϑ2 − 1)

n∗2
∑

i2=1
Ai2(δ) + (ϑ3 − 1)

n∗3
∑

i3=1
Ai3(δ),

(8)

where Ai1(δ) = ln
(

1− e−(δ/xi 1
)
)

,Ai2(δ) = ln
(

1− e−(δ/yi 2
)
)

, Ai3(δ) = ln
(

1− e−(δ/zi 3
)
)

.
The equations below are determined using differentiation (Equation (8)) linked to the

population parameters.
∂ ln `1

∂ϑ1
=

n∗1

ϑ1
+

n∗1

∑
i1=1

Ai1(δ), (9)

∂ ln `1

∂ϑ2
=

n∗2

ϑ2
+

n∗2

∑
i2=1

Ai2(δ), (10)

∂ ln `1

∂ϑ3
=

n∗3

ϑ3
+

n∗3

∑
i3=1

Ai3(δ), (11)

∂ ln `1
∂δ = (n∗1+n∗2+n∗3)

δ −
[

n∗1
∑

i1=1
(xi1)

−1 +
n∗2
∑

i2=1
(yi2)

−1 +
n∗3
∑

i3=1
(zi3)

−1

]
+

n∗1
∑

i1=1
(ϑ1 − 1)A′i1(δ) +

n∗2
∑

i2=1
(ϑ2 − 1)A′i2(δ)

+
n∗3
∑

i3=1
(ϑ3 − 1)A′i3(δ),

(12)

where A′i1(δ) =
∂Ai1

(δ)

∂δ =
[

xi1

(
e(δ/xi1

) − 1
)]−1

,A′i2(δ) =
∂Ai2 (δ)

∂δ =
{

yi2

(
e(δ/yi2 ) − 1

)}−1

and A′i3(δ) =
∂Ai3 (δ)

∂δ =
{

zi3

(
e(δ/zi3 ) − 1

)}−1
.

Put (9)–(11) with zero to yield the MLEs of ϑ1, ϑ2 and ϑ3 as a function of δ. They are
explicated as:

ϑ̂1(δ) =
−n∗1

n∗1
∑

i1=1
Ai1(δ)

, ϑ̂2(δ) =
−n∗2

n∗2
∑

i2=1
Ai2(δ)

, ϑ̂3(δ) =
−n∗3

n∗3
∑

i3=1
Ai3(δ)

(13)

Set (13) in (12) and equate with zero, which leads to the following equation:

n∗1 + n∗2 + n∗3[
n∗1
∑

i1=1

1
xi1

+
n∗2
∑

i2=1

1
yi2

+
n∗3
∑

i3=1

1
zi3

]
+

 n∗1
n∗1
∑

i1=1
Ai1

(δ̂)

+ 1


(

n∗1
∑

i1=1
A′i1 (δ̂)

)
+

 n∗2
n∗2
∑

i2=1
Ai2

(δ̂)

+ 1


(

n∗2
∑

i2=1
A′i2 (δ̂)

)
+

 n∗3
n∗3
∑

i3=1
Ai3

(δ̂)

+ 1


(

n∗3
∑

i3=1
A′i3 (δ̂)

) = 0. (14)

Using the Newton–Raphson iterative method, the MLE of δ, say δ̂ is produced from
(14). Hence, the MLEs of ϑ1, ϑ2, and ϑ3 say ϑ̂1, ϑ̂2, and ϑ̂3, are yielded by inserting δ̂ in (13).
The SS estimator R̂1 is also provided by putting ϑ̂1, ϑ̂2, and ϑ̂3 in (7).
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5. Estimator of R2 = P[YRSS < XRSS < ZRSS]

In this section, the MLE of R2, say R̂2, is obtained where strength X, and stresses Y
and Z, are independent random variables that follow the GIED with parameters (δ, ϑ1),
(δ, ϑ2), and (δ, ϑ3), respectively, using the RSS method.

Let Xka represent the OS of the kth sample, k = 1, 2, . . . , n1, in the ath cycle,
a = 1, 2, . . . , dx, n∗∗1 = n1dx from the GIED (δ, ϑ1). Hence, the RSS of the strength X
for (dx) cycle with sample size n∗∗1 = n1dx, where a = 1, 2, . . . , dx, and n1 the set size, is
represented as Xka ≡ {X1a, X2a, . . . , Xn1a}.

Similarly, let Ysb, be the OS of sth sample, s = 1, 2, . . . ,n2, in the bth cycle,
b = 1, 2, . . . ,dy, n∗∗2 = n2dy from the GIED (δ, ϑ2). Hence, the RSS of the stress Y for
(dy) cycle with sample size n∗∗2 = n2dy, where, b = 1, 2, . . . ,dy and n2 the set size, is
represented as Ysb ≡

{
Y1b, Y2b, . . . , Yn2b

}
.

In addition, suppose that Ztc is the OS of tth sample, t = 1, 2, . . . ,n3, in the cth cycle,
c = 1, 2, . . . ,dz, n∗∗3 = n3dz from the GIED (δ, ϑ3). Hence, the RSS of the stress Z for (dz)
cycle with sample size n∗∗3 = n3dz, c = 1, 2, . . . ,dz, and n3 the set size is represented as
Ztc ≡ {Z1c, Z2c, . . . , Zn3c}.

It is worth noting that the PDFs of Xka, Ysb and Ztc are equivalent to the PDFs of the
kth, sth, and tth OS, respectively. Based on PDF (1), the likelihood function of Xka, Ysb and
Ztc using the RSS is given by

`2 =
dx
∏

a=1

n1
∏

k=1

C1δϑ1
x2

ka
e(−δ/xka)(Ξ1(xka, δ))ϑ1(n1−k+1)−1[1− (Ξ1(xka, δ))ϑ1 ]

k−1

×
dy

∏
b=1

n2
∏

s=1

C2δϑ2
y2

sb
e(−δ/ysb )(Ξ2(ysb, δ))ϑ2(n2−s+1)−1[1− (Ξ2(ysb, δ))ϑ2 ]

s−1

×
dz
∏

c=1

n3
∏

t=1

C3δϑ3
z2

t c
e(−δ/ztc )(Ξ3(ztc, δ))ϑ3(n3−t+1)−1[1− (Ξ3(ztc, δ))ϑ3 ]

t−1
,

where Ci =
ni!

(∆−1)!(ni−∆)! , i = 1, 2, 3; ∆ ≡ (k, s, t), respectively, Ξ1(xka, δ) =
[
1− e−(δ/xka )

]
,

Ξ2(ysb, δ) =
[
1− e−(δ/ysb )

]
, Ξ3(ztc, δ) =

[
1− e−(δ/ztc )

]
.

The log-likelihood function, based on the RSS, is obtained as

ln `2 ∝ n∗∗1 ln(δϑ1)−
dx
∑

a=1

[ n1
∑

k=1

δ
xka
− [ϑ1(n1 − k + 1)− 1] ln(Ξ1(xka, δ))− (k− 1) ln

(
1− (Ξ1(xka, δ))ϑ1

)]
+ n∗∗2 ln(δϑ2)

−
dy

∑
b=1

n2
∑

s=1

δ
ys b

+
dy

∑
b=1

{ n2
∑

s=1

{
[ϑ2(n2 − s + 1)− 1] ln(Ξ2(ysb, δ)) + (s− 1) ln

(
1− (Ξ2(ysb, δ))ϑ2

)}}
+ n∗∗3 ln(δϑ3)

−
dz
∑

c=1

n3
∑

t=1

δ
zt c
− [ϑ3(n3 − t + 1)− 1] ln(Ξ3(ztc, δ)) +

dz
∑

c=1

n3
∑

t=1
(t− 1) ln

(
1− (Ξ3(ztc, δ))ϑ3

)
.

The MLEs of ϑ1, ϑ2, ϑ3, and δ are obtained by maximizing this function with respect to
the parameters, and can be generated as follows:

∂ ln `2
∂δ =

(
n∗∗1+n∗∗2+n∗∗3

δ

)
−

dx
∑

a=1

{
n1
∑

k=1

[
1

xka
− [ϑ1(n1−k+1)−1]e−(δ/xk a)

xkaΞ1(xka ,δ) + (k−1)ϑ1(Ξ1(xka ,δ))ϑ1−1e−(δ/xka)

xka

(
1−(Ξ1(xka ,δ))ϑ1

)
]}

−
dy

∑
b=1

n2
∑

s=1

1
ysb

+
dy

∑
b=1

{
n2
∑

s=1

[
[ϑ2(n2−s+1)−1]e−(δ/ysb)

(Ξ2(ysb ,δ)) ysb
− (s−1)ϑ2(Ξ2(ysb ,δ))ϑ2−1e−(δ/ysb)

ysb

(
1−(Ξ2(ysb ,δ))ϑ2

)
]}

+
dz
∑

c=1

n3
∑

t=1

[ϑ3(n3−t+1)−1]e−(δ/ztc)

Ξ3(ztc ,δ) ztc
−

dz
∑

c=1

{
n3
∑

t=1

[
1

ztc
+ (t−1)ϑ3(Ξ3(ztc ,δ))ϑ3−1e−(δ/ztc)

ztc

(
1−(Ξ3(ztc ,δ))ϑ3

)
]}

,

(15)

∂ ln `2

∂ϑ1
=

n∗∗1

ϑ1
+

dx

∑
a=1

n1

∑
k=1

(n1 − k + 1) ln(Ξ1(xka, δ))− (k− 1) ln(Ξ1(xka, δ))(
(Ξ1(xka, δ))−ϑ1 − 1

)
, (16)
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∂ ln `2

∂ϑ2
=

n∗∗2

ϑ2
+

dy

∑
b=1

n2

∑
s=1

(n2 − s + 1) ln(Ξ2(ybs, δ))− (s− 1) ln(Ξ2(ybs, δ))(
(Ξ2(ybs, δ))−ϑ2 − 1

)
, (17)

∂ ln `2

∂ϑ3
=

n∗∗3

ϑ3
+

dz

∑
c=1

n3

∑
t=1

(n3 − t + 1) ln(Ξ3(zct, δ))− (t− 1) ln(Ξ3(ztc, δ))(
(Ξ3(zct, δ))−ϑ3 − 1

)
. (18)

Thus, the MLEs of δ, ϑ1, ϑ2, and ϑ3 are obtained by placing (15)–(18) to zero and
solving numerically with an iterative technique, such as the Newton–Raphson algorithm;
we obtain R̂2 by putting these MLEs in (7).

6. Estimator of R3=P[YRSS<XSRS<ZRSS]

In this section, the MLE, R̂3, is determined when the strength data of X are taken from
the SRS, while the stresses data of Y and Z are taken from the RSS design. We assume that
X~GIED(δ, ϑ1),Y~GIED(δ, ϑ2), and Z~GIED(δ, ϑ3), and that X, Y and Z are independent.

Let X1, X2, . . . , Xn∗1 be a SRS observed from the GIED (δ, ϑ1). Let Ysb, be the OS of sth
sample, s = 1, 2, . . . ,n2, in the bth cycle, b = 1, 2, . . . ,dy, with sample size n∗∗2 = n2dy, from
the GIED (δ, ϑ2). In addition, suppose that Ztc is the OS of the tth sample, t = 1, 2, . . . ,n3,
in the cth cycle, c = 1, 2, . . . ,dz, with sample size n∗∗3 = n3dz, from the GIED (δ, ϑ3). The
likelihood function `3 in this case is as follows:

`3 =
n∗1
∏

i1=1

δϑ1
x2

i1

e−(δ/xi1
)
(

1− e−(δ/xi1
)
)ϑ1−1

×
dy

∏
b=1

n2
∏

s=1

C2δϑ2
y2

sb
e(−δ/ysb )(Ξ2(ysb, δ))ϑ2(n2−s+1)−1[1− (Ξ2(ysb, δ))ϑ2 ]

s−1

×
dz
∏

c=1

n3
∏

t=1

C3δϑ3
z2

t c
e(−δ/ztc )(Ξ3(ztc, δ))ϑ3(n3−t+1)−1[1− (Ξ3(ztc, δ))ϑ3 ]

t−1
,

The log-likelihood function, denoted by `3, is given by

ln `3 ∝ n∗1 ln(ϑ1δ) + n∗∗
2

ln(δϑ2)−
n∗1
∑

i1=1

δ
xi1

+ (ϑ1 − 1)
n∗1
∑

i1=1
ln
(

1− e−(δ/xi 1
)
)
−

dy

∑
b=1

n2
∑

s=1

δ
ys b

+
dz
∑

c=1

n3
∑

t=1
(t− 1) ln

(
1− (Ξ3(ztc, δ))ϑ3

)
+

dy

∑
b=1

{ n2
∑

s=1

{
[ϑ2(n2 − s + 1)− 1] ln(Ξ2(ybs, δ)) + (s− 1) ln

(
1− (Ξ2(ybs, δ))ϑ2

)}}
+ n∗∗

3
ln(δϑ3)

−
dz
∑

c=1

n3
∑

t=1

[
δ

zt c
− [ϑ3(n3 − t + 1)− 1] ln(Ξ3(ztc, δ))

]
.

The MLEs of δ,ϑ1, ϑ2, and ϑ3 are derived by maximizing ln `3 with respect to them.
The first partial derivatives of ϑ1, ϑ2, and ϑ3 are produced in (9), (17), and (18). The first
partial derivative of δ is

∂ ln `3
∂δ = n∗1+n∗∗2+n∗∗3

δ −
n∗1
∑

i1=1

1
xi1

+
n∗1
∑

i1=1
(ϑ1 − 1)A′i1 (δ)−

dy

∑
b=1

n2
∑

s=1

1
ysb
−

dz
∑

c=1

{
n3
∑

t=1

[
1

ztc
+ (t−1)ϑ3(Ξ3(ztc ,δ))ϑ3−1e−(δ/ztc )

ztc

(
1−(Ξ3(ztc ,δ))ϑ3

)
]}

+
dy

∑
b=1

{
n2
∑

s=1

[
[ϑ2(n2−s+1)−1]e−(δ/ysb )

(Ξ2(ysb ,δ)) ysb
− (s−1)ϑ2(Ξ2(ysb ,δ))ϑ2−1e−(δ/ysb )

ysb

(
1−(Ξ2(ysb ,δ))ϑ2

)
]}

+
dz
∑

c=1

n3
∑

t=1

[ϑ3(n3−t+1)−1]e−(δ/ztc )

Ξ3(ztc ,δ) ztc
.

(19)

Setting (9), (17), (18), and (19) to zero and solving numerically the yield MLEs of
ϑ1, ϑ2, ϑ3, and δ. Then inserting these MLEs in (7) yield R̂3.

7. Estimator of R4 = P[YSRS < XRSS < ZSRS]

In this section, the MLE, R̂4 is obtained when the data of X are collected from the RSS,
while data of Y and Z are observed from the SRS design. We assume that X~GIED(δ, ϑ1),
Y~GIED(δ, ϑ2), and Z~GIED(δ, ϑ3) and that X, Y and Z are independent.

Let Xka represent the OS of the kth sample, k = 1, 2, . . . , n1, in the ath cycle,
a = 1, 2, . . . , dx, from the GIED (δ, ϑ1). Let Y1, Y2, . . . , Yn∗2 be an SRS observed from the
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GIED(δ, ϑ2). Let Z1, Z2, . . . , Zn∗3 be an SRS observed from the GIED(δ, ϑ3). The likelihood
function `4 in this case is as follows:

`4 ∝
dx
∏

a=1

n1
∏

k=1

C1δϑ1
x2

ka
e(−δ/xka)(Ξ1(xka, δ))ϑ1(n1−k+1)−1[1− (Ξ1(xka, δ))ϑ1 ]

k−1

×
n∗2
∏

i2=1

δϑ2
y2

i2

e−(δ/yi2
)
(

1− e−δ/yi2

)ϑ2−1 n∗3
∏

i3=1

δϑ3
z2

i3

e−(δ/zi3
)
(

1− e−(δ/zi3
)
)ϑ3−1

.

The log-likelihood function is given by

ln `4 ∝ (n∗∗1 + n∗2 + n∗3) ln δ + n∗∗1 ln(ϑ1) + n∗2 ln(ϑ2) + n∗3 ln(ϑ3)−
dx
∑

a=1

{ n1
∑

k=1

[
δ

xka
− [ϑ1(n1 − k + 1)− 1] ln(Ξ1(xka, δ))

]}
+

dx
∑

a=1

n1
∑

k=1
(k− 1) ln

(
1− (Ξ1(xka, δ))ϑ1

)
+

n∗2
∑

i2=1

[
δ

yi2
− (ϑ2 − 1)Ai2 (δ)

]
−

n∗3
∑

i3=1

[
δ

zi3
− (ϑ3 − 1)Ai3 (δ)

]
.

The MLEs of ϑ1, ϑ2, ϑ3, and δ are obtained by maximizing this function with respect to
the parameters. In order to obtain them via analytical equations, the first partial derivatives
of ϑ1, ϑ2, and ϑ3 are supplied in (16), (10), and (11). The partial derivative of δ is yielded as

∂ ln `4
∂δ = −

dx
∑

a=1

{
n1
∑

k=1

[
1

xka
− [ϑ1(n1−k+1)−1]e−(δ/xk a)

xkaΞ1(xka ,δ) + (k−1)ϑ1(Ξ1(xka ,δ))ϑ1−1e−(δ/xka)

xka

(
1−(Ξ1(xka ,δ))ϑ1

)
]}

(n∗∗1+n∗2+n∗3)
δ −

n∗2
∑

i2=1

[
1

yi2
− (ϑ2 − 1)A′i2(δ)

]
−

n∗3
∑

i3=1

[
1

zi3
− (ϑ2 − 1)A′i3(δ)

]
.

(20)

Thus, the MLEs of ϑ1, ϑ2, ϑ3, and δ are obtained by setting (16), (10), (11), and (20) to
zero and solving numerically. Consequently, R̂4 is calculated after putting the MLEs of
ϑ1, ϑ2, ϑ3, and δ in (7).

8. Simulation Examination

In this section, we performed an extensive simulation study, to explore the behavior of
various estimators under the suggested sampling procedures. The measures of precision,
including the absolute bias (AB), standard error (SE), mean squared error (MSE), and
relative efficiency (RE) were employed. The algorithm via MathCAD 14 is outlined in the
following steps:

� The true parameters values of (ϑ1, ϑ2, ϑ3, δ) are selected as (1.8, 30, 0.6, 0.5), (2.35,
40, 0.49, 0.5), (5, 45, 0.5, 0.5), and (8, 185, 0.5, 0.5). The associated values of R
are as follows: 0.694, 0.773, 0.81, and 0.9. The number of cycles was selected as
dx = dy = dz = d = 5 in all experiments.

� The observed SRS x1, x2, . . . , xn∗1 , y1, y2, . . . , yn∗2 and z1, z2, . . . , zn∗3 , where the sam-
ple sizes are (n∗1, n∗2, n∗3) =(10,10,10), (20,20,20), (30,30,30), (20,10,20), (30,10,30),
(10,20,10), (10,30,10), (30,20,30), and (20,30,20).

� The RSS of xka, ysb, and ztc, are represented, respectively, by
x1a, x2a, . . . , xn1a,; y1b, y2b, . . . , yn2b, z1c, z2c, . . . , zn3c, where
a = 1, 2, . . . , dx, b = 1, 2 . . . , dy, c = 1, 2, . . . ,dz, having set the following sizes:
(n1, n2, n3) = (2,2,2), (4,4,4), (6,6,6), (4,2,4), (6,2,6), (2,4,2), (2,6,2), (6,4,6), and (4,6,4).
Hence, the sample sizes are (n∗∗1, n∗∗2, n∗∗3) =(10,10,10), (20,20,20), (30,30,30),
(20,10,20), (30,10,30), (10,20,10), (10,30,10), (30,20,30), and (20,30,20), where the number
of cycles is dx = dy = dz = d = 5.

� Generate 1000 SRS and RSS from X~GIED(ϑ1, δ), Y~GIED(ϑ2, δ), and Z~GIED(ϑ3, δ)
using the inversion method.

� Under the selected sampling design, the estimates of the parameters as well as their
reliability estimates R̂1, R̂2, R̂3 and R̂4 were calculated.
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� The AB, SE, and MSE were calculated using the following relations:

AB = 1
1000

1000
∑

i=1

∣∣∣R̂i −R
∣∣∣,SE = 1

1000

1000
∑

i=1

[√
(R̂i−R)

2

τj

]
, τj ≡ (nj

∗, n∗∗j ), j = 1, 2, 3,

MSE = 1
1000

1000
∑

i=1

(
R̂i −R

)2
.

� The efficiencies of the different estimates under selective schemes with respect to the
SRS were defined by

RE1(R̂) =
MSER1

MSER2

, RE2(R̂) =
MSER3

MSER4

.

The values of the AB, SE, MSE, and RE are summarized in Tables 1–8. From the nu-
merical outcomes given in Tables 1–8 and Figures 3–6, we can conclude the following:

Table 1. Measurements of R̂1 and R̂2 for sampling schemes at R = 0.9 and d = 5.

(n*
2,n*

1,n*
3)

P(YSRS < XSRS < ZSRS)
(n2,n1,n3)

P(YRSS < XRSS < ZRSS)
RE1(R̂)AB SE MSE R̂1 AB SE MSE R̂2

(10,10,10) 0.0110 0.0483 0.00245 0.88881 (2,2,2) 0.0100 0.04182 0.00185 0.88983 1.32

(20,20,20) 0.0081 0.0221 0.00055 0.89171 (4,4,4) 0.0145 0.02617 0.00089 0.88535 0.62

(30,30,30) 0.0053 0.0209 0.00047 0.89458 (6,6,6) 0.0152 0.01823 0.00056 0.88464 0.84

(20,10,20) 0.0059 0.0292 0.00089 0.89384 (4,2,4) 0.0134 0.03683 0.00154 0.88645 0.58

(30,10,30) 0.0479 0.0482 0.00462 0.85184 (6,2,6) 0.0158 0.02462 0.00085 0.88406 5.44

(10,20,10) 0.0072 0.0379 0.00149 0.89268 (2,4,2) 0.0137 0.03694 0.00155 0.88616 0.96

(10,30,10) 0.0146 0.0414 0.00193 0.88523 (2,6,2) 0.0166 0.03438 0.00146 0.88323 1.32

(30,20,30) 0.00629 0.0244 0.00064 0.89354 (6,4,6) 0.01487 0.02035 0.00064 0.88496 1.00

(20,30,20) 0.00930 0.0231 0.00062 0.89053 (4,6,4) 0.01553 0.02396 0.00082 0.88430 0.76

Table 2. Measurements of R̂3 and R̂4 for sampling schemes at R = 0.9 and d = 5.

(n2,n*
1,n3)

P(YRSS < XSRS < ZRSS)
(n*

2,n1,n*
3)

P(YSRS < XRSS < ZSRS)
RE2(R̂)AB SE MSE R̂3 AB SE MSE R̂4

(2,10,2) 0.0130 0.02510 0.00080 0.91283 (10,2,10) 0.00606 0.04109 0.00172 0.9059 0.47

(4,20,4) 0.0171 0.02240 0.00079 0.91692 (20,4,20) 0.00311 0.02765 0.00077 0.90294 1.03

(6,30,6) 0.0163 0.01694 0.00055 0.91612 (30,6,30) 0.00093 0.0218 0.00048 0.90077 1.15

(4,10,4) 0.0123 0.02535 0.00080 0.91217 (20,2,20) 0.0034 0.03279 0.00109 0.90323 0.73

(6,10,6) 0.0101 0.02057 0.00053 0.90997 (30,2,30) 0.00177 0.02753 0.00076 0.9016 0.70

(2,20,2) 0.0107 0.03324 0.00122 0.91056 (10,4,10) 0.00305 0.03687 0.00137 0.90288 0.89

(2,30,2) 0.0110 0.02984 0.00101 0.91085 (10,6,10) 0.00036 0.0329 0.00108 0.90019 0.94

(6,20,6) 0.0146 0.01709 0.00051 0.91445 (30,4,30) 0.00152 0.02391 0.00057 0.90136 0.89

(4,30,4) 0.0175 0.02037 0.00072 0.91736 (20,6,20) 0.00096 0.02501 0.00063 0.9008 1.14
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Table 3. Measurements of R̂1 and R̂2 for different sampling schemes at R = 0.81 and d = 5.

(n*
2,n*

1,n*
3)

P(YSRS < XSRS < ZSRS)
(n2,n1,n3)

P(YRSS < XRSS < ZRSS)
RE1(R̂)AB SE MSE R̂1 AB SE MSE R̂2

(10,10,10) 0.0272 0.05488 0.00375 0.78287 (2,2,2) 0.00787 0.05771 0.00339 0.81796 1.11

(20,20,20) 0.0009 0.03774 0.00142 0.81098 (4,4,4) 0.00390 0.03500 0.00124 0.81398 1.15

(30,30,30) 0.0002 0.03631 0.00132 0.80996 (6,6,6) 0.00330 0.02498 0.00064 0.81338 2.06

(30,10,30) 0.0034 0.04114 0.00170 0.80670 (6,2,6) 0.00128 0.02967 0.00088 0.81136 1.93

(10,20,10) 0.0319 0.08350 0.00799 0.77814 (2,4,2) 0.00599 0.04876 0.00241 0.81607 3.32

(10,30,10) 0.0053 0.05750 0.00333 0.80477 (2,6,2) 0.00396 0.04348 0.00191 0.81404 1.74

(30,20,30) 0.0023 0.03853 0.00149 0.80774 (6,4,6) 0.00407 0.02659 0.00072 0.81415 2.07

(20,30,20) 0.0006 0.04367 0.00191 0.81069 (4,6,4) 0.00397 0.03223 0.00105 0.81405 1.82

Table 4. Measurements of R̂3 and R̂4 for different sampling schemes at R = 0.81 and d = 5.

(n2,n*
1,n3)

P(YRSS < XSRS < ZRSS)
(n*

2,n1,n*
3)

P(YSRS < XRSS < ZSRS)
RE2(R̂)AB SE MSE R̂3 AB SE MSE R̂4

(2,10,2) 0.0165 0.05901 0.00375 0.82654 (10,2,10) 0.00072 0.06388 0.00408 0.80936 0.92

(4,20,4) 0.0223 0.03439 0.00168 0.83239 (20,4,20) 0.00559 0.04316 0.00189 0.80449 0.89

(6,30,6) 0.0188 0.02362 0.00091 0.79128 (30,6,30) 0.00801 0.03569 0.00134 0.80207 0.68

(4,10,4) 0.0178 0.03867 0.00181 0.82784 (20,2,20) 0.00750 0.04821 0.00238 0.80258 0.76

(6,10,6) 0.0148 0.03717 0.00160 0.82489 (30,2,30) 0.00670 0.04119 0.00174 0.80338 0.92

(2,20,2) 0.0159 0.05065 0.00282 0.82602 (10,4,10) 0.00897 0.05586 0.00320 0.80112 0.88

(2,30,2) 0.0168 0.04575 0.00238 0.82688 (10,6,10) 0.01359 0.05303 0.00300 0.79649 0.79

(6,20,6) 0.0228 0.02829 0.00132 0.83286 (30,4,30) 0.00733 0.03837 0.00153 0.80275 0.86

(4,30,4) 0.0242 0.03200 0.00161 0.83426 (20,6,20) 0.00761 0.04006 0.00166 0.80247 0.97

Table 5. Measurements of R̂1 and R̂2 for sampling schemes at R = 0.773 and d = 5.

(n*
2,n*

1,n*
3)

P(YSRS < XSRS < ZSRS)
(n2,n1,n3)

P(YRSS < XRSS < ZRSS)
RE1(R̂)AB SE MSE R̂1 AB SE MSE R̂2

(10,10,10) 0.0018 0.08127 0.00661 0.77079 (2,2,2) 0.00416 0.06664 0.00446 0.77677 1.48

(20,20,20) 0.0073 0.05741 0.00335 0.76537 (4,4,4) 0.00292 0.03620 0.00132 0.77553 2.54

(30,30,30) 0.0103 0.05534 0.00317 0.76229 (6,6,6) 0.00318 0.02536 0.00065 0.77579 4.88

(20,10,20) 0.0273 0.05340 0.00359 0.79986 (4,2,4) 0.00075 0.03528 0.00125 0.77335 2.87

(30,10,30) 0.0023 0.06634 0.00441 0.77028 (6,2,6) 0.00075 0.03528 0.00125 0.77335 3.53

(10,20,10) 0.0389 0.05865 0.00496 0.73363 (2,4,2) 0.00140 0.05372 0.00289 0.77401 1.72

(10,30,10) 0.0195 0.05127 0.00301 0.7921 (2,6,2) 0.00058 0.04866 0.00237 0.77319 1.27

(30,20,30) 0.0089 0.02982 0.00097 0.78154 (6,4,6) 0.00294 0.02816 0.00080 0.77555 1.21

(20,30,20) 0.0316 0.04057 0.00264 0.74104 (4,6,4) 0.00304 0.03455 0.00120 0.77565 2.20
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Table 6. Measurements of R̂3 and R̂4 for sampling schemes at R = 0.773 and d = 5.

(n2,n*
1,n3)

P(YRSS < XSRS < ZRSS)
(n*

2,n1,n*
3)

P(YSRS < XRSS < ZSRS)
RE2(R̂)AB SE MSE R̂3 AB SE MSE R̂4

(2,10,2) 0.0301 0.05675 0.00413 0.80279 (10,2,10) 0.00351 0.07160 0.00514 0.77612 0.80

(4,20,4) 0.0554 0.03235 0.00412 0.82803 (20,4,20) 0.00396 0.04729 0.00225 0.77657 1.83

(6,30,6) 0.0691 0.02140 0.00524 0.84175 (30,6,30) 0.00009 0.03847 0.00148 0.77270 3.54

(4,10,4) 0.0523 0.03488 0.00395 0.82487 (20,2,20) 0.00359 0.05613 0.00316 0.77619 1.25

(6,10,6) 0.0645 0.02438 0.00475 0.83709 (30,2,30) 0.00214 0.04492 0.00202 0.77475 2.35

(2,20,2) 0.0306 0.05382 0.00383 0.80317 (10,4,10) 0.00159 0.06253 0.00391 0.77420 0.98

(2,30,2) 0.0299 0.05120 0.00352 0.80256 (10,6,10) 0.00106 0.05941 0.00353 0.77155 1.00

(6,20,6) 0.0682 0.02319 0.00519 0.84079 (30,4,30) 0.00232 0.04096 0.00168 0.77493 3.09

(4,30,4) 0.0566 0.02947 0.00407 0.82917 (20,6,20) 0.00181 0.04488 0.00202 0.77080 2.01

Table 7. Measurements of R̂1 and R̂2 for sampling schemes at R = 0.694 and d = 5.

(n*
2,n*

1,n*
3)

P(YSRS < XSRS < ZSRS)
(n2,n1,n3)

P(YRSS < XRSS < ZRSS)
RE1(R̂)AB SE MSE R̂1 AB SE MSE R̂2

(10,10,10) 0.0340 0.07046 0.00612 0.66042 (2,2,2) 0.00962 0.07688 0.00600 0.70407 1.02

(20,20,20) 0.0303 0.04253 0.00273 0.72478 (4,4,4) 0.00520 0.04342 0.00191 0.69965 1.43

(30,30,30) 0.0021 0.03874 0.00151 0.69236 (6,6,6) 0.00376 0.02996 0.00091 0.69820 1.66

(20,10,20) 0.0334 0.04808 0.00343 0.66102 (4,2,4) 0.00251 0.05278 0.00279 0.69695 1.23

(30,10,30) 0.0569 0.03504 0.00447 0.75137 (6,2,6) 0.00440 0.04551 0.00209 0.69885 2.14

(10,20,10) 0.0529 0.07051 0.00777 0.64159 (2,4,2) 0.00376 0.06645 0.00443 0.69821 1.75

(10,30,10) 0.0047 0.06488 0.00423 0.68972 (2,6,2) 0.00139 0.06209 0.00386 0.69306 1.10

(30,20,30) 0.0234 0.03663 0.00189 0.71782 (6,4,6) 0.00516 0.03250 0.00108 0.69960 1.75

(20,30,20) 0.0334 0.04152 0.00284 0.72789 (4,6,4) 0.00143 0.04013 0.00161 0.69587 1.76

Table 8. Measurements of R̂3 and R̂4 for sampling schemes at R= 0.694 and d = 5.

(n2,n*
1,n3)

P(YRSS < XSRS < ZRSS)
(n*

2,n1,n*
3)

P(YSRS < XRSS < ZSRS)
RE2(R̂)AB SE MSE R̂3 AB SE MSE R̂4

(2,10,2) 0.0432 0.07127 0.00695 0.73766 (10,2,10) 0.00603 0.08770 0.00773 0.70048 0.90

(4,20,4) 0.0769 0.03659 0.00725 0.77135 (20,4,20) 0.00204 0.05571 0.00311 0.69649 2.33

(6,30,6) 0.0972 0.02294 0.00997 0.79161 (30,6,30) 0.00536 0.04429 0.00199 0.69981 5.01

(4,10,4) 0.0756 0.04008 0.00732 0.77003 (20,2,20) 0.00354 0.06535 0.00428 0.69798 1.71

(6,10,6) 0.0916 0.02664 0.00910 0.78602 (30,2,30) 0.00444 0.06053 0.00368 0.69889 2.47

(2,20,2) 0.0381 0.06836 0.00612 0.73250 (10,4,10) 0.00054 0.07763 0.00603 0.69499 1.01

(2,30,2) 0.0356 0.06448 0.00542 0.73002 (10,6,10) 0.00206 0.07335 0.00538 0.69238 1.01

(6,20,6) 0.0940 0.02531 0.00947 0.78842 (30,4,30) 0.00579 0.04813 0.00235 0.70023 4.03

(4,30,4) 0.0783 0.03428 0.00731 0.77274 (20,6,20) 0.00186 0.05225 0.00273 0.69630 2.68
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� Tables 3 and 5 indicate that, in all cases, where R = 0.81 and 0.773, the reliability
estimates obtained using the RSS approach were more efficient than those obtained
using the SRS scheme.

� At the true value R = 0.81, the MSEs of R̂3 = P(YRSS < XSRS < ZRSS) were more
efficient than R̂4 = P(YSRS < XRSS < ZSRS) in all cases (see Table 4).

In most cases, as seen in Figures 3–6, the MSEs of R̂1, R̂2, R̂3, and R̂4 decreased with
an increased value of R.

� Table 7 shows that R̂2 is more efficient than R̂1 in all situations.
� In most instances, the ABs of SSR estimates in all schemes diminished as the true

value of R rises (see Tables 1–8).
� For all true values of R where

(
n∗2 , n∗1 , n∗3

)
=(30,30,30), (30,20,30), (20,30,20), (10,30,10),

and (10,20,10), the SEs of R̂1 based on the SRS, had larger values compared to R̂2, via
the RSS (see Tables 1, 3, 5 and 7).

� The SEs of R̂3 had the lowest values when compared to R̂4, for all true values of R
and sample sizes (see Tables 2, 4 and 6).

� The MSEs of R̂3 gave the lowest values comparable with R̂4 for all sample sizes at
R = 0.694 except for (n2, n∗1 , n3) = (2,10,2) (see Table 8).

� Table 6 clearly indicates that the MSEs of R̂3 are the lowest when compared with R̂4
for all sample sizes at R = 0.773 with the exception of (n2, n∗1 , n3) = (2,10,2) and (2,20,2).

� For all sample sizes, at actual value R = 0.81, the MSEs of R̂2 and R̂3 had the minimum
values compared with R̂1 and R̂4, respectively (see Tables 3 and 4).

� Except for in a few cases, the MSEs of R̂2 obtained the minimum values when com-
pared to R̂1 for all the sample size values (see Tables 1, 3, 5 and 7).

9. Data Analysis

In this section, three data sets were considered and are described in detail, to illustrate
the usefulness of the proposed models. The first two data sets were originally documented
in [36], and they show the strength measured in GPA for single carbon fibers of lengths
of 10 mm (Y: Data I, n2 = 63) and 20 mm (X: Data II, n1 = 69), which fit the GIED model
(see [17]). The Kolmogorov–Smirnov (K-S) distances were 0.086, and 0.041 for Data I and II,
with 0.739 and 0.999 p-values, respectively. The fitted models based on these two data sets
are provided in Figure 7.
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The set Data III (Z) was provided by Ed Fuller of the NICT Ceramics Division in
December 1993. It contains n3 = 31 polished window strength data. Ref. [37] described the
use of this set to predict the lifetime of a glass airplane window. Here, we tested Data III
against the fitted model using a KS test, where its distance was 0.138 and the corresponding
p-value was 0.595. This shows that the GIED fits this data set rather well. Figure 8 shows
the estimated PDF and CDF for the Data III. The GIED appeared to be an appropriate
model for fitting these data based on this graph.
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The RSS and SRS sampling procedures were used to examine real data sets based on
the preceding theoretical conclusions. The RSS and SRS were produced using the R-package
RSSampling and Data I, II, and III. The SSR estimates were calculated in the following
cases:

(i) SS models with common scale parameters
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Assuming that the strength X~GIED(δ, ϑ1), the stress Y~GIED(δ, ϑ2), and stress
Z~GIED(δ, ϑ3), where X, Y and Z are independent random variables. The SSR estimates
were calculated from the GIED for different values of set size under five cycles, using four
distinct scenarios, as seen in Table 9.

Table 9. SSR estimates of the data sets based on different sampling designs.

(n2*, n1*, n3*) R̂1 (n2, n1, n3) R̂2 (n2, n1*, n3) R̂3 (n2*, n1, n3*) R̂4

(10,20,10) 0.262 (2,4,2) 0.497 (2,20,2) 0.331 (10,4,10) 0.195
(10,10,10) 0.258 (2,2,2) 0.503 (2,10,2) 0.204 (10,2,10) 0.125
(20,20,20) 0.172 (4,4,4) 0.396 (4,20,4) 0.268 (20,4,20) 0.154
(30,30,30) 0.168 (6,6,6) NA* (6,30,6) NA* (30,6,30) 0.148
(20,10,20) 0.173 (4,2,4) 0.349 (4,10,4) 0.244 (20,2,20) 0.192
(30,10,30) 0.166 (6,2,6) NA* (6,10,6) NA* (30,2,30) 0.17
(10,30,10) 0.263 (2,6,2) 0.469 (2,30,2) 0.351 (10,6,10) 0.194
(30,20,30) 0.168 (6,4,6) NA* (6,20,6) NA* (30,4,30) 0.169
(20,30,20) 0.171 (4,6,4) 0.421 (4,30,4) 0.279 (20,6,20) 0.147

Note that, NA* in Table 9 means that there were no estimates available for some cases, since we needed at least 36
observations to obtain an RSS of size 6, while the strength random variable X only had 31 observations.

(ii) The SS models with dissimilar scale parameters

Suppose that X~GIED(δ1, ϑ1), Y~GIED(δ2, ϑ2),, and Z~GIED(δ3, ϑ3), the ML estimates
of the model parameters and the SSR estimates were calculated under different RSS and
SRS using the four proposed sample cases. In addition, the Fisher information matrices as
well as their corresponding SEs are displayed between parentheses using Data I, II, and
III. Table 10 presents the parameter estimates, SSR estimates, and SEs for the different
RSS and SRS.

Table 10. Parameter and SSR estimates of the data sets and their corresponding SE based on the
different sampling designs.

R1 = P[YSRS < XSRS < ZSRS]

(n2*, n1*, n3*) R̂1

X Y Z

ϑ1 δ1 ϑ2 δ2 ϑ3 δ3

(10,20,10) 0.044
136.74 12.203 464.533 18.346 859.909 17.504

(30.576) (0.575) (146.898) (0.993) (328.811) (1.169)

(10,10,10) 0.028
86.513 10.075 464.44 18.346 905.014 17.618

(27.358) (0.738) (146.869) (0.993) (346.737) (1.173)

(20,20,20) 0.591
136.721 12.202 275.022 17.868 13.064 6.89
(30.572) (0.575) (61.497) (0.554) (3.516) (0.594)

(30,30,30) 0.418
184.861 13.43 169.623 16.464 17.202 7.502
(33.751) (0.488) (30.969) (0.364) (3.985) (0.493)

(20,10,20) 0.446
86.459 10.073 128.725 15.401 19.757 7.757

(27.341) (0.738) (28.784) (0.543) (5.439) (0.603)

(30,10,30) 0.426
86.459 10.073 84.472 14.156 8.842 6.198

(27.341) (0.738) (15.422) (0.351) (1.907) (0.487)

(10,30,10) 0.05
185.822 13.444 464.625 18.347 910.172 17.631
(33.926) (0.488) (146.927) (0.993) (348.789) (1.173)

(30,20,30) 0.58
136.721 12.202 250.948 17.792 11.494 6.783
(30.572) (0.575) (45.817) (0.371) (2.544) (0.497)
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Table 10. Cont.

(20,30,20) 0.363
185.171 13.435 124.577 15.334 12.089 6.616
(33.808) (0.488) (27.856) (0.549) (3.257) (0.578)

R2 = P[YRSS < XRSS < ZRSS]

(n*, n1, n3) R̂2

X Y Z

ϑ1 δ1 ϑ2 δ2 ϑ3 δ3

(2,4,2) 0.051
0.065 0.002 6.458 6.524 1.022 16.104

(0.012) (0.002) (1.686) (0.588) (0.268) (4.134)

(2,2,2) 0.0002
0.04 0.002 99.633 14.243 112.209 153.077

(0.018) (0.006) (26.446) (0.683) (30.166) (8.944)

(4,4,4) 0.058
0.063 0.001 2.57 4.203 0.767 12.973

(0.012) (0.002) (0.368) (0.142) (0.111) (2.154)

(4,2,4) 0.0006
0.04 0.002 12.862 8.749 180.806 170.194

(0.018) (0.006) (1.851) (0.193) (27.027) (4.89)

(2,6,2) 0.001
0.242 0.275 99.633 14.243 112.209 153.077

(0.028) (0.074) (26.446) (0.683) (30.166) (8.944)

(4,6,4) 0.0008 0.242 0.275 12.862 8.749 180.806 170.194
(0.028) (0.074) (1.851) (0.193) (27.027) (4.89)

R3 = P[YRSS < XSRS < ZRSS]

(n2, n1*, n3) R̂3

X Y Z

ϑ1 δ1 ϑ2 δ2 ϑ3 δ3

(2,10,2) 0.145
86.459 10.073 99.633 14.243 112.209 153.077

(27.341) (0.738) (26.446) (0.683) (30.166) (8.944)

(4,20,4) 0.016
100.123 12.17 12.862 8.749 180.806 170.194
(22.388) (0.617) (1.851) (0.193) (27.027) (4.89)

(4,10,4) 0.017
227.816 14.457 12.862 8.749 180.806 170.194
(72.042) (0.888) (1.851) (0.193) (27.027) (4.89)

(2,20,2) 0.151
100.123 12.17 99.633 14.243 112.209 153.077
(22.388) (0.617) (26.446) (0.683) (30.166) (8.944)

(2,30,2) 0.158
151.844 13.712 99.633 14.243 112.209 153.077
(27.723) (0.521) (26.446) (0.683) (30.166) (8.944)

(4,30,4) 0.017
151.844 13.712 12.862 8.749 180.806 170.194
(27.723) (0.521) (1.851) (0.193) (27.027) (4.89)

R4 = P[YSRS < XRSS < ZSRS]

(n2*, n1, n3*) R̂4

X Y Z

ϑ1 δ1 ϑ2 δ2 ϑ3 δ3

(10,2,10) 0.0057
0.04 0.002 3.487 5.14 3.446 5.028

(0.018) (0.006) (1.103) (0.92) (1.124) (0.963)

(20,4,20) 0.018
0.19 0.205 4.999 6.281 4.935 6.064

(0.035) (0.097) (1.118) (0.527) (1.177) (0.742)

(20,2,20) 0.012
0.081 0.068 3.563 5.468 3.39 5.229

(0.036) (0.108) (0.797) (0.513) (0.795) (0.723)

(30,2,30) 0.009
0.084 0.079 4.54 6.168 4.313 5.892

(0.038) (0.121) (0.829) (0.363) (0.833) (0.613)
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Table 10. Cont.

(10,4,10) 0.016
0.201 0.241 5.891 6.323 5.837 6.152

(0.037) (0.108) (1.863) (0.949) (1.93) (0.986)

(30,4,30) 0.0173
0.1832 0.1892 5.1301 6.4686 5.0659 6.2556

(0.0338) (0.0926) (0.9366) (0.3654) (0.9858) (0.6193)

(10,6,10) 0.031
0.274 0.361 4.31 5.607 4.114 5.399

(0.032) (0.088) (1.363) (0.933) (1.347) (0.972)

(20,6,20) 0.059
0.254 0.305 10.14 8.064 2.992 4.96
(0.03) (0.079) (2.267) (0.54) (0.698) (0.717)

(30,6,30) 0.0001
0.242 0.2746 450.6258 19.8243 1167.133 17.9341

(0.0283) (0.0738) (82.2726) (0.3843) (249.2422) (0.6769)

(iii) Count Frequency of Data

Here, we calculate the empirical estimates of the probabilities P(Y < X < Z) from the
equal samples X, Y, and Z, using different sampling designs from Data I, II, and III. These
probabilities were obtained as count numbers by checking whether the samples from X, Y,
and Z satisfied Y < X < Z. These calculations are provided in Table 11.

Table 11. Empirical probabilities of (Y < X < Z) using different sampling designs.

(n2*, n1*, n3*) R̂1 (n2,n1,n3) R̂2 (n2, n1*, n3) R̂3 (n2*, n1, n3*) R̂4

(10,10,10) 0.1 (2,2,2) 0 (2,10,2) 0.1 (10,2,10) 0.5

(20,20,20) 0.2 (4,4,4) 0.05 (4,20,4) 0.2 (20,4,20) 0.3

(30,30,30) 0.1667 (6,6,6) NA* (6,30,6) NA* (30,6,30) 0.2667

10. Conclusions

We considered estimating an SSR, say R = P[Y < X < Z], when the strength X is
accompanied by two stresses, Y and Z, that are independent but not identically distributed
random variables from the GIED. The SSR estimators were considered based on four
scenarios for the situation of SRS and RSS. The SSR estimators were constructed when the
strength data were acquired from the RSS, while the stress data were taken from the SRS,
and conversely. In addition, the SSR estimators were produced when the strength and stress
data were accessible from the RSS/SRS. Finally, a simulation procedure was employed
to compare the results of the various estimators. Three data sets were used to provide a
real-world example that produced the following findings. In general, we concluded that
the SSR estimators were more efficient when the strength random variable X was based on
RSS, rather than on the SRS scheme, no matter what the stresses were. It is hoped that our
research will be valuable to researchers working with the data used in the present study.

Author Contributions: Conceptualization, A.S.H. and H.F.N.; Methodology, A.S.H. and H.F.N.;
software, A.S.H., N.A., M.E. and H.F.N.; formal analysis, A.S.H., N.A., M.E., C.C. and H.F.N.;
Writing—original draft, A.S.H., N.A., M.E., C.C. and H.F.N.; Writing—review and editing, A.S.H.,
N.A., M.E., C.C. and H.F.N. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in https://doi.
org/10.3390/a10020071, http://atomic.phys.uni-sofia.bg/local/nist-e-handbook/e-handbook/eda/
section4/eda4291.htm (accessed on 12 March 2023).

Acknowledgments: This research is supported by researchers Supporting Project number
(RSPD2023R548), King Saud University, Riyadh, Saudi Arabia.

https://doi.org/10.3390/a10020071
https://doi.org/10.3390/a10020071
http://atomic.phys.uni-sofia.bg/local/nist-e-handbook/e-handbook/eda/section4/eda4291.htm
http://atomic.phys.uni-sofia.bg/local/nist-e-handbook/e-handbook/eda/section4/eda4291.htm


Axioms 2023, 12, 302 19 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Absolute bias AB
Cumulative density function CDF
Generalized inverse exponential distribution GIED
Hazard rate function HRF
Kolmogorov-Smirnov K-S
Maximum likelihood estimator MLE
Mean squared error MSE
Order statistics OS
Probability density function PDF
Ranked set sample RSS
Relative efficiency RE
Simple random sample SRS
Standard error SE
Stress-strength SS
SS reliability SSR

References
1. Birnbaum, Z.W.; McCarty, R.C. A distribution-free upper confidence bound for Pr{Y < X}, based on independent samples of X

and Y. Ann. Math. Stat. 1958, 29, 558–562.
2. Chandra, S.; Owen, D.B. On estimating the reliability of a component subject to several different stresses (strengths). Nav. Res.

Logist. Q. 1975, 22, 31–39. [CrossRef]
3. Singh, N. On the estimation of Pr(X1 < Y < X2). Commun. Stat.-Theory Methods 1980, 9, 1551–1561.
4. Dutta, K.; Sriwastav, G.L. An n-standby system with P(X < Y < Z). IAPQR Trans. 1986, 12, 95–97.
5. Hassan, A.S.; Elsherpieny, E.A.; Shalaby, R.M. On the estimation of for Weibull distribution in the presence of k outliers. Int. J.

Eng. Res. Appl. 2013, 3, 1728–1734.
6. Karam, N.S.; Attia, A.M. Stress-Strength Reliability for P(T < X < Z) using Dagum Distribution. J. Phys. Conf. Ser. 2021, 1879,

32004. [CrossRef]
7. Attia, A.M.; Karam, N.S. Bayesian Estimation of Stress-Strength P(T < X < Z) for Dagum Distribution. J. Phys. Conf. Ser. 2021,

1963, 12041. [CrossRef]
8. Abd Elfattah, A.M.; Taha, M.A. On the estimation of P(Y < X < Z) for inverse Rayleigh distribution in the presence of outliers. J.

Stat. Appl. Probab. Lett. 2021, 8, 181–189.
9. Raheem, S.H.; Kalaf, B.A.; Salman, A.N. Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z).

Baghdad Sci. J. 2021, 18 (Suppl. S2), 1103. [CrossRef]
10. Yousef, M.M.; Almetwally, E.M. Multi Stress-Strength Reliability Based on Progressive First Failure for Kumaraswamy Model:

Bayesian and Non-Bayesian Estimation. Symmetry 2021, 13, 2120. [CrossRef]
11. Zamanzade, E.; Al-Omari, A.I. New ranked set sampling for estimating the population mean and variance. Hacet. J. Math. Stat.

2016, 45, 1891–1905. [CrossRef]
12. Al-Omari, A.I.; Haq, A. A new sampling method for estimating the population mean. J. Stat. Comput. Simul. 2019, 89, 1973–1985.

[CrossRef]
13. Nagy, H.F.; Al-Omari, A.I.; Hassan, A.S.; Alomani, G.A. Improved Estimation of the Inverted Kumaraswamy Distribution

Parameters Based on Ranked Set Sampling with an Application to Real Data. Mathematics 2022, 10, 4102. [CrossRef]
14. Alghamdi, S.M.; Bantan, R.A.R.; Hassan, A.S.; Nagy, H.F.; Elbatal, I.; Elgarhy, M. Improved EDF-Based Tests for Weibull

Distribution Using Ranked Set Sampling. Mathematics 2022, 10, 4700. [CrossRef]
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