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Abstract: A non-equilibrium scheme and an optimized approximate force are proposed for the
immersed boundary–lattice Boltzmann method (IB-LBM) to solve the fluid–structure interaction (FSI)
equations. This new IB-LBM uses the discrete velocity distribution function and non-equilibrium
distribution function to establish the interpolation operator and the spread operator at the mesoscopic
scale. In the interpolation operator, we use the force model of LBM to derive a direct force with a
simple form. In the spread operator, we give a theoretical proof with local second-order accuracy
of the spread process using the non-equilibrium theory from the LBM. A non-iterative explicit
force approximation scheme optimizes the direct force in that the streamlines have no penetration
phenomenon, and the no-slip condition is strictly satisfied. Different from other schemes for the
IB-LBM, we try to apply the non-equilibrium theory from the LBM to the IB-LBM and obtain good
results. The explicit force obtained using the non-equilibrium scheme and then optimized via the
non-iterative streamline correction equation simplifies the explicit direct force scheme and the original
implicit scheme previously proposed but obtains a similar streamline correction result compared
with the implicit method. Numerical tests prove the applicability and accuracy of this method in the
simulation of complex conditions such as moving rigid bodies and deforming flexible bodies.

Keywords: immersed boundary; lattice Boltzmann; fluid–structure interaction; non-equilibrium;
deformable body; moving particles

1. Introduction

In the mathematics and physics community, research on the theory and application of
numerical methods for fluid–structure interfaces (FSIs) has not stopped in recent decades.
Decoupling the multiple equations of FSIs is currently the main method for the FSI coupling
issue [1]. The numerical methods for FSIs can be divided into two categories: body-fitted
grids and fixed grids. Under a body-fitted grid, the arbitrary Lagrangian–Euler method
(ALE) [2,3] is a typical method, and the Lagrangian–Lagrangian method has also become
a popular method, such as with smoothed-particle hydrodynamics (SPH) [4,5] combined
with other solid methods. The advantage of a body-fitted mesh is to ensure a clear interface.
When the mesh deformation is large, and the geometry is complex or three-dimensional,
frequent mesh regeneration increases the computational cost. In order to avoid these things,
fixed-grid technology can finish the simulation scheme with less computing resources.
However, the method of a fixed-grid usually adopts an interpolation method to treat
the interface, which has made this kind of method become a research hotspot in the
mathematics and physics community.

The IB-LBM is the combination of the IBM with the LBM for FSIs. The independent
immersed boundary method (IBM) was proposed by Peskin [6]. Its idea is to exchange
information between the force source term of the Navier–Strokes equations and the force
on the solid boundary through the delta interpolation function, and then solve all the
coupled equations. Griffith, 2020 [7] reviewed immersed boundary methods under various
structures, and benchmark problems proved the effectiveness of these IB methods and
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point toward the future development direction of the IB method. The original IBM has only
first-order accuracy, and the sharp interfaces are smoothed to the length of one space step.
For this reason, many IB methods have undergone many years of theoretical expansion [8,9].
The LBM is a fluid numerical method and was first proposed in 1988 [10]. It has become
a popular algorithm for fluid calculations since NASA used this method for large-scale
numerical simulations [11]. This method can adapt to many complex conditions, such as
turbulence problems, big Knudsen number problems, sound waves, etc. Secondly, the
program of the LBM is simple and easy to parallelize for fast calculation [12]. It can be
seen that the LBM solver is better than the widely used N-S solver. The schemes for FSIs
have been developed for many years, such as the half-way bounce-back interpolation
scheme [13], the improved interpolation scheme [14], etc. It is worth mentioning that
these schemes have significant limitations in Lagrangian grids, especially when dealing
with moving boundaries. In addition, the IB-LBM has been a research hotspot in the
past decades, and it has a large number of published results in theoretical research and
numerical simulation, such as the simulation for COVID-19 [15]. From the perspective of
the LBM, the IBM can be regarded as a special boundary processing scheme. Unlike other
LBM boundary conditions, it does not need to limit the solid boundary points, which is a
very important advantage. From the perspective of the IBM, the LBM has the advantage of
cross-scale and efficient calculation as a special flow field solver.

The theory part of the IB-LBM has been studied for almost two decades. The first
combination of the IBM and the LBM was presented by Feng et al., 2004 [16]. A penalty
method based on Hooke’s law was used to compute the force of a solid with the assumption
of the position change of the Lagrangian marker point. This explicit penalty method shows
the unideal stability of the results and the unstrict satisfaction of the no-slip boundary
condition. To avoid the parameters issue in the explicit IB-LBM, Feng et al., 2005 proposed
a direct-force IBM with unstable calculation [17]. Niu et al., 2006 [18] first proposed
an IB-LBM-based momentum exchange method. The basic idea of this method is to
interpolate the velocity distribution function and use the bounce-back scheme to obtain
the interaction force on an interface based on the momentum exchange method. Wu et al.,
2009 [19] presented an implicit velocity correction-based IB-LBM method. The idea is
that the uncorrected velocity and corrected velocity with the old LBM and force can be
obtained via those equations. Moreover, streamline penetration is effectively avoided by
the simulation [20]. However, the problems of complexity and instability came with the
inversion process of a large interpolation matrix [19,20]. Kang et al., 2011 [21] present
an iterative scheme instead of inverting a large matrix at each time step to decrease the
computation cost of the implicit IB-LBM. Their method may lead to a large number of
iterative steps. Seta et al., 2014 [22] proposed a non-iterative implicit IB-LBM method for
the LBM with a two-relaxation-time (TRT) collision operator, decomposing the distribution
function into symmetric and antisymmetric components, whereby the test results show
that it has the same effect of correcting streamline penetration as the implicit method with
the multi-relaxation time (MRT). Hu et al., 2014 [23] proposed an iterative method with
the corrected velocity of the implicit method to avoid matrix inversion. Then, they add
this iterative method to the IB-LBM proposed by Niu [18], and the result shows that the
no-slip boundary conditions can be better met via this method than via Niu’s. Yuan et al.,
2014 [24] extended this method proposed by Niu [18] to the conventional IBM for flexible
bodies, and the simulation results show the adaptability of the IB-LBM for deformable
bodies. The high-order Runge–Kutta schemes of the IB-LBM developed by Zhou et al.,
2014 [25] are used to correct the direct force but with a first-order delta function. Then, a
second-order-accurate result is validated for simulating a rigid body. Wang et al., 2018 [26]
combined the implicit IB-LBM method with an improved moving-least-square (IMLS)
scheme based on an orthogonal function system with a weight function. The simulation
is successful for moving boundaries, but the matrix inversion must be solved, and the
final equations system is easily ill-conditioned or singular. Afra, B. et al., 2018 [27] give
a robust lattice spring model (LSM) that is used to describe the big deformation with
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the spring tension in multiple directions for FSIs in a deformation simulation; this is an
interesting model and produces good results for deformation simulations. By introducing
an interface parameter λ, Tao et al., 2019 design closed equations to obtain λ and then add
it to the IB-LBM proposed by Niu [18]. This is a non-iterative immersed boundary–lattice
Boltzmann method to eliminate the penetration phenomenon [28]. For a curved boundary
with large curvature, Wang et al., 2020 [29] use the half-bounce-back scheme to optimize
the IB-LBMs at the mesoscopic scale, which is developed from Niu [18], and obtains perfect
streamline results in an airfoil test. Qin et al., 2021 [30] used a level-set method to impose
the jump conditions of an immersed boundary associated with the normal component of
the interfacial force for the IB-LBM. The simulation results show second-order accuracy
results in the designed attenuation flow case and assure the volume conservation in the
flexible boundaries case. Yang et al., 2022 [31] presented an improved bond-based peri-
dynamic (PD) model with an attenuation kernel and surface effect correction for use in
the IB-LBM, which can be optimized in numerical simulations. Based on the Giesekus and
Oldroyd constitutive equation, a new IB-LBM is used by Qin, S. et al., 2023 [32] to simulate
suspended solid particles.

The bounce-back boundary scheme and non-equilibrium scheme have rich physical
and numerical significance in the LBM boundary scheme. At present, only the bounce-
back boundary scheme has been extended to the IB-LBM [18,29], but the non-equilibrium
scheme has not been successfully developed. This paper attempts to construct the scheme
of non-equilibrium theory on an IB.

Therefore, the physical process on an IB has a non-equilibrium theoretical explanation
at the mesoscopic level. Not only does this physical significance exist, but the newly
developed scheme also retains the numerical properties of the LBM boundary scheme,
and gives the IB-LBM, which has been criticized for its first-order accuracy, the numerical
significance of local second-order accuracy. In addition, for the mass conservation issue
of the IB-LBM, which, currently, only the implicit method [19,21] can fully guarantee, this
paper develops a mass conservation strategy in the explicit environment (where the no-slip
condition is satisfied), which we call the approximate force (a simple method that does not
require matrix inversion [19] or iteration [21]).

The above process is called the non-equilibrium scheme optimized with the approxi-
mate force, and the independent work of this paper is as follows:

(1) We establish a new non-equilibrium scheme on an IB and pass the numerical ver-
ification. The entire calculation process uses the interpolation of physical quantities at the
mesoscopic scale, and it has the possibility of application with a larger Knudsen number.

(2) We deduce that the spread operator has local second-order accuracy, which effectively
improves the accuracy of the original IB-LBM in this process; however, because the interpolation
operator only has local first-order accuracy, this reduces the overall accuracy order.

(3) The algorithm design of the force approximation with a simple form enables the
conservation of the local interface mass and ensures the strict satisfaction of the no-slip
boundary condition.

(4) The proposed scheme is successfully coupled with the solid equations and shows
effective numerical simulations for the moving boundary problems.

2. Related Work

• Immersed boundary method and lattice Boltzmann method

The IBM is based on the following immersed boundary assumption by Peskin [6]:
denote that the whole fluid–solid domain Ω ⊂ Rn (n = 2, 3), Ω+ is the fluid domain, and
Ω− is the solid domain. Let Γ = Ω+ ∩ Ω− be the fluid–solid coupling immersed interface
that satisfies the no-slip boundary condition, then Ω = Ω+ ∪ Ω−.

Moreover, the spread operator and interpolation operator are used to exchange the
interface physical quantities, which are given as [33]
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f(x) =
∫

Γ
F(s)δ(x− X)ds (1)

U(X) =
∫

Ω
u(x)δ(x− X)dx (2)

where x = (xi, i = 1, 2, 3) ∈ Ω is the Euler coordinate points, and s (si, i = 1, 2, 3) ⊂ K is
the Lagrange coordinates of the interface particles. The mapping X(s, t) ∈ Ω is the Euler
position of the particles with arc-length parameters s at time t; δ(x) is the delta function; f, u
is the force and velocity on the Euler grids for the fluid; and F, U is the force and velocity
on the Lagrangian grids for the solid.

For the 2D condition, the function δ(x) is

δ(x) = δ(x)δ(y) (3)

For the five-point interpolation [33], δ(x) is defined as

δ(x) =


1
8

(
3− 2|x|+

√
1 + 4|x| − 4x2

)
(|x| < 1)

1
8

(
5− 2|x| −

√
−7 + 12|x| − 4x2

)
(1 ≤ |x| ≤ 2)

0 (|x| > 2)

(4)

The smooth function of δ(x) is given as

δ′(x) =

{
1
4
(
1 + cos(πx

2 )
)

(|x| ≤ 2)

0 (|x| > 2)
(5)

According to the gas kinetic theory, the continuous Boltzmann equation describes the
fluid domain. The Boltzmann–BGK equation is given as [34]

∂ f
∂t

+ ξ · ∇x f + a · ∇ξ · f = − 1
τc

[
f − f (eq)

]
(6)

where f = f (x,ξ, t) is the particle distribution function, x is the space displacement vector,
ξ is the velocity vector, t is the time, f (eq) is the equilibrium distribution function, τc is the
relaxation time, and − 1

τc

[
f − f (eq)

]
is the BGK collision operator.

The lattice Boltzmann equation is the difference equation of the continuous Boltzmann
equation with a special difference scheme [35]. The LBGK equation with external force term
is widely used [36], and it is discretized in time and space from Equation (6) and written as

fi(x + ci∆t, t + ∆t)− fi(x, t) = − 1
τ

(
fi(x, t)− f eq

i (x, t)
)
+ Si (7)

where fi = fi(x, ci, t) is the discrete velocity distribution function, τ = τc/∆t is the dimen-
sionless relaxation time, Si is the collision source term, ci is the space discrete velocity, and
f eq
i (x, t) is the discrete equilibrium distribution function.

The relaxation time τ of Equation (7) is defined as

τ = υ/c2
s ∆t + 0.5 (8)

where υ is the dynamic viscosity, and cs is the lattice sound velocity:

cs =
1√
3

∆x
∆t

(9)
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The discrete equilibrium distribution function f eq
i (x, t) of Equation (7) is expressed as

f eq
i (X, t) = ρwi

[
1 +

ci·u
c2

s
+

(ci·u)2

2c4
s
− u2

2c2
s

]
(10)

where wi is the weight coefficient:

wi =


4
9 i = 0
1
9 i = 1, 2, 3, 4
1

36 i = 5, 6, 7, 8

(11)

The discrete force scheme of Si in Equation (7) is used to obtain the force density, and
the scheme is carried out by Guo et al. [36]:

Si = (1− ∆t
2τ

)wi

(
ci − u

c2
s

+
(ci · u) · ci

c4
s

)
· f(x, t) (12)

The discrete velocity scheme of ci in Equation (7) is the DnQm model proposed by
Qian et al. [37]. The D2Q9 model is used in this paper and expressed as

ci =


0 i = 0(
cos
[
(i− 1)π

2
]
, sin

[
(i− 1)π

2
])∆x

∆t i = 1, 2, 3, 4(
cos
[
(2i− 1)π

4
]
, sin

[
(2i− 1)π

4
])∆x

∆t i = 5, 6, 7, 8

(13)

For the macro quantity density ρ and the momentum ρu, the moment equation
is satisfied:

ρ = ∑
i

fi, ρu = ∑
i

ci fi +
f∆t
2

(14)

• The conventional immersed boundary–lattice Boltzmann method (IB-LBM)

The IB-LBM, the combination of the IBM with the LBM, is proposed by Feng [16]. By
connecting Equations (1), (2), (7), and (12) and supplying solid equations, the total IB-LBM
for an FSI is completed.

The key of the IB-LBM is to obtain the f, u of the fluid and F, U of the solid on the grids,
so the traditional explicit method called the penalty force method is given by Feng [16],
such that

F = k · ∆X (15)

where ∆X is the displacement of the boundary Lagrangian point, F is the imaginary bound-
back force due to ∆X, and k is the given stiffness parameter.

Then, he gives the direct force method [17], which is similar to the stress integration
method in the traditional LBM. The solid force density is given as

Fα = ρ
Uα − uα

∆t
+ ρuβ∂βuα + ∂α p− µ∂2

βuα (16)

where p = c2
s ρ is the positive pressure, and α, β represents the coordinate direction under a

2D condition, respectively.
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The bounce-back momentum exchange method [18] is the original method of the
mesoscopic method in IB-LBMs. It opened a precedent for exploring the mesoscopic
immersed boundary method. The interface force density is obtained with

F = ∑
i

ci( f new
i − fi) = ∑

i
ci

(
f−i − fi − 2wiρ

ciu
c2

s

)
(17)

where −i is the opposite direction of i, and f new
i is the distribution function with the

bound-back scheme.
The traditional implicit method called the velocity correction method was proposed

by Wu [19], whereby the corrected velocity at the Euler point is implicitly obtained, and
then the force density at the Euler node is obtained:

f = 2ρ
u− u

∆t
= 2ρ

∆u
∆t

, ∆u = U(Xl , t)−∑
i,j

u
(
xij, t

)
δij
(
xij −Xl

)
∆x∆y (18)

where u is the uncorrected velocity in the fluid domain, and ∆u is the corrected velocity.

3. Present IB-LBM: A Non-Equilibrium Scheme and an Optimized Approximate Force

The non-equilibrium scheme proposed in this paper will be introduced in the following.
The interpolation method based on the non-equilibrium distribution function has been
effectively applied to the conventional LBM, but it is difficult to apply the non-equilibrium
scheme of the LBM to the IB-LBM as the grid kind is different.

The non-equilibrium distribution function is used as the interpolation quantity because
the non-equilibrium distribution function is essentially the expansion remainder of the
particle distribution function, which can effectively reduce the interpolation loss [38].

As shown in Figure 1a, the scheme proposed in this paper is divided into two processes
under mesoscopic condition. Firstly, in the interpolation operator, we adopt an interpolation
scheme based on the discrete velocity distribution function. Secondly, in the spreading opera-
tor, we adopt an interpolation scheme based on the non-equilibrium distribution function.
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• Spread operator and interpolation operator in the non-equilibrium Scheme

According to the Chapman–Enskog expansion analysis [12], expressing f as the dis-
turbance expansion, we then obtain

fi = f (0)i + K f (1)i + K2 f (2)i + · · ·Kn f (n)i , n→ +∞ (19)
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where K is the collision scale time. f eq
i = f (0)i is the equilibrium distribution function, and

f neq
i = fi − f (0)i is the non-equilibrium distribution function.

Note that xm ∈ Ep = {x1, x2, · · · , xM} is the set of Euler coordinate points to be
interpolated, and Xn ∈ Lp = {X1, X2, · · · , XN} is the set of all Lagrangian marked points.

According to Equations (1) and (2), the discrete interpolation delta function [33]
Imn = I(xm −Xn) is denoted as

Imn = I(xm −Xn) =
1
hd

d

∏
j=1

δ

( xm,j − Xn,j

h

)
(20)

where h is the length of the Euler grid, d is the spatial dimension, and xm,j and Xn,j are the
coordinate in the direction j, and Equation (4) can be used for δ(x).

Similarly, the discrete spread delta function is denoted as

Smn = S(xm −Xn) =
1
hd

d

∏
j=1

δ

( xm,j − Xn,j

h

)
(21)

Interpolation operator from Euler to Lagrange:
For any Xn ∈ Lp, through the interpolation function Imn, we assume that the distribu-

tion function on the Lagrangian point satisfies

fi(Xn, t) =
M

∑
m=1

fi(xm, t)I(xm −Xn)hd (22)

The discrete velocity distribution function should satisfy

fi(Xn, t) = f eq
i (Xn, t) + f neq

i (Xn, t) (23)

where the equilibrium function f eq
i (Xn, t) is constructed with the local velocity U, rewriting

Equation (10) as

f eq
i (X, t) = ρwi[1 +

ci·U
c2

s
+

(ci·U)2

2c4
s
− U2

2c2
s
] (24)

where the density ρ can be calculated via Equation (14).
Then f neq

i (Xn, t) can be obtained from Equations (22)–(24).
We can still use the force model [12] from the Euler point to the Lagrangian point, and,

noting U in Equation (24) as U∗, we then obtain

ρU∗ = ∑
i

ci fi + l · F∆t (25)

where U∗ is the equilibrium velocity. l = 1/2 [36], l = τ/∆t [39], and other models can be
found in the book [12].

For f neq
i (X, t), we can obtain

∑
i

ci

(
f neq
i

)
= ∑

i
ci

(
fi − f eq

i

)
= ∑

i
ci fi −∑

i
ci f eq

i = ∑
i

ci fi − ρU∗ = −l · F∆t (26)

Then, we can obtain the expression of the macroscopic force density function F from
f neq
i (X, t):
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F = −∑
i

ci
f neq
i

l∆t
(27)

The force density function obtained via Equation (27) is much simpler in form than
the direct force derived via the stress integration method given by Feng [17], which also
means that less calculation noise is generated.

Spread operator from Lagrange to Euler:
For any xm ∈ Ep, through the spread function Smn, the non-equilibrium velocity

distribution function of the Euler point can be obtained as

f neq
i (xm, t) =

M

∑
m=1

f neq
i (Xn, t)S(xm −Xn)hd (28)

The force density on the Euler point can be obtained from (27). By connecting (10) and
(14), the fluid solution process of the IB-LBM can be completed.

The following verifies the order of accuracy in the spread process.
Consider a one-dimensional problem, as shown in Figure 1b, under a three-point

interpolation. Then,

f neq
i (xm) = f neq

i (Xn)(1− ∆x) + f neq
i (Xn+1)∆x = f neq

i (Xn) + O(∆x) (29)

Introduce non-equilibrium theory, where f neq
i is an order of magnitude smaller than

f eq
i [38]:

f neq
i = fi − f (0)i ≈ f (1)i ∆t (30)

Hence, we obtain

f neq
i (xm)− f neq

i (Xn) = O(∆x∆t) = O(∆x2) (31)

Therefore, the proposed non-equilibrium scheme has local second-order accuracy
during the spread process.

• Optimization of the proposed IB-LBM with approximate force on the IB

Through Equations (20), (21), (23), (26), and (27), an IB-LBM solver in the non-
equilibrium distribution function scheme is built.

L = [F(X1, t), F(X2, t), . . . , F(XN , L0)]
T can be obtained as the force density vector on

the Lagrangian point through Equation (27). However, there will be a small amount of the
streamline penetration phenomenon, which needs to be corrected via the matrix [19].

Denoting L as L =
[
F(X1, t), F(X2, t), . . . , F(XN , t)

]T , and introducing the correction
matrix T, L is then the target matrix:

TL = L (32)

The correction matrix T is given as

T = IEhSLs (33)

where S is the spread matrix, I is the interpolation matrix, Eh is the Euler step matrix, and
Ls is the Lagrangian step matrix, as follows:

S =


S11 S12 · · · S1N
S21 S22 · · · S2N

· · · · · · . . .
...

SM1 SM2 · · · SMN

, I =


I11 I12 · · · I1M
I21 I22 · · · I2M

· · · · · · . . .
...

IN1 IN2 · · · INM

 (34)
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Eh =


hd 0 · · · 0
0 hd · · · 0

· · · · · · . . .
...

0 0 · · · hd

, Ls =


∆s1 0 · · · 0

0 ∆s2 · · · 0

· · · · · · . . .
...

0 0 · · · ∆sN

 (35)

It can be seen that the above method needs to invert the matrix, and the actual
situation often involves large-scale sparse matrices. Some correction methods have been
studied [21,22,28]. This paper proposes an approximate force method to replace the matrix
inversion in some IB-LBMs [19].

The approximate force method:
Denoting L as L0, we then obtain

L = L0 + ∆L0 (36)

where ∆L0 is the error remainder of L.
Using the difference value of L0 before and after transformation to estimate ∆L0, we

then have

∆L0 = L0 − TL0 + ∆L1 (37)

where ∆L1 is the error remainder of ∆L0.
By analogy, we can obtain

∆L1 = (L0 − TL0)− T(L0 − TL0) + ∆L2 (38)

Noting C = E− T, and the induction from (33) and (34), we have

∆Ln = Cn−1L0 + ∆Ln+1 (39)

Substituting Equations (37)–(39) into Equation (36), L can then be expressed as an
infinite series:

L =

 ∞

∑
i=0

Ci

 · L0 (40)

If L exists and is bounded, then ∑∞
i=0 Ci must converge, such that

∆Ln = Cn−1L0 + ∆Ln+1 → 0, n→ +∞ (41)

Usually, taking i < 10 for (40) to obtain an approximate solution, we then have

L ≈

 k

∑
i=0

Ci

 · L0, k < 10 (42)

• The whole process of the present IB-LBM

Connecting all the equations above, the process of our IB-LBM is shown in Figure 2.
(1) Starting from time t, input fi into Equation (22) and U into the non-equilibrium

immersed boundary module (in the middle) and obtain f neq
i through Equations (23)–(25).

(2) In the fluid module on the left, input f neq
i to obtain the force density function f

through Equation (27) and the equilibrium distribution function f eq
i through Equation

(10). In addition, obtain the distribution function fi via Equation (7) after the collision and
stream. At the same time, output the macroscopic physical quantity ρ, u (14), and update
the time step to t + ∆t.
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(3) In the solid module on the right, input f neq
i to obtain the boundary force den-

sity F via Equation (27), and through the approximate optimization in Equation (42),
obtain the immersed boundary velocity U from the solid governing equations, such as our
Section 4.3 and 4.4, and update the time step to t + ∆t.
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4. Results
4.1. Symmetrical Poiseuille Flow with an Immersed Boundary

Poiseuille flow [40] is a common verification test for numerical algorithms as it has an
analytical solution. Furthermore, the numerical simulation of Poiseuille flow can also be an
engineering reference model. The error analysis and accuracy verification of the present
method uses this test.

A computational domain that is different from the conventional Poiseuille flow ver-
ification example was designed, as shown in Figure 3, wherein one immersed boundary
along the X direction is located in the middle of the flow field. Consider the square area
Ω = [0, L]× [0, L] as the fluid domain, where L = 20∆x and ∆x = 1 is the grid length. The
four boundaries (the top, the bottom, the left, and the right) are set as periodic boundaries.
An immersed boundary is set at the center of the channel. The force density is ∆P = 1e−5,
and the Reynolds number Re = 10 and the relaxation time τ = 1 remain constant. The
initial numbers are Nx = 20 in the X direction and Ny = 20 in the Y direction. The initial
number of Lagrangian grids on the IB is 18 (the grid ratio is approximately 1.11), and the arc
lengths between the grids are equal. The grid number of 4 tests (20× 20,40× 40, 80× 80, and
160× 160) is used. The number of Lagrangian grids per group is also increased by two times.
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The analytic solution of the plane Poiseuille flow in this paper is expressed as
u(y) = ∆P

ν
D2

2

(
y+0.5D

D − (y+0.5D)2

D2

)
, y < 0.5D

u(y) = ∆P
ν

D2

2

(
y−0.5D

D − (y−0.5D)2

D2

)
, y ≥ 0.5D

(43)

where D is the width of the channel, ν is the dynamic viscosity, and y is the height coordinate
in the channel.

The maximum velocity value Umax is located at y = 0:

Umax =
∆PD2

8ν
(44)

The infinite norm of the error is used in the error analysis and is given as

‖un − ua‖∞ =max
∣∣∣un

ij − ua
ij

∣∣∣
1 ≤ i ≤ Nx
1 ≤ j ≤ Ny

(45)

where un
ij is the numerical solution of velocity, and ua

ij is the analytical solution of velocity
in the fluid domain.

The L2 norm of the velocity error is also considered:

‖un − ua‖ =

√√√√∑Nx
i=1 ∑

Ny
j=1

(
un

ij − ua
ij

)2

Nx× Ny
(46)

The comparison between the analytical solution and the numerical solutions of the
four tests is shown in Figure 4. A relatively high fit degree with the analytical solution
curve proves the effectiveness of the present algorithm in steady flow. As the LBM uses
periodic boundaries, the Y coordinates will be infinitely close to Y = 20 and Y = 0.
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Figure 4. The comparison of the numerical solutions according to the four grid schemes and the
analytic solution.

Table 1 shows the L2 norm and the infinite norm of the error of the four grid schemes.
The method proposed in this paper has first-order global accuracy, although we proved
the second-order in the spread process. As the many boundary methods of the LBM
have only first-order accuracy, considering this IB-LBM, which is 23 times faster than the
IBM–Navier–Stokes solver [41], the computational resources in this paper are acceptable.
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Table 1. The L2 norm, infinite norm of the error, and convergence order (rate) values.

Mesh ‖un−ua‖ Rate ‖un−ua‖∞ Rate

20× 20 0.0955329 0.0635722
40× 40 0.0480705 0.99085 0.0322156 0.98064
80× 80 0.0245173 0.97135 0.0162343 0.98871

160× 160 0.0123796 0.98584 0.0081475 0.99462

A grid independence study was performed to ensure the results were independent
of the mesh resolutions, as shown in Table 2. Based on the results in Table 2, we adopted
different Lagrangian grids of 10, 20, and 30 with grid ratios of 2, 1, and 0.67 on the immersed
boundary, which is sufficient to ensure mesh-independent results (18 was the initial setting).

Table 2. Grid independence study of Poiseuille flow with four Lagrangian mesh schemes.

Grid Grid Ratio ‖unua‖∞ |(‖un−ua‖∞)new/(‖un−ua‖∞)old−1|

10 2 0.0651623
18 1.11 0.0635722 0.02440
20 1 0.0642422 0.01053
30 0.67 0.0644133 0.00266

4.2. Flow Past a Fixed Circular Cylinder

Flow past a 2D fixed cylinder is a classic test that has experimental results, and many
numerical simulation results, and is often taken to validate IB-LBMs [21–26]. The accuracy
and validity of the present IB-LBM in unsteady flow and the conservative invariance of
mass in Equation (42) were to be further verified through this test.

The Reynolds numbers of our test were set as 20, 40, 100, and 200, respectively, and
the parameter k = 6 in (42) is given in this case. The computational domain considers the
rectangular domain Ω = [0, 800∆x]× [0, 1200∆x], where the lattice length ∆x = 1. The
cylinder diameter D = 32∆x, the number of the Lagrangian grids is 72, and the grid ratio
is about 1.4. The four boundaries are as follows: the top and bottom boundaries are fixed
solid boundaries; the left is the inlet with the velocity U∞ = 0.2, and the right side is
the outlet with the velocity gradient being zero. All the boundaries are treated with the
non-equilibrium scheme.

The four dimensionless parameters are given as follows: the Reynolds number as
Re = U∞D

ν ; the Strouhal number St =
fqD
U∞

( fq is the vortex shedding frequency); and the
drag coefficient CD and lift coefficient CL, which are obtained with

CD =
FD

1
2 ρU2

∞D
(47)

CL =
FL

1
2 ρU2

∞D
(48)

where drag force FD = −
∫

Ω fxdxdy =
∫

Γ Fxds, lift force FL = −
∫

Ω fydxdy =
∫

Γ Fyds, and
the subscripts x and y are the x-direction and y-direction in the domain.

Table 3 is a comparison of the results for the three important parameters, the drag
coefficient C̄d, lift coefficient Cl , and Strouhal number St, via the experimental result [42],
numerical result [43], and the results of other IB-LBMs [19,23,30]. We see that the parameters
of the proposed numerical method are similar to the parameters in other results. The
accuracy of the present method is verified in both steady and unsteady flow.
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Table 3. Comparison of the drag coefficient, the lift coefficient, and the Strouhal number when
Re = 20, 40, 100, and 200.

Reference Tritton
[42]

Calhoun
[43]

Wu
[19]

Qin
[30]

Hu
[23] Present

Re = 20 C̄d 2.22 2.19 2.091 2.230 2.213 2.298

Re = 40 C̄d 1.48 1.62 1.565 1.689 1.660 1.693

Re = 100
C̄d 1.33 13.364 1.510 1.418 1.527
Cl 0.298 0.353 0.367 0.355
St 0.175 0.163 0.169 0.166 0.176

Re = 200
C̄d 1.77 1.349 1.493 1.394 1.495
Cl 0.67 0.718 0.712 0.723
St 0.202 0.193 0.199 0.195 0.208

Figure 5 shows the curve of the drag coefficient C̄d and lift coefficient Cl . The drag
coefficient gradually decreases when the Reynolds number increases. When Re = 100
and Re = 200, the data in Table 3 correspond to the curves in Figure 5. When Re = 100
and Re = 200, the lift coefficient curve presents periodic changes, and the period becomes
shorter as the Reynolds number increases. The change in the lift coefficient means that the
frequency of vortex shedding increases gradually as the Reynolds number increases after
the appearance of a Karman vortex street (Re > 47).
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Figure 6a shows the streamline results of the 4 usual IB-LBMs at Re = 40, which are the
penalty method [16], the iterative method [21], the implicit method [19], and the momentum
exchange method [18]. Comparing our streamline results when Re = 40 in Figure 6b, our
proposed method has almost no streamline penetration phenomenon. Such results can
prove that the present method can ensure local mass conservation at the interface under
unsteady flow; the no-slip boundary condition can be effectively guaranteed; and the
parameter setting in Equation (42) is effective.
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4.3. Sedimentation and Collision of Moving Particles

Particle–fluid interaction problems have been widely encountered in nature and
engineering, such as sediment suspension in rivers and cell transport in biology. There are
a large number of numerical simulation cases for particle–fluid motion [32], and we used
the numerical solution of double-particle sedimentation to verify our method [16,18,20].

For particles in the fluid domain, they can be regarded as a moving rigid body and
satisfy the synthetic motion equation:

M
∂2X
∂t2 = Ftotal , I

∂2θ

∂t2 = Ttotal (49)

Ftotal =

(
1−

ρ f

ρp

)
M + F f luid + Fcollision, Ttotal = −

∫
L
(X−Xc)× F f luidds (50)

Fcollision = Fp−p + Fp−w (51)

Fp−p =


0, if

∣∣∣Xi
c −Xj

c

∣∣∣ ≥ Ri + Rj + ζ

A
(

Xi
c −Xj

c

)
, if

∣∣∣Xi
c −Xj

c

∣∣∣ < Ri + Rj + ζ
(52)

Fp−w =


0, if

∣∣∣Xi
c −Xw

∣∣∣ ≥ Ri + ζ

B
(

Xi
c −Xw

)
, if

∣∣∣Xi
c −Xw

∣∣∣ < Ri + ζ
(53)
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where Ftotal and Ttotal are the total force and torque on the particle, and the total force Ftotal
includes the gravity/buoyancy force, and the hydrodynamic F f luid and particle collision
force Fcollision. Xi

c is the center of mass of the particle i, and Ri is the radius of particle i. I
is the moment inertia, M is the mass of the particle, and ρp is the density of the particle.
Moreover, Fp−w denotes the collision forces of particle–particle and particle–wall collisions,
respectively. A, B are constant by the setting (see [16]), and ζ is the threshold.

The channel of the computational domain is [160∆x, 640∆x], which means the width
is 2 cm (x-direction), and the height is 8 cm (y-direction). The particle density is ρp = 1.01 g/cm3,
and the radii of the particles are 0.1 cm. Initially, particle 2 is set at the point (0 cm, 7.2 cm), and
then particle 2 is set at the point (0 cm, 6.8 cm). The relaxation time is 0.65, and more related
parameters can be seen in [16,18,20].

Figure 7 is a comparison of the motion trajectory results between this case and other
cases [16]. It can be seen that the results of this case are basically consistent with other
cases. Figure 7a shows the time of the separation of the two particles is 1.5 s, and this is
because particle 2 is located in the wake of particle 1. As the two particles approach and
collide, particle 1 has a larger movement range on the X-axis than particle 2, as shown in
Figure 7b, because the component of the collision force of particle 2 on the Y-axis is positive,
and particle 2 has a bounce-back process, as shown in Figure 7a.
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Figure 8 is the overall trajectory of the particles accompanied by the change in vorticity.
The particle displays a motion that is the specific trajectory on the 2D plane corresponding
to Figure 7a,b. We achieve an acceptable degree of fit with [16] in Figure 7a,b, which
also means that we achieve similar motion trajectories on the 2D plane to the results by
Feng [16] (more similar results can be seen in [18,19]). In the middle and early part of the
time, particle 1 chases particle 2, and it can be seen that the vorticity changes with time
increases. The overall motion lasts for 5 s. The collision process occurs when t = 1.5 s, and
the separation process occurs when t is greater than 2 s. The result of this case shows the
applicability and accuracy of this method in simulating movable rigid bodies.
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4.4. A Flexible Filament Fixed at One End

Flexible bodies interacting with surrounding fluid flow are commonplace; the motion
of flexible filaments in a flow is an abstract model of these phenomena. Over the years,
many simulations of flexible filaments have been studied [44–46].

Considering an inextensible flexible filament of length L, its deformation equations
can be written as

M
∂2X
∂t2 = F f luid + Finner = F f luid + FT − FN (54)

FT =
∂

∂s

(
T

∂X
∂s

)
(55)

FN =
∂2

∂s2

(
Kb

∂2X
∂s2

)
(56)

∂2X
∂s2 = 0,

∂2X
∂t2 = 0, at fixed end (57)

T = 0,
∂2X
∂s2 = 0,

∂3X
∂s3 = 0, at free end (58)

∂X
∂s
· ∂X

∂s
= 1, inextensibility condition (59)

where M is the linear density of the filament, Kb is the bending coefficient, and T is the
tension force along the filament, which is determined by the constraint of the inextensibility
condition. The boundary conditions at the fixed end and free end closed the equations.
Additionally, the finite difference method is applied to solve the equations.

We used the computational domain Ω = [0, 200∆x]× [0, 300∆x], and the boundary
conditions were set in the same scheme as in case 4.2, but with U∞ = 0.05. A fixed end
of a flexible filament is located at (20∆x, 150∆x), setting the length L = 60∆x along the
X direction. When the Reynolds number is determined, the parameters of M and Kb are
adjusted to obtain the test results.

Figure 9 is a comparison diagram of the trajectory of the flexible filaments. The parame-
ters in this article are set to Re = 50, M = 3× 102, Kb = 0.08. According to the parameter
strategy in this paper, the tail trajectory, which is very similar to that in the other literature,
can be obtained. The trajectory is symmetrical, like the writing of the Arabic number 8. This
proves the accuracy and applicability of this paper in simulating flexible bodies.
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Figure 9. Comparison diagram of the tail movement trajectory of the flexible filament with three
cases: Xu [46], Yuan [24] and Wu [20].

Figure 10a,b shows the filament motion trajectory diagrams. The initial setting filament
length L = 80, the other parameters Re = 50, M = 5 × 102, and 2 sets of parameter
comparisons are given as Kb = 0.08 (a) and Kb = 0.11 (b). From the comparison of
(a) and (b), it can be seen that the overall motion shape of the flexible filament changes
greatly with small changes in the parameters, which is why the results of the papers on the
flexible filament model are different in terms of the overall motion shape [44–46]. When Kb
increases, the overall movement amplitude decreases approximately from the (65–105) of
(a) to the (60–100) of (b) in the Y direction. Determined by Equation (49), the amplitude
of the filament movement at the tail is greater than that at the middle. According to
our results, when the parameter Kb is less than 0.05, the overall program breaks due to
excessive motion amplitude. Moreover, when the parameter Kb is greater than 0.13, the
overall motion amplitude decreases to a quasi-static state.

Figure 11 is the wake vorticity diagram of the flexible filament at different Reynolds
numbers. When the Reynolds number is 150 with 0.2 T and 0.5 T (where T is the motion
period of the filament), the Karman vortex street is regular. When the Reynolds number is
600 with 0.1 T and 0.5 T (b), the vortex separation frequency presents an unstable situation.
Moreover, the successful simulation of the large deformation of the flexible body denotes a
certain stability of our method.
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5. Conclusions

The final conclusions are as follows:
(1) This paper proposed a non-equilibrium scheme for the IB-LBM, which is an ex-

tension of the non-equilibrium theory of the LBM in Equations (22)–(24) and (28). In the
IB-LBM interpolation process, the explicit force of the immersed boundary under meso-
scopic conditions with the non-equilibrium scheme and the force model from the LBM is
realized in Equation (27). The explicit scheme can be a simple form compared with the
implicit scheme in [19] and the explicit direct force in Equation (16). The application of
our proposed non-equilibrium scheme (that is subsequently optimized via an approxi-
mate force) to numerical simulations is effective, which demonstrates the feasibility of the
proposed scheme modeled using non-equilibrium theory.

(2) For the IBM or IB-LBM, the coupling process consists of the spread process and the
interpolation process, so the numerical results must include the two processes together. We
give a theoretical proof to the non-equilibrium scheme that has local second-order accuracy
in the spread process in Equation (31). However, it only has first-order global accuracy in
Table 1, which is because there is only local first-order accuracy in the interpolation process
in Equation (22). The reason is that the delta function in Equations (1) and (2) is difficult
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to replace, which leads to first-order accuracy for IBMs or IB-LBMs. Therefore, this is one
of the reasons why the IB-LBM or IBM has become a current research hotspot [7]. The
proof of local second-order accuracy in the spread process will simplify the issue of global
second-order accuracy, that is, researchers who are interested in the IB-LBM only need to
conduct modeling research on the interpolation process.

(3) A non-iterative approximation method in Equation (42) is used to correct the
explicit force via the non-equilibrium scheme in Equation (27) on the interface, and a
better streamline diagram is obtained in Figure 6a,b (with the disappearance of streamline
penetration), which almost strictly satisfies the no-slip boundary condition. The advantage
of this explicit force optimized using the non-iterative approximation method is that there
is no need for matrix inversion [19] or iterative solution [21], but it can obtain the same
results in Figure 6a,b. Furthermore, Equation (42) is also an explicit scheme.

(4) The method obtained relatively good simulation results for unsteady flow in
Figure 5 and Table 3, a movable rigid body in Figure 7a,b, and a deformable flexible body in
Figure 9, which proves the applicability of this method in a variety of complex conditions.
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