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Abstract: The paper deals with the problem of representation of Horn’s hypergeometric functions
by branched continued fractions. The formal branched continued fraction expansions for three
different Horn’s hypergeometric function H4 ratios are constructed. The method employed is
a two-dimensional generalization of the classical method of constructing of Gaussian continued
fraction. It is proven that the branched continued fraction, which is an expansion of one of the ratios,
uniformly converges to a holomorphic function of two variables on every compact subset of some
domain H, H ⊂ C2, and that this function is an analytic continuation of this ratio in the domain H.
The application to the approximation of functions of two variables associated with Horn’s double
hypergeometric series H4 is considered, and the expression of solutions of some systems of partial
differential equations is indicated.

Keywords: Horn function; branched continued fraction; holomorphic functions of several complex
variables; numerical approximation; convergence
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1. Introduction

It is well known that BCFs are a multidimensional generalization of continued frac-
tions, which are one of the most intriguing sections of classical analysis.

BCFs have been used in various fields, in particular in numerical theory to express
algebraic irrational numbers ([1], Chapter 3), in computational mathematics for the solution
of systems of linear algebraic Equations ([2], Chapter 4), in applied mathematics for the
solution of differential Equations ([1], Chapter 5), in the theory of probabilities for some
problems related to Markov processes ([1], Chapter 4), in chemistry to calculate the Hosoya
index (see, [3,4]), in analysis of approximating functions of one and several variables (see,
([1], Chapter 5), ([2], Chapter 3), and [5–9]). It should be noted that the last direction is
the most developed. Furthermore, it is here that BCFs are considered special families of
functions of several complex variables.

To represent a hypergeometric function of several complex variables in BCF form, we
need to solve the following three problems:

(i) To construct the BCFE;
(ii) To prove the convergence of the constructed expansion;
(iii) To prove the convergence of the BCF to the function of which it is an expansion.

The first problem is to obtain the simplest structure of a BCFE whose elements are
simple polynomials. This can be achieved by setting and choosing certain recurrence
relations. The methods employed here are generalizations of the classical method of
constructing Gaussian continued fraction. Problem (ii) consists of improving the known
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and developing new methods of studying the convergence of BCFs. Truncation error
analysis is also considered here. The last problem is more important and is related to the
so-called ’principle of correspondence’ (see, [10,11] and also ([12], Section 2.2)).

BCFEs for Appell’s hypergeometric function F1 were considered in ([1,13], pp. 244–252),
and BCFEs of other structures in [14]. For F2, the BCFEs were constructed in [15]. In [16],
the problem of the boundedness of BCFs approximants for F2 was investigated. However,
the problems (ii) and (iii) remain open. For F4, the BCFEs were obtained in [17]. The
convergence of BCFE for one partial case of F4 was studied in [18]. BCFEs of different
structures for F3 can be found in [19,20]. For some partial cases of BCFs, the problems (ii)
and (iii) were considered in [20].

For Horn’s hypergeometric function H3, such expansions were investigated in [10,21].
For H6, BCFEs were studied in [22]. In this paper, we continue to study BCFEs for hyperge-
ometric functions from the Horn’s list (see, [23–25] and also books ([26], Chapter 9), ([27],
Section 5.7), and ([28], Chapter 2)).

The FBCFEs for three different Horn’s hypergeometric function H4 ratios will be given
in Section 2. It will be proved (Theorem 3) that the BCF, which is an expansion of one of the
ratios of double hypergeometric series H4, uniformly converges to a holomorphic function
on every compact subset of some domain H and that this function is analytic continuation
of this ratio in the domain H. The applications of expansions to some problems of approxi-
mation of functions of two variables associated with the Horn’s double hypergeometric
series H4 and to the expression of solutions of systems of partial differential equations will
be shown in Section 4.

2. Expansions

Horn’s hypergeometric function H4 is defined by DPS (see, [23])

H4(a, b; c, d; z) =
∞

∑
r,s=0

(a)2r+s(b)s

(c)r(d)s

zr
1

r!
zs

2
s!

, |z1| < p, |z2| < l,

where a, b, and c are complex constants; c and d are not equal to a non-positive integer;
p and l are positive numbers such that 4p = (l − 1)2; and l 6= 1, (·)k is the Pochhammer
symbol defined for any complex number α and non-negative integer n by (α)0 = 1 and
(α)n = α(α + 1) . . . (α + n− 1), z = (z1, z2) ∈ C2.

Let (ij)0 = (i0, j0) be a double index and

I = {(1, 1); (1, 2); (2, 2)}

be a set of double indices. Then, for each pair (i0, j0) ∈ I we set

R(ij)0
(a, b; c, d; z) =

H4(a, b; c, d; z)
H4(a + δ1

i0
, b + δ2

i0
; c + δ1

j0
, d + δ2

j0
; z)

, (1)

where δ
j
i is the Kronecker symbol. Now, let (ij)k = (i1, j1, i2, j2, . . . , ik, jk) be a multiindex

(see, [29]). Then, for each (ij)0 ∈ I we introduce the following sets of multiindices

I (ij)0
k = {(ij)k : 1 ≤ ik ≤ 2− δ2

ik−1
, jk = ik + δ2

ik−1
}, k ≥ 1,

and also for each (ij)k ∈ I
(ij)0
k , k ≥ 1, we set

a(ij)0
(ij)k

= a +
k−1

∑
r=0

δ1
ir , b(ij)0

(ij)k
= b +

k−1

∑
r=0

δ2
ir , c(ij)0

(ij)k
= c +

k−1

∑
r=0

δ1
jr , d(ij)0

(ij)k
= d +

k−1

∑
r=0

δ2
jr . (2)
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Theorem 1. For each pair (i0, j0) ∈ I the ratio (1) has a FBCFE of the form

1−
2−δ2

i0

∑
i1=1

j1=i1+δ2
i0

h(ij)0
(ij)1

zj1

1 −

2−δ2
i1

∑
i2=1

j2=i2+δ2
i1

h(ij)0
(ij)2

zj2

1 −

2−δ2
i2

∑
i3=1

j3=i3+δ2
i2

h(ij)0
(ij)3

zj3

1 − . . . , (3)

where for (ij)k ∈ I
(ij)0
k , k ≥ 1, (ij)0 ∈ I ,

h(ij)0
(ij)k

=
(2c− a + ∑k−2

r=0(2δ1
jr − δ1

ir ))(a + 1 + ∑k−2
r=0 δ1

ir )

(c + ∑k−2
r=0 δ1

jr )(c + 1 + ∑k−2
r=0 δ1

jr )
, (4)

if ik−1 = jk−1 = ik = jk = 1,

h(ij)0
(ij)k

=
b + ∑k−2

r=0 δ2
ir

d + ∑k−2
r=0 δ2

jr

, (5)

if ik−1 = jk−1 = 1, ik = jk = 2,

h(ij)0
(ij)k

=
2(a + 1 + ∑k−2

r=0 δ1
ir )

c + ∑k−2
r=0 δ1

jr

, (6)

if jk−1 = 2, ik−1 = ik = jk = 1,

h(ij)0
(ij)k

=
(b + ∑k−2

r=0 δ2
ir )(d− a + ∑k−2

r=0(δ
2
jr − δ1

ir ))

(d + ∑k−2
r=0 δ2

jr )(d + 1 + ∑k−2
r=0 δ2

jr )
, (7)

if ik−1 = 1, jk−1 = ik = jk = 2,

h(ij)0
(ij)k

=
(a + ∑k−2

r=0 δ1
ir )(d− b + ∑k−2

r=0(δ
2
jr − δ2

ir ))

(d + ∑k−2
r=0 δ2

jr )(d + 1 + ∑k−2
r=0 δ2

jr )
, (8)

if jk−1 = ik−1 = jk = 2, ik = 1.

Proof. In [30], the formal recurrence relations of Horn’s hypergeometric functions H4

H4(a, b; c, d; z)

= H4(a + 1, b; c + 1, d; z)− (2c− a)(a + 1)
c(c + 1)

z1H4(a + 2, b; c + 2, d; z)

− b
d

z2H4(a + 1, b + 1; c + 1, d + 1; z), (9)

H4(a, b; c, d; z)

= H4(a + 1, b; c, d + 1; z)− 2(a + 1)
c

z1H4(a + 2, b; c + 1, d + 1; z)

− b(d− a)
d(d + 1)

z2H4(a + 1, b + 1; c, d + 2; z), (10)

H4(a, b; c, d; z)

= H4(a, b + 1; c, d + 1; z)− a(d− b)
d(d + 1)

z2H4(a + 1, b + 1; c, d + 2; z) (11)

are proved. Dividing (9) by H4(a + 1, b; c + 1, d; z), (10) by H4(a + 1, b; c, d + 1; z), and (11)
by H4(a, b + 1; c, d + 1; z), we obtain
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R1,1(a, b; c, d; z) = 1−

(2c− a)(a + 1)
c(c + 1)

z1

R1,1(a + 1, b; c + 1, d; z)
−

b
d

z2

R2,2(a + 1, b; c + 1, d; z)
,

R1,2(a, b; c, d; z) = 1−
2(a + 1)

c
z1

R1,1(a + 1, b; c, d + 1; z)
−

b(d− a)
d(d + 1)

z2

R2,2(a + 1, b; c, d + 1; z)
,

R2,2(a, b; c, d; z) = 1−

a(d− b)
d(d + 1)

z2

R1,2(a, b + 1; c, d + 1; z)
.

Hence, for any (ij)0 ∈ I it follows

Ri0,j0(a, b; c, d; z) = 1−
2−δ2

i0

∑
i1=1

j1=i1+δ2
i0

h(ij)0
(ij)1

zj1

Ri1,j1(a + δ1
i0

, b + δ2
i0

; c + δ1
j0

, d + δ2
j0

; z)
, (12)

where h(ij)0
(ij)1

, (ij)1 ∈ I
(ij)0
1 , (ij)0 ∈ I , are defined by (4)–(8). Furthermore, this is the first

step to constructing branched continued fraction expansions.
By analogy, it is clear that for all (ij)k−1 ∈ I

(ij)0
k−1 , k ≥ 2, (ij)0 ∈ I , the following

relation holds

Rik−1,jk−1
(a(ij)0

(ij)k−1
, b(ij)0

(ij)k−1
; c(ij)0

(ij)k−1
, d(ij)0

(ij)k−1
; z)

= 1−
2−δ2

ik−1

∑
ik=1

jk=ik+δ2
ik−1

h(ij)0
(ij)k

zjk

Rik ,jk (a(ij)0
(ij)k

, b(ij)0
(ij)k

; c(ij)0
(ij)k

, d(ij)0
(ij)k

; z)
, (13)

where h(ij)0
(ij)k

, (ij)k ∈ I
(ij)0
k , k ≥ 2, (ij)0 ∈ I , are defined by (4)–(8), a(ij)0

(ij)k
, b(ij)0

(ij)k
, c(ij)0

(ij)k
, d(ij)0

(ij)k
,

(ij)k ∈ I
(ij)0
k , k ≥ 1, (ij)0 ∈ I , are defined by (2).

Substituting relation (13) at k = 2 in formula (12) on the second step for any (ij)0 ∈ I
we obtain

Ri0,j0(a, b; c, d; z) = 1−
2−δ2

i0

∑
i1=1

j1=i1+δ2
i0

h(ij)0
(ij)1

zj1

1−
2−δ2

i1

∑
i2=1

j2=i2+δ2
i1

h(ij)0
(ij)2

zj2

Ri2,j2(a(ij)0
(ij)2

, b(ij)0
(ij)2

; c(ij)0
(ij)2

, d(ij)0
(ij)2

; z)

.

Next, applying recurrence relation (13) after n steps, we obtain

Ri0,j0(a, b; c, d; z) = 1−
2−δ2

i0

∑
i1=1

j1=i1+δ2
i0

h(ij)0
(ij)1

zj1

1 − . . . −

2−δ2
in−2

∑
in−1=1

jn−1=in−1+δ2
in−2

h(ij)0
(ij)n−1

zjn−1

1

−

2−δ2
in−1

∑
in=1

jn=in+δ2
in−1

h(ij)0
(ij)n

zjn

Rin ,jn(a(ij)0
(ij)n

, b(ij)0
(ij)n

; c(ij)0
(ij)n

, d(ij)0
(ij)n

; z)
, (14)

where h(ij)0
(ij)k

, (ij)k ∈ I
(ij)0
k , 1 ≤ k ≤ n, (ij)0 ∈ I , are defined by (4)–(8), a(ij)0

(ij)n
, b(ij)0

(ij)n
, c(ij)0

(ij)n
,

d(ij)0
(ij)n

, (ij)n ∈ I (ij)0
n , (ij)0 ∈ I , are defined by (2).
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Finally, by (13), one obtains the FBCFE (3) for ratio (1) for each (ij)0 ∈ I .

Note that there are three different FBCFE in (3). For example, for R1,1(a, b; c, d; z)
we have

1−
c1,1

1,1z1

1−
c1,1

1,1,1,1z1

1−
c1,1

1,1,1,1,1,1z1

1− . . .

−
c1,1

1,1,1,1,2,2z2

1− . . .

−
c1,1

1,1,2,2z2

1−
c1,1

1,1,2,2,1,2z2

1− . . .

−
c1,1

2,2z2

1−
c1,1

2,2,1,2z2

1−
c1,1

2,2,1,2,1,1z1

1− . . .

−
c1,1

2,2,1,2,2,2z2

1− . . .

.

In case b = d and (ij)0 = (1, 1), from the theorem the following result follows.

Corollary 1. The ratio

R1,1(a, b; c, b; z) =
H4(a, b; c, b; z)

H4(a + 1, b; c + 1, b; z)
(15)

has a FBCFE of the form

1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

1− z2 −

(2c− a + 1)(a + 2)
(c + 1)(c + 2)

z1

1− z2 −

(2c− a + 2)(a + 3)
(c + 2)(c + 3)

z1

1− z2 − . . . . (16)

Note that the BCF (16) is a continued fraction by its form. The peculiarity here is that
their nth approximants are defined differently (see, ([31], pp. 17–18) and ([32], pp. 15–17)).
Namely, the sequence of approximants of the continued fraction for the BCF is a sequence of
so-called ’figured approximants’ (see, ([32], p. 18)). Convergence studies related to various
figured approximations can be found for two-dimensional continued fractions in [33,34],
for BCFs of the special form [35–37], for BCFs with independent variables in [38,39], and
for BCFs of a general form in [40].

3. Convergence of BCFE for R1,1(a, b; c, b; z)

We refer the reader to the paper [10] and the books [12,31,32,41] to learn more on the
concepts and notations that will be used in this section.

The following result about the convergence of a confluent two-dimensional S-fraction
with independent variables

s1,0z1 +
s0,1z2

1 + s1,1z1 +

s0,2z2

1 + s1,2z1 +

s0,3z2

1 +
. . . , (17)

where s1,k−1 > 0 and s0,k > 0, k ≥ 1, follows directly from ([42], Theorem 2).

Theorem 2. Let (17) be a confluent two-dimensional S-fraction with independent variables whose
coefficients s1,k−1 and s0,k, k ≥ 1, satisfy the conditions

s1,k−1 + s0,k ≤ r for all k ≥ 1, (18)

where r is a positive number. Then the confluent two-dimensional S-fraction with independent
variables (17) converges to a holomorphic function in the domain
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D =

{
z ∈ C2 :

∣∣∣∣arg
(

1
4r

+ zk

)∣∣∣∣ < π, k = 1, 2
}

.

The convergence is uniform on every compact subset of D.

Now we prove the following theorem.

Theorem 3. Let a and c be real constants such that

0 <
(2c− a + k− 1)(a + k)

(c + k− 1)(c + k)
≤ r for all k ≥ 1,

where r is a positive number. Then:

(A) The BCF (16) converges uniformly on every compact subset of

H =

{
z ∈ C2 :

∣∣∣∣arg
(

1
4(1 + r)

− zk

)∣∣∣∣ < π, k = 1, 2
}

(19)

to a function f (z) holomorphic in H;
(B) The function f (z) is an analytic continuation of (15) in the domain (19).

Proof. It is clear that we can consider (16) as a confluent two-dimensional S-fraction with
independent variables −z1 and −z2. Then, the conditions (18) one can write as

1 +
(2c− a + k− 1)(a + k)

(c + k− 1)(c + k)
≤ 1 + r.

Therefore, by Theorem 2 the part (A) follows.
We will prove the second part of this theorem similarly as in ([10], Theorem 2).
Let

G(n)
n (z) = 1, F(n)

n (z) = R1,1(a + n, b; c + n, b; z), n ≥ 1, (20)

where from (13) it follows that for all n ≥ 1

R1,1(a + n, b; c + n, b; z) = 1− z2 −

(2c− a + n)(a + n + 1)
(c + n)(c + n + 1)

z1

R1,1(a + n + 1, b; c + n + 1, b; z)
,

and let

G(n)
k (z) = 1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

1− z2 − . . . −

(2c− a + n− 1)(a + n)
(c + n− 1)(c + n)

z1

G(n)
n (z)

,

F(n)
k (z) = 1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

1− z2 − . . . −

(2c− a + n− 1)(a + n)
(c + n− 1)(c + n)

z1

F(n)
n (z)

,

where 1 ≤ k ≤ n− 1, n ≥ 2. Then it is easily seen that

G(n)
k (z) = 1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

G(n)
k+1(z)

, (21)

F(n)
k (z) = 1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

F(n)
k+1(z)

, (22)
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where 1 ≤ k ≤ n− 1, n ≥ 2.
From (13), (14), (20), and (22) it follows that for each n ≥ 1

R1,1(a, b; c, b; z) = 1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

1− z2 −

(2c− a + 1)(a + 2)
(c + 1)(c + 2)

z1

1− z2

− . . . −

(2c− a + n− 1)(a + n)
(c + n− 1)(c + n)

z1

1− z2 −

(2c− a + n)(a + n + 1)
(c + n)(c + n + 1)

z1

F(n+1)
n (z)

= 1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

F(n+1)
1 (z)

.

Moreover, taking into account (20) and (21), for each n ≥ 1 the nth approximant of (16)
we write as

fn(z) = 1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

G(n)
1 (z)

.

Since F(r)
k (0) = 1 and G(r)

k (0) = 1 for any 1 ≤ k ≤ r and r ≥ 1, then for each 1 ≤ k ≤ r

and r ≥ 1 there exist Λ(1/F(r)
k ) and Λ(1/G(r)

k ), where Λ(·) is the Taylor expansion of a
function holomorphic in some neighborhood of the origin. In addition, it is clear that
F(r)

k (z) 6≡ 0 and G(r)
k (z) 6≡ 0 for all indices.

Applying the method suggested in ([32], p. 28) and recurrence relations (21), (22), for
any n ≥ 1 on the first step we obtain

R1,1(a, b; c, b; z)− fn(z) = 1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

F(n+1)
1 (z)

−

1− z2 −

(2c− a)(a + 1)
c(c + 1)

z1

G(n)
1 (z)



=

(2c− a)(a + 1)
c(c + 1)

z1

F(n+1)
1 (z)G(n)

1 (z)
(F(n+1)

1 (z)− G(n)
1 (z)).

Let k be an arbitrary integer number such that 1 ≤ k ≤ n, n ≥ 1. Then we have

F(n+1)
k (z)− G(n)

k (z)

= 1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

F(n+1)
k+1 (z)

−

1− z2 −

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

G(n)
k+1(z)



=

(2c− a + k)(a + k + 1)
(c + k)(c + k + 1)

z1

F(n+1)
k+1 (z)G(n)

k+1(z)
(F(n+1)

k+1 (z)− G(n)
k+1(z)). (23)

Next, applying recurrence relations (23) and taking into account that

F(n+1)
n (z)− G(n)

n (z) = 1− z2 −

(2c− a + n)(a + n + 1)
(c + n)(c + n + 1)

z1

F(n+1)
n+1 (z)

− 1

= −z2 −

(2c− a + n)(a + n + 1)
(c + n)(c + n + 1)

z1

F(n+1)
n+1 (z)
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for any n ≥ 1 one obtains

R1,1(a, b; c, b; z)− fn(z)

= −
n

∏
r=1

(2c− a + r− 1)(a + r)
(c + r− 1)(c + r)

z1

F(n+1)
r (z)G(n)

r (z)

z2 +

(2c− a + n)(a + n + 1)
(c + n)(c + n + 1)

z1

F(n+1)
n+1 (z)

.

It follows that in a neighborhood of zero for any n ≥ 1 we have

Λ(R1,1)−Λ( fn) = ∑
r+s≥n+1
r≥0, s≥0

α
(n)
r,s zr

1zs
2, (24)

where α
(n)
r,s , r ≥ 0, s ≥ 0, r + s ≥ n + 1, are some coefficients.

Recall that the sequence {Fn(z)} of functions holomorphic at the origin is correspond-
ing (at z = 0) to a FDPS L(z) if

lim
n→∞

λ
(

L−Λ(Fn)
)
= ∞,

where λ(·) is the function defined as follows: if L(z) ≡ 0 then λ(L) = ∞; if L(z) 6≡ 0
then λ(L) = m, where m is the smallest degree of homogeneous terms for which at least
one coefficient is different from zero. The BCF (16) is corresponding (at z = 0) to a FDPS
L(z) if each approximant fn(z) is a holomorphic function of z at the origin and if { fn(z)}
corresponds to L(z) (see, [10] and also ([31], Section 5.1)).

From (24) it follows that

λ
(
Λ(R1,1)−Λ( fn)

)
= n + 1

tends monotonically to ∞ as n → ∞,, i.e., the BCF (16) corresponds (at z = 0) to a FDPS
Λ(R1,1).

Let D be the neighborhood of the origin which contained in (19) and in which

Λ(R1,1) =
∞

∑
r,s=0

αr,szr
1zs

2.

Then, from part (A) it follows that the sequence { fn(z)} converges uniformly on every
compact subset of D to a function f (z) holomorphic in D. By Weierstrass’s theorem ([43],
p. 288) for arbitrary r + s, r ≥ 0, s ≥ 0, we have

∂r+s fn(z)
∂zr

1∂zs
2
→ ∂r+s f (z)

∂zr
1∂zs

2
as n→ ∞

on each compact subset of the domain D. Furthermore, according to the above, for each
n ≥ 1 the Λ( fn) and Λ(R1,1) agree for all homogeneous terms up to and including degree n.

Thus, for any r + s, r ≥ 0, s ≥ 0, one obtains

lim
n→∞

(
∂r+s fn

∂zr
1∂zs

2
(0)
)
=

∂r+s f
∂zr

1∂zs
2
(0) = r!s!αr,s.

Hence, for all z ∈ D,

f (z) =
∞

∑
r,s=0

(
∂r+s f
∂zr

1∂zs
2
(0)
)

zr
1

r!
zs

2
s!

=
∞

∑
r,s=0

αr,szr
1zs

2.

Finally, by the principle of analytic continuation ([44], p. 53) part (B) follows.
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Setting a = 0 and replacing c by c− 1 in Theorem 3, we obtain the following result.

Corollary 2. Let c be a positive constant such that

2
c
≤ r < 4 and

k(2c + k− 3)
(c + k− 2)(c + k− 1)

≤ r for all k ≥ 2, (25)

where r is a positive number. Then:

(A) The BCF

1
1− z2 −

2
c

z1

1− z2 −

2(2c− 1)
c(c + 1)

z1

1− z2 − . . . −

k(2c + k− 3)
(c + k− 2)(c + k− 1)

z1

1− z2 − . . . (26)

converges uniformly on every compact subset of (19) to a function f (z) holomorphic in H;
(B) The function f (z) is an analytic continuation of H4(1, b; c, b; z) in the domain (19).

Note that other convergence criteria of two-dimensional S-fractions with independent
variables can be found in [45–47] and truncation error bounds in [46,48,49]. The results of
these works can be applied to the branched continued fractions (16) and (26).

Furthermore, note that (26) as a continued fraction is equivalent to the Gaussian
continued function

1
1− z2

1 −

1
2c

4z1

(1− z2)2

1 − . . . −

k(2c + k− 3)
4(c + k− 2)(c + k− 1)

4z1

(1− z2)2

1 − . . . . (27)

In [50], in particular, the formal identity

H4(1, b; c, b; z) =
1

1− z2
2F1

(
1
2

, 1; c;
4z1

(1− z2)2

)
(28)

is given. However, it follows from the proof of ([31], Theorem 6.1) that ([31], Corollary 6.2)
can not be applied to the continued fraction (27) and the function on the right-hand side
of (28).

Thus, in general, the problems of proving the convergence of constructed expan-
sions (3), and, more importantly, proving the convergence of BCFs (3) to the corresponding
ratios (1), are open.

New results to solve these problems will be made in next paper.

4. Numerical Experiments

It is well known [23] (see also ([27], p. 235)) that the solution of the system of partial
differential equations

z1(1− 4z1)
∂2u
∂z2

1
− 4z1z2

∂2u
∂z1∂z2

− z2
2

∂2u
∂z2

2
+ (c− 8z1)

∂u
∂z1
− 5z2

∂u
∂z2
− 2u = 0,

−2z1z2
∂2u

∂z1∂z2
+ z2(1− z2)

∂2u
∂z2

2
− 2bz1

∂u
∂z1

+ (b− (1 + b)z2)
∂u
∂z2
− bu = 0,

(29)

where u = u(z) is an unknown function, are expressed by means of Horn’s hypergeometric
function H4(1, b; c, b; z).

Let c be a real constant satisfying the inequalities (25), and let b is complex constant,
which is not equal to a non-positive integer. Then, by Corollary 2 it follows that the BCF (26)
satisfies (29) for all z ∈ H, where H is defined by (19).
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As an example, by Corollary 2 we obtain

((1− z2)
2 − 4z1)

−1/2 = H4(1, b; 1, b; z)

=
1

1− z2 −
2z1

1− z2 −
z1

1− z2 −
z1

1− z2 −
. . . . (30)

The BCF in (30) converges and represents a single-valued branch of the analytic
function of two variables

((1− z2)
2 − 4z1)

−1/2 (31)

in the domain (19) with r = 1. If fn(z) denotes the nth approximant of (30), then for every
negative real z = z0, the so-called ‘fork property’ (see, ([32], p. 29))

f2k−2(z
0) < f2k(z

0) < f2k+1(z
0) < f2k−1(z

0), k ≥ 1,

holds (here f0(z0) = 0).
The numerical illustration of DPS

((1− z2)
2 − 4z1)

−1/2 = H4(1, b; 1, b; z) =
∞

∑
r,s=0

(1)2r+s

(1)r

zr
1

r!
zs

2
s!

(32)

and BCF (30) is given in Table 1. Numerical experiments also show that to compute
1/
√

2 = ((1 + 1/4)2 + 4(7/64))−1/2 with an error not exceeding 10−5 by the DPS (32), one
would need to take 57th partial sum, and that 1/

√
2 can be computed with an error less

than 10−5 by using the 5th approximant of the BCF (30).

Table 1. Relative error of 10th partial sum and 10th approximants for ((1− z2)
2 − 4z1)

−1/2.

z (31) (32) (30)

(−1/8, 1/10) 0.873704 6.62333× 10−8 1.98945× 10−10

(1/10,−1/16) 1.17129 7.23624× 10−8 2.01913× 10−10

(−1/10,−1/100) 0.839152 1.01955× 10−5 3.27995× 10−11

(−1/10,−1/10) 1.56174 6.56397× 10−4 5.81362× 10−8

(−1/5,−1/5) 0.668153 6.5287× 10−1 1.43181× 10−9

(−1/8,−1) 0.471405 2.92301× 10+02 3.32075× 10−14

(−2,−1/4) 0.323381 9.46661× 10+08 5.42958× 10−4

(−3,−4) 0.164399 6.95343× 10+12 4.77831× 10−9

(−10,−20) 0.045596 2.12733× 10+19 2.98276× 10−14

(−100,−100) 0.0097124 8.3222× 10+28 1.78609× 10−16

In Figure 1a–d, we can see the plots, where the 20th approximants of (30) guarantees
certain truncation error bounds for function of two variables (31).

One more example, by Corollary 2 we obtain

arctan
2
√
−z1

1− z2
= 2
√
−z1H4(1, b; 3/2, b; z)

=
2
√
−z1

1− z2 −

4
3

z1

1− z2 −

16
15

z1

1− z2 −
. . . −

k2

k2 − 1/4
z1

1− z2 − . . . , (33)

where the BCF converges and represents a single-valued branch of the analytic function of
two variables

arctan
2
√
−z1

1− z2
(34)
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in the domain (19) with r = 4/3.

-0.3 -0.2 -0.1 0.0 0.1

-0.3

-0.2

-0.1

0.0

0.1

Rez1

R
e
z
2

3.40×10-17

1.02×10-16

1.70×10-16

2.38×10-16

(a)

-0.3 -0.2 -0.1 0.0 0.1

-0.3

-0.2

-0.1

0.0

0.1

Rez1

Im
z
2

7.70×10-17

2.31×10-16

3.85×10-16

5.39×10-16

(b)

-0.3 -0.2 -0.1 0.0 0.1

-0.3

-0.2

-0.1

0.0

0.1

Imz1

R
e
z
2

3.80×10-16

1.14×10-15

1.90×10-15

2.66×10-15

(c)

-0.3 -0.2 -0.1 0.0 0.1

-0.3

-0.2

-0.1

0.0

0.1

Imz1

Im
z
2

2.30×10-15

6.90×10-15

1.15×10-14

1.61×10-14

(d)
Figure 1. The plots where the approximant f20(z) of BCF (30) guarantees certain truncation error
bounds for function ((1− z2)

2 − 4z1)
−1/2.

In Table 2, we can see that the 10th approximant of (33) is eventually a better approxi-
mation to (34) than the corresponding 10th partial sum of the DPS

arctan
2
√
−z1

1− z2
= 2
√
−z1H4(1, b; 3/2, b; z) = 2

√
−z1

∞

∑
r,s=0

(1)2r+s

(3/2)r

zr
1

r!
zs

2
s!

. (35)

Table 2. Relative error of 10th partial sum and 10th approximants for arctan(2
√
−z1/(1− z2)).

z (34) (35) (33)

(−1/50, 1/10) 0.304496 9.2228× 10−13 3.6461× 10−16

(−1/8, 1/10) 0.665944 1.06644× 10−8 1.60922× 10−10

(−1/10,−1/100) 0.559457 2.59086× 10−6 2.59205× 10−11

(−1/5, 1/50) 0.739777 1.46368× 10−3 8.30048× 10−9

(−1/5,−1/5) 0.640522 1.91315× 10−1 1.14109× 10−9

(−1/8,−1) 0.339837 1.30864× 10+02 2.56454× 10−14

(−4,−1) 1.10715 5.94092× 10+11 2.99918× 10−4

(−3,−4) 0.605891 2.17485× 10+12 3.78678× 10−9

(−10,−20) 0.292529 7.43863× 10+18 2.27715× 10−14

(−100,−100) 0.195491 2.65535× 10+28 2.83958× 10−16

The graphical illustrations of the function of two variables (34) and the BCF (33) are
given in Figures 2a,b and 3a–d. In particular, in Figure 2a,b we can see the plots of the
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values of even (odd) approximations of approaches from below (above) to the plot of the
function of two variables (34).

3rd approximant

(34)

4th approximant

(a)

5rd approximant

(34)

6th approximant

(b)
Figure 2. The plots of values of the nth approximants of (33).
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z
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(a)
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z
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(b)

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Imz1

R
e
z
2

2.60×10-16

7.80×10-16

1.30×10-15

1.82×10-15

(c)

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Imz1

Im
z
2

3.90×10-15

1.17×10-14

1.95×10-14

2.73×10-14

(d)
Figure 3. The plots where the approximant f20(z) of BCF (33) guarantees certain truncation error
bounds for function arctan(2

√
−z1/(1− z2)).

In the last example, by Theorem 3 we have

1− z2 +
√
(1− z2)2 − 4z1

2
=

H4(−1/2, b; 1/2, b; z)
H4(1/2, b; 3/2, b; z)

= 1− z2 −
z1

1− z2 −
z1

1− z2 −
z1

1− z2 −
. . . . (36)

Here the BCF converges and represents a single-valued branch of the analytic function of
two variables

1− z2 +
√
(1− z2)2 − 4z1

2
(37)

in the domain (19) with r = 1.
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Figure 4a–d shows the plots, where the 20th approximants of (36) guarantees certain
truncation error bounds for function of two variables (37).
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(d)
Figure 4. The plots where the approximant f20(z) of BCF (36) guarantees certain truncation error
bounds for function (1− z2 +

√
(1− z2)2 − 4z1)/2.

Given all the above, the expediency and effectiveness of using BCFs as an approx-
imation tool, in particular, of the functions of two variables, is confirmed by numerical
experiments. Calculations and plots were performed using Wolfram Mathematica software.

5. Discussion

The paper considers the problem of representing the Horn’s hypergeometric function
by BCFs. Three different FBCFEs are derived for three different ratios of Horn’s hypergeo-
metric function H4. However, the problem of constructing and studying FBCFs of other
structures (perhaps simpler) remains open. It is proved that the BCF converges to the
ratio of the hypergeometric series, whose expansion it is. Still, the conditions of their
convergence impose additional restrictions on the parameters of the function. Numerical
experiments confirm the expediency and effectiveness of using BCFs as an approximation
tool. Nevertheless, the problems of improving and developing new methods of studying
the convergence of such and similar BCFs are open.
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