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Abstract: The unit–power Burr X distribution (UPBXD), a bounded version of the power Burr X 

distribution, is presented. The UPBXD is produced through the inverse exponential transformation 

of the power Burr X distribution, which is also beneficial for modelling data on the unit interval. 

Comprehensive analysis of its key characteristics is performed, including shape analysis of the 

primary functions, analytical expression for moments, quantile function, incomplete moments, 

stochastic ordering, and stress–strength reliability. Rényi, Havrda and Charvat, and d-generalized 

entropies, which are measures of uncertainty, are also obtained. The model’s parameters are esti-

mated using a Bayesian estimation approach via symmetric and asymmetric loss functions. The 

Bayesian credible intervals are constructed based on the marginal posterior distribution. Monte 

Carlo simulation research is intended to test the accuracy of various estimators based on certain 

measures, in accordance with the complex forms of Bayesian estimators. Finally, we show that the 

new distribution is more appropriate than certain other competing models, according to their ap-

plication for COVID-19 in Saudi Arabia and the United Kingdom. 

Keywords: power Burr X distribution; entropy; Bayesian estimation; Metropolis–Hastings;  

COVID-19 data 
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1. Introduction 

Utilizing differential equations, Burr [1] introduced twelve distributions. In the lit-

erature, Burr type XII distributions and single-parameter Burr type X, have drawn much 

interest. Surles and Padge� [2] have proposed the two-parameter Burr X distribution 

(BXD), often known as the generalized Rayleigh distribution. For data modelling, the 

BXD can be used as an alternative to the Weibull and Rayleigh distributions. However, 

the model has a considerable impact on the prediction of failure rates and has generated 

a lot of interest in modelling across a wide range of disciplines, including hydrology, 

medicine and reliability analysis. The cumulative distribution function (CDF) of the BXD 

is given by: 

where, b > 0, and a > 0 are the shape and scale parameters, respectively. The probability 

density function (PDF) associated with (1) is given by: 

2 2 1 2( ) 2 exp ( ) ;   0.b bg x a bx a x x    (2)

According to Raqab and Kundu [3], the shape parameter (b) determines whether the 

hazard rate function (HF) of the BXD is a bathtub or an increasing function. The HF is 
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bathtub for 1,b  and is an increasing function for 1.b   In the literature, numerous 

studies have been undertaken in recent years to create modified or generalized forms of 

the BXD in order to increase the viability of BXDs, see, for example, [4–9]. Our focus is on 

the recently established power BXD (PBXD) by Usman and Ilyas [10], with an additional 

shape parameter that depends on the transformation 11 , 0.Y X     The CDF and 

PDF of the PBXD are, respectively, given by: 

2( ) 1 exp ( )   ;  0,bG y a y y


     
 (3)

22 2 1 ( ) 12( ) 2 e 1 exp ( ) ;   0.
bb a y bg y a by a y y


   

     
 (4)

For 1,   the CDF (3) reduces to BXD. Usman and Ilyas [10] mentioned that, sub-

ject to certain restrictions, their model can handle both symmetrical and heavy-tailed 

skewed data sets. 

A significant challenge in data modelling is the selection of an adequate lifetime 

probability. However, over time, a variety of probability models have been widely pro-

posed for the analysis of data sets in a variety of fields, including the medical sciences, 

actuarial sciences, engineering, finance and insurance, demography, biological sciences, 

and economics. In many practical scenarios, we are required to deal with the uncertainty 

of bounded situations. We commonly encounter variables that fall within the range of (0, 

1), such as the percentage of a particular trademark, the results of some capacity tests, 

different lists, and rates. In order to model these variables effectively, continuous unit 

distributions, or probability distributions with support for (0, 1), are crucial. Due to this, 

some authors have recently concentrated on the creation of distributions that are speci-

fied on the bounded interval using any one of the parent distribution modification 

strategies. Among distributions that are specified in the (0, 1) interval, the beta distribu-

tion is obviously the most well-known. The beta distribution is helpful for simulating 

data on the unit interval, but different distributions have also been proposed and re-

searched over time. The Topp–Leone distribution (see [11]) and the Kumaraswamy dis-

tribution (see [12]) can all be used as examples by the reader. The idea of offering distri-

butions defined by the unit interval corresponding to any continuous distribution, how-

ever, has recently a�racted the interest of statisticians. The following are a few of the 

most practical unit–interval distributions: the log–Lindley (Gómez-Déniz et al. [13]), 

unit–Birnbaum–Saunders (Mazucheli et al. [14]), unit–inverse Gaussian (Ghitany et 

al.[15]), unit–Lindley (Mazucheli et al. [16]), unit–BurrIII (Modi and Gill [17]), unit–

Weibull (Mazucheli et al. [18]), unit–Burr XII (Korkmaz and Chesneau [19]), unit–odd 

Fréchet power function (Haq et al. [20]), unit–Teissier (Krishna et al. [21]), unit–

exponentiated exponential (Jha et al. [22]) and unit–exponentiated half-logistic (Hassan 

et al. [23]) among others. 

In this study, we propose a new unit probability distribution, based on the PBXD, 

that has three parameters. A new unit-PBXD (UPBXD) is provided based on the trans-

formation ,YW e  where Y represents the PBXD. The UPBXD has the following desir-

able characteristics: 

 The UPBXD is a flexible model and can be used to describe a variety of datasets with 

a range between zero and one. 

 The new density function of the UBBXD takes several shapes, including unimodal, 

reversed J-shaped, U-shaped, left-skewed, and symmetric (see Section 2). 

 The HF shapes of the UPBXD can be increasing, J-shaped, or bathtub (U-HF) (see 

Section 2). 

 We derive some of the most important statistical characteristics of the UPBXD, such as 

the analytical expression for moments, the quantile function, incomplete moments, 

stochastic ordering, some uncertainty measures, and stress–strength reliability. 
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 The parameter estimators of the UPBXD are explored using a Bayesian technique. 

The Bayesian credible intervals are also created. 

 To examine the effectiveness of estimators based on accuracy criteria, an exclusive 

simulation study was conducted. 

 Application to COVID-19 datasets from Saudi Arabia and the United Kingdom are 

used to show the superiority of the proposed model over other well-known models. 

An outline of the paper’s structure is provided. Section 2 provides a definition of the 

suggested distribution. The distributional characteristics of the UPBXD are covered in 

Section 3. The maximum likelihood (ML) and Bayesian estimators utilizing various loss 

functions are covered in Section 4. The effectiveness of the suggested point and interval 

estimators is assessed using a Monte Carlo simulation in Section 5. Section 6 shows that 

the UPBXD outperforms the other unit distributions when employed with COVID-19 

data. The paper conclusion is completed in Section 7. 

2. Unit Power Burr X Distribution 

In this section, we present the UPBXD, which results from the transformation of the 

type ,YW e  where Y is the PBXD and is a new bounded distribution with support on 

(0, 1). Thus, the following is how the CDF of the PBXD can be obtained: 

( ) ( ) ( ) ( ln( ) ,) 1 ( ln( )) 1 ( ln( ))Y
YF w P W w P e w P Y w P Y w F w               

which gives 

  2
( ) 1 1 exp ( ln ) ;   0 1, , , 0.bF w a w w a b



        
  

 (5)

Based on (5), we have ( ) 0,F w   for w ≤ 0, and ( ) 1,F w   for w ≤ 1. The PDF of the 

UPBXD related to (5) can be acquired as follows: 

    
2

2( ln
1

)2 1 2 1( ) 2 ( ln ) 1 exp ( ln ) ;  0 1.
b

b a w bf w a b w w a we w





          
  

 (6)

A random variable with PDF (6) is represented by UPBXD ( , , ).a b   For b = 1, the PDF 

(6) gives UBXD as a new sub-model. The following is the HF of the UPBXD: 

    
2

2( ln2 1 )2 1
1

( ) 2 ( ln ) 1 exp ( ln ) .
b

b a w bh w a b w w a we



       

  
 (7)

The related plots for various selections of the parameters , ,a b and  are shown in 

Figures 1 and 2 to provide a general overview of the shapes of the PDF (2) and HF (7). 
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Figure 1. Plots of various PDF shapes of the UPBXD for different parameter values. 
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Figure 2. Plots of various HF shapes of the UPBXD for different parameter values. 

In Figure 1, the PDF graphs for various parameter combinations display a variety of 

shapes, such as (a = 2, b = 2) symmetric normal, (a = 0.5, b = 0.3) U-shaped, (a = 0.5, b = 2) 

right-skewed, (a = 2, b = 0.3) J-shaped, and (a = 2, b = 2) normal tapered. In Figure 2, the 

UPBXD’s HF shapes in (a = 0.5, b = 2), (a = 2, b = 0.3), and (a = 2, b = 2) have increasing and  

J shapes, while (a = 0.5, b = 0.3) has a bathtub shape. 

The parameter   is responsible for the bathtub shapes given that the other two 

parameters (a and b) are less than one. The   parameter is responsible for the J shapes 

where a >1 and b<1. 

By inverting (5), we can get the quantile function (QF) of the UPBXD, which looks 

like this: 

  
11

1 21
exp ln 1 1 , 0 1,

b

qw q q
a


                   

 (8)

where q is the uniform random variables. The first, median, and third quantiles are pro-

duced by se�ing q = 0.25, 0.5, and 0.75 in (8). It is simple to simulate the random variable 

of the UPBXD from (8). 
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3. The UPBXD’s Properties 

In this section, we examine aspects of the UPBXD’s structural characteristics, such as 

some moment’s measures, information measures, stochastic ordering (SO), and stress–

strength (SS) reliability. 

3.1. Some Moments Measures 

The mth moment for W~UPBXD ( , , ),a b   
is determined as follows: 

   
21

(
1

22 ln )2 1

0

12 ( ln ) 1 .exp ( ln )
ba

m
bbm w

wa b aw e w dw





     
  

    
    (9)

Using the binomial expansion in (9) provides 

 
2

0

( 11 )2 1
1

( ln )2

0

.
1

2 ( 1) ( ln )
bj wb am

j
m

j w w ea b
j

dw



 







 

  
 

  
 

Let  
2
,( ln )by a w  then the mth moment of W, is given by 

 
1

1 2

0 0

( 1)1
( 1) .

b
bm a jyj

j

y
m e de

j
y




 
 
 











 
  

 
  

 

Use the exponential expansion then m , obtains the following form: 

)2

, 0 0

( 2
0

(

1
,

1

)

1( 1)

!
1( 1)

1 ,
!( 1) 2

j
k kj k k

b b

j
k

y
m

k
kj k

b
k b

j k

m
a y

jk
m k

a
jj

e dy

k b




















 
 
 

 



 
    

  




  


 

where, (.)  is a gamma function. Furthermore, the mth central moment of W, is defined by 

1 1
0

( ) ( 1) ( ) .
m

m i i
m m i

i

m
E W

i
    



 
       

 
  

Some moments measures including, first four moments, variance ( 2 ), coefficient of 

skewness ( 3 ) and coefficient of kurtosis ( 4 ) for the UPBXD are calculated for specific 

parameter values. Table 1 provides these measures considering parameter values as: (i) 

( 1.5, 1.3, 1.4),a b     (ii) ( 0.5, 0.4, 0.4),a b     (iii) ( 4, 2, 0.7),a b     (iv) 

( 0.7, 0.4, 2),a b     (v) ( 1.5, 0.5, 0.5),a b     (vi) ( 5, 1.6, 0.4),a b     
and (vii) 

( 1.5, 1.5, 3).a b     

Table 1. Several UPBXD moment values. 

m  (i) (ii) (iii) (iv) (v) (vi) (vii) 

1   0.499 0.396 0.67 0.802 0.803 0.477 0.416 

2   0.264 0.231 0.458 0.653 0.688 0.239 0.18 

3   0.148 0.160 0.32 0.54 0.612 0.125 0.08 

4   0.087 0.122 0.228 0.454 0.556 0.069 0.037 
2  0.015 0.074 0.009 0.011 0.044 0.011 0.0062 

3  0.377 0.510 0.38 −0.135 −1.237 0.465 0.375 

4  2.856 2.132 2.75 2.248 3.799 3.070 3.135 
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Table 1 displays that the UPBXD is right- and left- skewed in accordance with the 

values of 3.  
Additionally, the distribution is leptokurtic and platykurtic according to 

the values of 4.  Figure 3 shows the 3-dimensional plots for coefficient of skewness and 

kurtosis for UPBXD with different values of parameters. Looking at Figure 3, we can see 

that the coefficient of skewness and kurtosis increases when b and   increases, while a 
increases then the coefficient of skewness decreases and coefficient of kurtosis increases. 

  

  

  

Figure 3. coefficient of skewness and kurtosis for UPBXD. 

Furthermore, the mth lower incomplete moment, say ( ),m x  of the UPBXD is given by: 

   
2

( ln )1
1

22 2

0

1( ) .2 ( ln ) 1 exp ( ln )
bwb

m

x
am bx w w e w dwa b a



  


    



  

      
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Let  
2
,( ln )bz a w  and using the binomial expansion, then the mth incomplete 

moment of W is 

 
1

1 2

2

(

0 ( ( ln ) )

1)( ) .
1

( 1)
b

b

b

m a y j yj

j x

m

a

e
j

x e dy



 
 
  


 

 

 
  

 
    

Using exponential expansion and after simplification, the mth moment is as below: 

2

( 2 ) 1
, 0

1( 1)
1, ( 1)( ( ln ) ) ,

2!( 1
( )

)

kj k k
bb

k b
j

m

k

m k
a j a

j bk j
x x




 




   
     

  


 
  

where (., )x is an upper incomplete gamma function. The Lorenz and Bonferroni curves  

are well-known applications of the first incomplete moment. In the fields of economics, 

demographics, insurance, engineering, and medicine, these curves are especially helpful. 

3.2. Information Measures 

In this sub-section, we examine the entropies of Rényi, Havrda and Charvat, as well 

as d-generalized entropy as information metrics. These measures collectively provide 

information about the system’s overall amounts of data. The Rényi entropy presented by 

Rényi [24], is conceptually the quantity of information contained in a random process, it 

is defined by: 

 1( ) (1 ) log ( ) , 0, 1.
d

d d f w dw d d






 
    

 
  (10)

Inserting (6) in (10), and using binomial expansion, then ( )d  is as follows: 

2
1

(2 1) ( )( )

0 0

2 ( ln )2    
(

 
1)1

( ) log ( ln( 1) ( ) .
(1 )

)
bi d d b d i

i

d a wa b w
d

d d
id

w e w


 


  




  

    
   

   (11)

Let  
2
,( ln )bz a w  and using exponential expansion in (11), we obtain 

,
, 0

1
( ) log ( , , , ) ,

2

(

( 1) 1

) 21
i m

i m

d d b a
bd

d b m
 





  
    

  

 




  (12)

where  
1

(2 1)

1

, 1

2

( 1) ( ( 1)
( , , , ) ( 1)

( !)( )

2 )
d md m

i m b b b
d

d b m

b

i m

d d
d b a a

b

i
m d i






  

 
   

    
 



 
Reference [25] proposed another uncertainty measure, the Havrda and Charvat. 

Here we assume ( ),d and this is represented mathematically by: 

   

1

1

1
( ) ,       1,     0.

2
1

1

dd

d
f w dw dd d




 

 
        
  

  

Using the same procedure above, we obtain ( ),d  as follows: 

,

,
1

0

1

1 (2 1
( , , ,

) 1
( )

22 1
) 1

d

d

i m

i m

d b a
d b m

d
b







 
    
 



 
   

 
  

   
 



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In reference [26], a further generalized Shannon entropy form known as 

d-generalized entropy was developed. It is represented mathematically as below: 

 
21( ) ( 1) ( ) 1 , 0 2, 1.

d
d d f w dw d d






 
       

 


 

Using a similar way as above, we obtain the d-generalized entropy as follows, 

,

**

, 0

1
( ) ( , , ,

1
)

(2 )(2

21)

1

(

)
,

i m

i m

d
d

d

m
b a

b
d

b






  
     


 

 

  


  

where 

,

1

(2 )(2 1) 1

2

12
** (2 )( 1) ( ( 1)
( ,

2
, , ) ( 1)

( !

)

)(2 )
i m

d md m
i m b b b

d

d b m

b

d d
d b a

m

b
a

i
d i




 

   


    

    
 

 

 

We use the following sets of parameters to provide entropy numerical values for the 

measurements under consideration: (i) ( 1.5, 1.3, 1.4),a b     (ii) ( 0.5, 0.4, 0.4),a b   

(iii) ( 4, 2, 0.7),a b    (iv) ( 0.7, 0.4, 2),a b     (v) ( 5, 1.6, 0.4),a b     (vi) 

( 0.7, 0.5, 2),a b     and (vii) ( 1.5, 1.5, 3).a b      
Table 2 provides some numerical values for the provided three entropy measures. 

Table 2. Numerical values for the UPBXD’s entropy measures. 

d Measures (i) (ii) (iii) (iv) (v) (vi) (vii) 

0.5 

( )d  −0.619 −0.308 −0.819 −0.829 −0.499 −0.669 −0.944 

( )d
 −1.115 −0.64 −1.35 −1.36 −0.948 −1.177 −1.475 

K ( )d
 −1.101 0.792 −1.354 −1.201 −2.953 −1.179 −1.688 

1.5 

( )d  −0.877 1.01 −1.034 −0.94 −1.814 −0.927 −1.224 

( )d
 −1.16 0.976 −1.405 −1.257 −2.835 −1.236 −1.72 

K ( )d
 −0.533 −0.286 −0.672 −0.678 −0.442 −0.568 −0.753 

3.3. Stochastic Ordering 

The statistical literature places a great emphasis on the ordering of distributions, 

especially among lifetime distributions. A significant part of the ranking of various life-

time distributions is found in Johnson et al. [27]. Here, we take into account four distinct 

SO for two independent UPBX random variables with a restricted parameter space: the 

usual, the hazard rate, the mean residual life, and the likelihood ratio order. Recall that a 

family has the monotone likelihood ratio property if it has a likelihood ratio ordering. 

This suggests that, when the other parameters are known, there exists a test that is con-

sistently the strongest for any one-sided hypothesis. According to Shaked and 

Shanthikumar [28], when two independent random variables, W1 and W2, have CDFs 

that are 
1
( )WF w and 

2
( )WF w , respectively, W1 is said to be smaller than W2 in the 

 Stochastic order (W1 ≤st (W2)) if 
1
( )WF w  ≥ 

2
( )WF w   w 

 Hazard rate order (W1 ≤hr (W2)) if 
1
( )Wh w  ≥ 

2
( )Wh w   w 

 Mean residual life order (W1 ≤mrl (W2)) if 
1
( )Wm w  ≥ 

2
( )Wm w   w 

 Likelihood ratio order (W1 ≤lr (W2)) if 
1 2
( ) ( )W Wf w f w decreases in w. 

Assume that Wi, i = 1, 2 have the UPBXD with parameters ( , , ).i i ia b   Further, as-

sume that ( )iF w  and ( )if w  indicate, respectively, Wi’s CDF and PDF. 
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If 
1 2
( ) ( )W Wf w f w  is a decreasing function  w, then, in terms of likelihood ratio 

order; W1 is said to be stochastically less than W2 (W1 ≤ lrW2) 

Let W1~UPBXD 1 1 1( , , )a b   and W2~UPBXD 2 2 2( , , ),a b   then the likelihood ratio or-

dering is as follows: 

   

   

1
1 1

2
2
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2 2
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n
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b
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    
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    
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 
   

 

 

 

 

 

1 2
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1
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1 1

1

2 2
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2 2 1
1

2

1

22 1
2

2

1 22 2 12 2
1 1 11 1 2 2W 1 2

W

2
2 2

2

2

22 ( ln ) ( ln )

1

exp ( ln ) ( ln )

exp ( ln )

( ln ) exp ( ln )

1 exp (

( ) 2( )
lo

)

g

l

(

n

) ln

2

b b

b

b b

b b

b

a b w wa b w a b wf w b bd

dw f w w w w
w

a

a

a

a

a

w

b w w

w w







  



  

 



      

  
  



    
 



  











2

.


 
  

 


 

For 1 2 1 2 1 2, , ,a a b b      we get 1

2

W

W

( )
log 0,

( )

f wd

dw f w

 
 

  
 for all 0 1,w   hence 

1

2

( )

( )

f w

f w
 is decreasing in w and hence W1 ≤ lr W2. Moreover, W1 is said to be smaller than 

W2 in other orderings such as SO (W1 ≤ stW2), HF(W1 ≤ hrW2), and mean residual order (W1 

≤ mrlW2). 

3.4. Stress–Stress Reliability 

In statistical literature, the term “SS reliability” is used to characterize the reliability 

of a system subjected to random stress W2 and having random strength W1, with the 

system failing if W2 is greater than W1, that is; R = P(W2 < W1). Let us assume that 

W1∼UPBXD 1 1( , , )a b   and W2∼UPBXD 2 2( , , )a b   are two independent random varia-

bles. The SS reliability of the UPBXD is then calculated as follows: 

1 22 2 2
1 1 2

1
( ( ln ) ) ( ( ln ) (

1
1 ) ( ln ) )2

1
1

1

0

2 ( ln ) 1 .1 1
b b ba w a w a wbR ea b ww dwe e

 


   


               

 


  (13)

Using the binomial expansions in (13), we get 

2 2 2
11 2

1 2

1

1 2 2

2

( )( ln )2

1
1 2 1

1 1
1 2, 0 0

1 21 1
2 2

1 21 1 2

1

20

1
1 2 ( 1) ( ln )

1( 1)
1 .

( )

ba i i ai i

i i

i i

w

k

bR a b w
i i

a

i ia i i a

w e dw
 



 




 



 



    
     

  

  
    

   

 


 (14)

As seen in (14) the SS reliability dependent on the parameters 
1 2 1, , ,a a  and 

2.

 
4. Parameter Estimation 

The estimation methodologies for the parameters ( , , )Ta b  of the UPBXD are ob-

tained in this part using Bayesian and non-Bayesian estimation approaches. We provide 

classical method for the UPBXD as ML and Bayesian estimation utilizing various loss 

functions, including the squared error loss function (SELF), the linear exponential 

(LINEX) loss function and entropy loss function (ELF). 
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4.1. Maximum Likelihood Method 

Consider a population that has a UPBXD described by PDF (6) with an unknown 

parameter vector ( , , ),a b   and that a random sample of size n is taken from that pop-

ulation. Following that, the likelihood of UPBXD for ( , , ),a b    say  | ,L w 
 

will be 

   
2

1

12 1( ( ln ) 22

1

) ( ln )
2 1 exp ( ln )| .

b
n

i

i
bna w

n n n n bi
i

ii

w
L a b aw e w

w



 





        
  

  


  (15)

The log likelihood function for ( , , ),a b    say  | ,w  will be 

 

 

2 2 2

1 1 1

2

1

2 ) ln (2 1) ln( ln ) ( ln

.1

| l )

( 1) ln e

(

xp )

n

( ln

n n n
b

i i i

i i i

n
b

i

i

a b w b w a w

a w

w n 



  



  

 
  
 

   

 
     

  





 (16)

The nonlinear equations created by differentiating (16) with respect to , ,a b  and 

,  are solved to obtain the ML estimator for the unknown parameters. The score vector 

components, say  
( ) ( ) ( ) ( )

( ) , , ,

T
w w w w

U
a b 

        
    

    

   
 are given by 

 

2
2

2
1 1

2 ( ln )
2 ( ln ) ( 1)

ex

2
( ) ,

p ( ln ) 1

n n b
b i

i
bi i

i

n
U aa

a

a w
w

a w


 


   

 
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

   
(17)
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2 2
2 2
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2 ( 1)( ln ) ln ln
2 l) n( ln ) 2 ( ln ) ln ln

exp ( ln )
,

1
(
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b
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U

a w w
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a w
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b


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 






 


    
(18)

 
2

1

ln 1 exp ( .) ln )(
n

b
i

i

U a w
n










 







 


  
  (19)

The ML estimator of , say ̂, is achieved by solving the nonlinear system (17)–(19). 

These equations cannot be resolved analytically, but they can be resolved numerically by 

iterative statistical software techniques. We can use iterative methods, such as a Newton–

Raphson algorithm, to obtain these estimates. 

4.2. Bayesian Estimation 

In this section, the Bayesian estimators based on different loss functions and associ-

ated highest posterior density (HPD) intervals of the UPBXD parameters are developed. 

The posterior distribution of  is described in the following if we assume that the prior 

PDF of is unknown. 

 ( | ).|) (w wL g     (20)

The posterior density of  is defined in Equation (20) as ( | )w  , where on the 

right hand side  |L w   is the likelihood function of UPBXD ( )  and ( )g   is the prior 

density of .  

4.2.1. Prior Information 

For the purpose of discussing Bayesian estimate, we assume that the parameters 

, ,a b  and  are independently distributed using the gamma distribution. Let jq and jh  

where j =1, 2, 3, be the scale and shape parameters for the gamma priors of , ,a b  and .  

The following is a proportionate representation of the joint density of , ,a b  and .   
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  31 1 2 2 21 1 1 .; , 0, 1,2,3hq h a q h b q
j ja e b e e q h j          (21)

The hyper-parameters will be elicited using the informative priors. When j = 1, …, L 

and k are the number of samples available from the UPBXD simulation, the mean and 

variance obtained using the ML estimates of the UPBXD , ,a b  and  will be equal to 

the mean and variance of the considered priors (Gamma priors) jq and .jh  By equating 

, ,a b  and  with the mean and variance of gamma priors, we may determine their re-

spective means and variances. Thus, we obtain 
2
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In regard to be solving the above two equations, the estimated hyper-parameters can 

be wri�en as described in the following subsections. 

4.2.2. Posterior Distribution 

Here, the symmetric loss function (SELF), and asymmetric loss function (LINEX 

and ELF) are used to develop the Bayesian estimators for the same unknown parameters 

by utilizing independent gamma priors. 

The likelihood function (15) and the joint prior function (21) are combined to form 

the joint posterior distribution. Hence, the joint posterior density function is 

 
2

3 11 1 2 2 2

)( 2ln ) 2
11(

2 1

1

1 1 .
( ln )

( | ) 1 exp ( ln )

b
i

i

n
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hn q h a n q i

i

h b n
na w

b
i

i

qw a e b e e e
w

a w
w


  






        

 
 


     


  (22)

The SELF, is defined as follows: 

   
2

SELF , .  I I I I  

The Bayesian estimator of  under SELF is as follows: 

 
0 0 0

|     .w dadbd 

  

   I  I I  (23)

The LINEX, as asymmetric loss function, which is denoted by I , is the derived as 

follows: 

      
Linex ,     1;     0.

c
e c c


     
 I I

I I I  

The Bayesian estimator of  under LINEX loss function is as follows: 
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  

0 0 0

|     .ce w dadbd 


  II  I  (24)

The ELF was first suggested by James and Stein [29] to estimate the Variance–

Covariance (i.e., dispersion) matrix of the multivariate normal distribution. According to 

Calabria and Pulcini [30], the ELF is an excellent asymmetric loss function. The form’s 

ELF is thought of as 

     
2

ELF , ln ln ;     0.
2

c
c   

 

 
I I I I  

The Bayesian estimator of  under ELF is as follows: 

 
0 0 0

|     .c w dadbd 


 

I  I  (25)

The Bayes estimator of , ,a b  and  via different loss functions cannot be expressed 

in an explicit statement, as is evident from Equations (23)–(25). To do this, we suggest 

generating samples from conditional posterior distribution using Bayes Monte Carlo 

Markov chain (MCMC) techniques in order to compute the acquired Bayes estimates and 

create associated HPD intervals. 

4.2.3. Markov Chain Monte Carlo 

Since it is challenging to solve these integrals analytically, the MCMC method will 

be used. The most important sub-classes of MCMC algorithms are Gibbs sampling and 

the Metropolis–Hastings (MH) samplers. To do this, it regards a candidate value pro-

duced from a proposal distribution as normal for each iteration of the process, the MH 

method is comparable to acceptance–rejection sampling. From Equation (22), the full 

conditional density of , ,a b  and  are provided, respectively, to execute the MCMC 

sampler as follows: 
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and 
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. 

It is thought that the MH algorithm can resolve this issue (for detail, see Alrumayh et 

al. [31] and Almetwally et al. [32]). The MH algorithm’s sampling procedure is carried 

out as follows: 

Step 1: Set the initial values (0) (0) ˆˆ, ,a a b b    and (0) ˆ.   

Step 2: Set I = 1. 

Step 3: Generate ,a b  and    from ˆ ˆ
ˆˆ( ), ( , ), a b

N a V N b V  and ˆ
ˆ( ),,N V


 respectively. 

Step 4: Obtain

    
      

1 1*

1 1 1

| , ,
min 1, ,

| , ,

I I

a I I I

a b w

a b w

 

 

 

  

 
 

  
 
 

  
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Step 5: Generate samples Uj  j =1,2,3 from the uniform U(0, 1) distribution. 

Step 6: If 21 , ,a bU U    and 3 ,U    then set ( ) * ( ) * ( ), ,I I Ia a b b      ; oth-

erwise ( (( ) 1) ( ) 1), ,I I I Ia a b b    and    1 .
I I  
    

Step 7: Set I = I+ 1. 

Step 8: Repeat steps 3–7 B times and obtain ( ) ( ), ,I Ia b and ( ) ,I  for I = 1, 2, ..., B.

 4.2.4. Highest Posterior Density Interval 

Using the technique suggested by Chen and Shao [33], 100(1 − �)% HPD interval 

estimates of , ,a b  and  are created. The MCMC samples of ℑ(�) for j = 1, …, B are first 

ordered. Therefore, the two-sided 100(1 −  �)% HPD interval of ℑ is given by 

1 1 1
2 2 22 2 2, ,  , and , ,

B B BB B B

a a b b

    

 

                                                

     
     
          
     

 

where            1 2 1 2
, ,

B B
a a a b b b     and      1 2

.
B     

5. Simulation 

A Monte Carlo simulation was run to evaluate the performance of the proposed 

point and interval estimators that were introduced in the previous sections. Based on 

various selections for sample size n as 40, 80, and 160, UPBXD was used to create a total 

of 5000 samples. To compare the results of Bayesian estimate based on various loss func-

tions, the bias and mean squared errors (MSE) were calculated. The UPBXD was used to 

generate the data for the lifetime of various parameters , ,a b  and , as follows. 

In Table 3: � = 0.5, � = 0.6 and � = 0.5, 1.2 and 3. In Table 4: � = 0.5, � = 1.7 and � =

0.5, 1.2 and 3. In Table 5: � = 2, � = 0.6 and � = 0.5, 1.2 and 3. In Table 6: � = 2, � = 1.7 

and � = 0.5, 1.2 and 3. 

The hybrid MCMC algorithm described in Section 4.2.3 was adopted to generate 

12,000 MCMC samples, and we discarded the first 2000 values as ‘burn-in’. Accordingly, 

the 10,000 MCMC samples were used to produce the average Bayes MCMC estimates 

and 95% two-sided Bayesian credible intervals. 

1. Algorithm for simulation: By establishing all simulation controls, we can build our 

model. The following actions must be finished in this stage in the correct order: 

2. Assume different values for the UPBXD parameter vector and sample size. 

3. Make the sample random values for the UPBXD using uniform and the QF in Equa-

tion (7). 

4. We calculated the accuracy measures for each Bayes estimates of the UPBXD pa-

rameters using MH algorithm. 

5. This experiment should be run (L-1) times. 
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Table 3. Bayesian inference with different loss functions when � = 0.5, � = 0.6. 

� = �. �,  
� = �. � 

SELF LINEX (� = −�. �) LINEX (� = �. �) ELF (� = −�. �) ELF (� = �. �) 

� �  Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI 

0.5 

40 

� 0.1392 0.0224 0.2075 0.1448 0.0242 0.2140 0.1335 0.0207 0.2021 0.1422 0.0233 0.2098 0.1237 0.0181 0.1985 

� −0.0261 0.0008 0.0423 −0.0253 0.0008 0.0420 −0.0269 0.0007 0.0427 −0.0256 0.0008 0.0421 −0.0284 0.0007 0.0426 

� 0.6123 0.4095 0.7079 0.6587 0.4793 0.7990 0.5592 0.3364 0.5954 0.6267 0.4298 0.7275 0.5222 0.2932 0.5536 

80 

� 0.0900 0.0094 0.1390 0.0927 0.0099 0.1413 0.0872 0.0088 0.1365 0.0915 0.0097 0.1400 0.0818 0.0079 0.1331 

� −0.0136 0.0002 0.0262 −0.0133 0.0002 0.0262 −0.0139 0.0002 0.0265 −0.0134 0.0002 0.0263 −0.0144 0.0003 0.0267 

� 0.4229 0.1878 0.3562 0.4479 0.2117 0.3996 0.3954 0.1632 0.3134 0.4323 0.1965 0.3721 0.3672 0.1405 0.2908 

160 

� 0.0843 0.0078 0.1017 0.0865 0.0082 0.1032 0.0821 0.0074 0.0994 0.0856 0.0080 0.1026 0.0779 0.0067 0.0967 

� −0.0135 0.0002 0.0237 −0.0126 0.0002 0.0237 −0.0127 0.0002 0.0238 −0.0136 0.0002 0.0237 −0.0137 0.0002 0.0241 

� 0.3906 0.1567 0.2496 0.4121 0.1751 0.2732 0.3670 0.1380 0.2186 0.3991 0.1638 0.2564 0.3411 0.1190 0.2017 

1.2 

40 

� 0.0804 0.0082 0.1604 0.0841 0.0088 0.1614 0.0767 0.0075 0.1585 0.0825 0.0085 0.1609 0.0695 0.0065 0.1600 

� −0.0204 0.0008 0.0769 −0.0187 0.0008 0.0775 −0.0221 0.0009 0.0757 −0.0195 0.0008 0.0772 −0.0252 0.0010 0.0756 

� 0.6959 0.5321 0.8034 0.7936 0.6999 0.9837 0.5905 0.3779 0.6559 0.7138 0.5604 0.8249 0.5986 0.3913 0.7033 

80 

� 0.0417 0.0025 0.1130 0.0431 0.0027 0.1135 0.0403 0.0024 0.1112 0.0426 0.0026 0.1131 0.0372 0.0022 0.1105 

� −0.0076 0.0002 0.0494 −0.0069 0.0002 0.0498 −0.0082 0.0002 0.0491 −0.0072 0.0002 0.0496 −0.0094 0.0003 0.0486 

� 0.3724 0.1515 0.4317 0.4044 0.1794 0.4884 0.3394 0.1252 0.3813 0.3792 0.1571 0.4387 0.3370 0.1238 0.3846 

160 

� 0.0371 0.0018 0.0780 0.0380 0.0018 0.0789 0.0363 0.0017 0.0774 0.0377 0.0018 0.0785 0.0344 0.0016 0.0769 

� −0.0082 0.0002 0.0370 −0.0079 0.0002 0.0371 −0.0086 0.0002 0.0370 −0.0080 0.0002 0.0371 −0.0092 0.0002 0.0371 

� 0.3429 0.1242 0.3101 0.3689 0.1443 0.3453 0.3161 0.1050 0.2732 0.3486 0.1284 0.3168 0.3135 0.1034 0.2735 

3 

40 

� 0.0224 0.0019 0.1450 0.0249 0.0020 0.1457 0.0198 0.0018 0.1438 0.0240 0.0020 0.1448 0.0143 0.0016 0.1431 

� −0.0036 0.0011 0.1197 −0.0013 0.0011 0.1215 −0.0059 0.0011 0.1188 −0.0023 0.0011 0.1199 −0.0101 0.0011 0.1184 

� 0.4244 0.2485 1.0159 0.4897 0.3280 1.1489 0.3576 0.1793 0.8598 0.4307 0.2556 1.0306 0.3919 0.2142 0.9512 

80 

� 0.0091 0.0008 0.1013 0.0101 0.0008 0.1021 0.0080 0.0007 0.1011 0.0098 0.0008 0.1019 0.0057 0.0007 0.1005 

� −0.0010 0.0005 0.0904 0.0000 0.0005 0.0907 −0.0019 0.0005 0.0898 −0.0004 0.0005 0.0906 −0.0037 0.0005 0.0899 

� 0.1950 0.0567 0.5279 0.2113 0.0661 0.5690 0.1786 0.0481 0.4905 0.1967 0.0577 0.5322 0.1866 0.0523 0.5095 

160 

� 0.0086 0.0005 0.0767 0.0091 0.0005 0.0766 0.0080 0.0004 0.0757 0.0089 0.0005 0.0766 0.0067 0.0004 0.0753 

� −0.0016 0.0004 0.0789 −0.0010 0.0004 0.0791 −0.0022 0.0004 0.0783 −0.0013 0.0004 0.0791 −0.0032 0.0004 0.0791 

� 0.1804 0.0409 0.3497 0.1911 0.0459 0.3734 0.1696 0.0361 0.3294 0.1815 0.0414 0.3519 0.1748 0.0384 0.3404 

Table 4. Bayesian inference with different loss functions when � = 0.5, � = 1.7. 

� = �. �, 
 � = �. � 

SELF LINEX (� = −�. �) LINEX (� = �. �) ELF (� = −�. �) ELF (� = �. �) 

� n   Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI 

0.5 

40 

� 0.1212 0.0179 0.2155 0.1257 0.0191 0.2199 0.1167 0.0167 0.2110 0.1236 0.0185 0.2172 0.1086 0.0147 0.2073 

� −0.0308 0.0013 0.0722 −0.0281 0.0012 0.0716 −0.0336 0.0015 0.0742 −0.0303 0.0013 0.0722 −0.0336 0.0015 0.0744 

� 0.5944 0.3901 0.7286 0.6374 0.4534 0.8182 0.5457 0.3238 0.6240 0.6078 0.4086 0.7470 0.5113 0.2844 0.5813 

80 

� 0.0845 0.0084 0.1382 0.0870 0.0089 0.1402 0.0820 0.0079 0.1365 0.0859 0.0087 0.1386 0.0771 0.0071 0.1335 

� −0.0229 0.0009 0.0662 −0.0215 0.0008 0.0663 −0.0242 0.0010 0.0661 −0.0226 0.0009 0.0662 −0.0242 0.0010 0.0661 

� 0.4267 0.1911 0.3714 0.4511 0.2147 0.4076 0.3995 0.1666 0.3243 0.4359 0.1996 0.3810 0.3717 0.1439 0.2986 

160 

� 0.0754 0.0062 0.0897 0.0771 0.0065 0.0910 0.0736 0.0059 0.0889 0.0764 0.0064 0.0904 0.0701 0.0054 0.0877 

� −0.0196 0.0005 0.0476 −0.0189 0.0005 0.0477 −0.0203 0.0006 0.0476 −0.0195 0.0005 0.0477 −0.0203 0.0006 0.0476 

� 0.3890 0.1550 0.2339 0.4099 0.1725 0.2573 0.3660 0.1368 0.2117 0.3973 0.1618 0.2414 0.3404 0.1182 0.1901 

1.2 

40 

� 0.0722 0.0069 0.1623 0.0751 0.0074 0.1645 0.0693 0.0065 0.1600 0.0739 0.0072 0.1631 0.0635 0.0057 0.1576 

� −0.0311 0.0033 0.1871 −0.0241 0.0030 0.1885 −0.0380 0.0037 0.1841 −0.0297 0.0032 0.1865 −0.0380 0.0037 0.1853 

� 0.7333 0.5923 0.8827 0.8377 0.7792 1.0665 0.6187 0.4166 0.7014 0.7523 0.6236 0.9119 0.6288 0.4342 0.7495 

80 

� 0.0423 0.0026 0.1102 0.0436 0.0027 0.1111 0.0410 0.0025 0.1094 0.0431 0.0026 0.1108 0.0383 0.0022 0.1089 

� −0.0179 0.0020 0.1693 −0.0152 0.0020 0.1689 −0.0207 0.0021 0.1678 −0.0174 0.0020 0.1694 −0.0207 0.0022 0.1681 

� 0.3962 0.1709 0.4626 0.4310 0.2032 0.5201 0.3599 0.1403 0.4013 0.4036 0.1774 0.4722 0.3577 0.1390 0.4080 

160 

� 0.0365 0.0018 0.0839 0.0373 0.0019 0.0847 0.0357 0.0017 0.0831 0.0370 0.0018 0.0845 0.0340 0.0016 0.0822 

� −0.0163 0.0017 0.1472 −0.0146 0.0016 0.1465 −0.0180 0.0018 0.1486 −0.0160 0.0017 0.1468 −0.0180 0.0018 0.1488 

� 0.3476 0.1271 0.3037 0.3738 0.1475 0.3367 0.3205 0.1076 0.2707 0.3533 0.1314 0.3102 0.3179 0.1060 0.2717 
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� = �. �, 
 � = �. � 

SELF LINEX (� = −�. �) LINEX (� = �. �) ELF (� = −�. �) ELF (� = �. �) 

3 

40 

� 0.0202 0.0018 0.1484 0.0222 0.0019 0.1503 0.0182 0.0017 0.1483 0.0215 0.0019 0.1493 0.0138 0.0016 0.1477 

� −0.0037 0.0100 0.3923 0.0087 0.0104 0.3968 −0.0161 0.0100 0.3886 −0.0013 0.0100 0.3898 −0.0160 0.0102 0.3926 

� 0.4503 0.2804 1.0727 0.5244 0.3753 1.2260 0.3748 0.1981 0.9209 0.4575 0.2888 1.0900 0.4138 0.2398 1.0071 

80 

� 0.0106 0.0008 0.1023 0.0113 0.0008 0.1019 0.0098 0.0008 0.1018 0.0110 0.0008 0.1019 0.0081 0.0008 0.1018 

� −0.0056 0.0052 0.2814 −0.0015 0.0052 0.2815 −0.0096 0.0053 0.2807 −0.0048 0.0052 0.2808 −0.0096 0.0053 0.2821 

� 0.2074 0.0618 0.5202 0.2251 0.0722 0.5520 0.1897 0.0522 0.4859 0.2092 0.0628 0.5225 0.1983 0.0568 0.5058 

160 

� 0.0082 0.0004 0.0708 0.0085 0.0004 0.0709 0.0078 0.0004 0.0706 0.0084 0.0004 0.0709 0.0069 0.0004 0.0702 

� −0.0037 0.0025 0.1941 −0.0018 0.0025 0.1921 −0.0056 0.0025 0.1949 −0.0033 0.0025 0.1941 −0.0056 0.0025 0.1953 

� 0.1895 0.0457 0.3920 0.2014 0.0517 0.4220 0.1775 0.0400 0.3662 0.1908 0.0463 0.3952 0.1833 0.0428 0.3771 

Table 5. Bayesian inference with different loss functions when � = 2, � = 0.6. 

� = �, 
 � = �. � 

SELF LINEX (� = −�. �) LINEX (� = �. �) ELF (� = −�. �) ELF (� = �. �) 

� n   Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI 

0.5 

40 

� 0.1442 0.0330 0.4135 0.1607 0.0393 0.4250 0.1275 0.0273 0.3941 0.1468 0.0339 0.4181 0.1313 0.0286 0.4004 

� −0.0388 0.0021 0.0635 −0.0380 0.0020 0.0621 −0.0396 0.0021 0.0652 −0.0382 0.0020 0.0625 −0.0411 0.0023 0.0681 

� 0.5679 0.3597 0.7317 0.6074 0.4169 0.8179 0.5232 0.2998 0.6075 0.5804 0.3765 0.7545 0.4907 0.2634 0.5613 

80 

� 0.0678 0.0096 0.2757 0.0735 0.0107 0.2852 0.0622 0.0087 0.2721 0.0687 0.0098 0.2764 0.0634 0.0089 0.2724 

� −0.0275 0.0009 0.0399 −0.0271 0.0008 0.0395 −0.0279 0.0009 0.0402 −0.0272 0.0009 0.0397 −0.0286 0.0009 0.0410 

� 0.3992 0.1676 0.3463 0.4199 0.1861 0.3752 0.3764 0.1482 0.3121 0.4073 0.1745 0.3559 0.3518 0.1293 0.2869 

160 

� 0.0582 0.0062 0.2080 0.0614 0.0067 0.2116 0.0550 0.0058 0.2065 0.0587 0.0063 0.2084 0.0556 0.0058 0.2069 

� −0.0282 0.0008 0.0342 −0.0279 0.0009 0.0342 −0.0285 0.0010 0.0341 −0.0280 0.0009 0.0334 −0.0291 0.0010 0.0332 

� 0.3702 0.1410 0.2369 0.3886 0.1557 0.2640 0.3501 0.1257 0.2096 0.3776 0.1468 0.2473 0.3270 0.1094 0.1937 

1.2 

40 

� 0.0995 0.0178 0.3423 0.1126 0.0210 0.3483 0.0866 0.0150 0.3373 0.1016 0.0182 0.3429 0.0892 0.0156 0.3408 

� −0.0373 0.0104 0.0748 −0.0353 0.0132 0.0747 −0.0400 0.0051 0.0744 −0.0363 0.0109 0.0746 −0.0429 0.0062 0.0747 

� 0.7256 0.5834 0.9188 0.8305 0.7724 1.1304 0.6121 0.4104 0.7213 0.7446 0.6146 0.9436 0.6218 0.4277 0.7719 

80 

� 0.0395 0.0057 0.2532 0.0438 0.0062 0.2577 0.0352 0.0053 0.2509 0.0402 0.0058 0.2542 0.0360 0.0054 0.2511 

� −0.0198 0.0006 0.0506 −0.0191 0.0005 0.0511 −0.0205 0.0006 0.0497 −0.0194 0.0005 0.0509 −0.0218 0.0006 0.0492 

� 0.3838 0.1612 0.4450 0.4172 0.1913 0.4972 0.3493 0.1327 0.3917 0.3909 0.1672 0.4565 0.3470 0.1313 0.3945 

160 

� 0.0352 0.0035 0.1802 0.0375 0.0037 0.1816 0.0329 0.0033 0.1780 0.0356 0.0036 0.1805 0.0334 0.0034 0.1788 

� −0.0194 0.0006 0.0366 −0.0191 0.0007 0.0365 −0.0198 0.0008 0.0366 −0.0192 0.0007 0.0365 −0.0206 0.0009 0.0368 

� 0.3437 0.1244 0.2940 0.3693 0.1441 0.3334 0.3172 0.1055 0.2635 0.3493 0.1285 0.3026 0.3146 0.1039 0.2647 

3 

40 

� 0.0382 0.0061 0.2646 0.0461 0.0069 0.2666 0.0304 0.0054 0.2582 0.0395 0.0062 0.2640 0.0318 0.0055 0.2594 

� −0.0038 0.0167 0.0996 −0.0002 0.0318 0.1001 −0.0081 0.0036 0.0979 −0.0025 0.0187 0.0993 −0.0113 0.0051 0.0978 

� 0.4644 0.2952 1.0815 0.5388 0.3941 1.2013 0.3883 0.2092 0.9174 0.4716 0.3039 1.0866 0.4279 0.2530 1.0157 

80 

� 0.0103 0.0031 0.2140 0.0134 0.0032 0.2145 0.0071 0.0030 0.2110 0.0108 0.0031 0.2143 0.0077 0.0030 0.2116 

� −0.0058 0.0005 0.0801 −0.0047 0.0005 0.0800 −0.0068 0.0005 0.0796 −0.0052 0.0005 0.0802 −0.0086 0.0005 0.0795 

� 0.2169 0.0675 0.5525 0.2362 0.0797 0.5974 0.1974 0.0564 0.5100 0.2188 0.0687 0.5577 0.2069 0.0618 0.5310 

160 

� 0.0115 0.0014 0.1356 0.0129 0.0014 0.1365 0.0100 0.0013 0.1352 0.0117 0.0014 0.1357 0.0102 0.0013 0.1353 

� −0.0051 0.0002 0.0534 −0.0046 0.0002 0.0532 −0.0055 0.0002 0.0531 −0.0048 0.0002 0.0533 −0.0063 0.0002 0.0529 

� 0.1894 0.0461 0.3862 0.2014 0.0521 0.4096 0.1773 0.0404 0.3600 0.1907 0.0467 0.3896 0.1832 0.0431 0.3755 
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Table 6. Bayesian inference with different loss functions when � = 2, � = 1.7. 

� = �, 
 � = �. � 

SELF LINEX (� = −�. �) LINEX (� = �. �) ELF (� = −�. �) ELF (� = �. �) 

� �   Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI Bias MSE LCCI 

0.5 

40 

� 0.1255 0.0232 0.3228 0.1388 0.0274 0.3337 0.1122 0.0194 0.3150 0.1276 0.0238 0.3237 0.1151 0.0203 0.3166 

� −0.0538 0.0036 0.0995 −0.0507 0.0032 0.0975 −0.0568 0.0040 0.1018 −0.0532 0.0035 0.0990 −0.0569 0.0040 0.1021 

� 0.5381 0.3172 0.6043 0.5710 0.3603 0.6771 0.5012 0.2719 0.5360 0.5489 0.3305 0.6253 0.4723 0.2413 0.5051 

80 

� 0.0715 0.0094 0.2549 0.0774 0.0105 0.2621 0.0657 0.0084 0.2483 0.0724 0.0096 0.2567 0.0668 0.0086 0.2506 

� −0.0505 0.0032 0.0934 −0.0485 0.0030 0.0927 −0.0525 0.0034 0.0944 −0.0501 0.0032 0.0932 −0.0526 0.0034 0.0946 

� 0.4003 0.1681 0.3332 0.4211 0.1868 0.3669 0.3775 0.1487 0.3008 0.4083 0.1751 0.3439 0.3531 0.1297 0.2722 

160 

� 0.0580 0.0054 0.1784 0.0608 0.0058 0.1805 0.0551 0.0050 0.1763 0.0584 0.0055 0.1784 0.0557 0.0051 0.1770 

� −0.0364 0.0016 0.0611 −0.0355 0.0015 0.0604 −0.0372 0.0017 0.0622 −0.0362 0.0016 0.0610 −0.0372 0.0017 0.0623 

� 0.3624 0.1346 0.2258 0.3790 0.1475 0.2470 0.3442 0.1211 0.2064 0.3692 0.1398 0.2338 0.3225 0.1062 0.1864 

1.2 

40 

� 0.1031 0.0180 0.3187 0.1156 0.0213 0.3285 0.0906 0.0150 0.3132 0.1050 0.0184 0.3206 0.0932 0.0157 0.3156 

� −0.0780 0.0089 0.2048 −0.0696 0.0077 0.2064 −0.0863 0.0103 0.2051 −0.0763 0.0086 0.2049 −0.0866 0.0103 0.2065 

� 0.7317 0.5927 0.9007 0.8358 0.7821 1.0799 0.6180 0.4171 0.7011 0.7505 0.6241 0.9342 0.6282 0.4349 0.7433 

80 

� 0.0423 0.0053 0.2295 0.0464 0.0058 0.2322 0.0381 0.0048 0.2286 0.0429 0.0053 0.2303 0.0389 0.0049 0.2297 

� −0.0347 0.0026 0.1457 −0.0319 0.0024 0.1454 −0.0376 0.0028 0.1452 −0.0341 0.0026 0.1456 −0.0376 0.0028 0.1455 

� 0.3935 0.1676 0.4409 0.4283 0.1995 0.4871 0.3573 0.1376 0.3851 0.4009 0.1741 0.4527 0.3549 0.1362 0.3910 

160 

� 0.0339 0.0032 0.1765 0.0361 0.0033 0.1796 0.0317 0.0030 0.1745 0.0342 0.0032 0.1768 0.0321 0.0030 0.1751 

� −0.0333 0.0021 0.1238 −0.0316 0.0020 0.1235 −0.0350 0.0023 0.1249 −0.0330 0.0021 0.1237 −0.0350 0.0023 0.1250 

� 0.3408 0.1224 0.3073 0.3661 0.1417 0.3402 0.3147 0.1039 0.2688 0.3464 0.1265 0.3149 0.3121 0.1023 0.2702 

3 

40 

� 0.0365 0.0058 0.2445 0.0440 0.0065 0.2480 0.0291 0.0052 0.2413 0.0377 0.0059 0.2444 0.0305 0.0053 0.2415 

� −0.0165 0.0067 0.2990 −0.0058 0.0067 0.3036 −0.0271 0.0069 0.2941 −0.0144 0.0066 0.2979 −0.0271 0.0070 0.2965 

� 0.4806 0.3234 1.1672 0.5638 0.4389 1.3260 0.3958 0.2241 1.0117 0.4887 0.3334 1.1839 0.4399 0.2746 1.0958 

80 

� 0.0158 0.0025 0.1799 0.0188 0.0027 0.1825 0.0128 0.0024 0.1786 0.0163 0.0026 0.1801 0.0133 0.0024 0.1791 

� −0.0097 0.0059 0.2519 −0.0053 0.0053 0.2507 −0.0140 0.0065 0.2519 −0.0087 0.0056 0.2512 −0.0142 0.0073 0.2523 

� 0.2242 0.0715 0.5563 0.2439 0.0842 0.5915 0.2043 0.0598 0.5135 0.2262 0.0727 0.5598 0.2141 0.0655 0.5382 

160 

� 0.0110 0.0012 0.1251 0.0124 0.0012 0.1255 0.0096 0.0012 0.1245 0.0112 0.0012 0.1251 0.0098 0.0012 0.1247 

� −0.0107 0.0019 0.1672 −0.0089 0.0018 0.1683 −0.0124 0.0019 0.1684 −0.0103 0.0019 0.1673 −0.0124 0.0019 0.1686 

� 0.1970 0.0475 0.3568 0.2092 0.0537 0.3804 0.1847 0.0417 0.3325 0.1982 0.0481 0.3603 0.1906 0.0445 0.3454 

5.1. Simulation Results 

Tables 3–6 show the results of the suggested techniques for calculating the point 

and interval parameter estimates. They offer the findings as well as some intriguing da-

ta. The following observations are permissible: 

 The estimates are asymptotically unbiased since they are more accurate as the sam-

ple size increases. 

 The parameter estimates come from the best unbiased estimator when the MSE 

value is near zero. 

 As the sample size grows, the MSE declines for each estimate, demonstrating con-

sistency between the various estimates. 

 When the true value of  increases, the bias, MSE, and length of the credible  con-

fidence interval (LCCI) of all estimates decrease. 

 The MSE and LCCI for the Bayesian estimates with positive weight for the asym-

metric loss function are smaller than the Bayesian estimates with negative weight for 

asymmetric loss function. 

 The LCCI for estimates obtains its largest value, based on the suggested method, as 

the true values of the parameters increase. 

 An entropy loss function with positive weight is be�er than the other loss functions. 
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5.2. Represention Results 

Figures 4–7 show heatmap descriptions for the MSE results, where the bold color rep-

resents the highest values of MSE and the white color represents the lowest values of MSE. 

The X-label belongs to SELFj, (j = 1, 2, 3) which are the MSE of Bayes estimates based 

on SELF with different parameters; 

LINEXaj, (j =1, 2, 3) are the MSE of Bayes estimates based on LINEX (� = −1.5) with 

different parameters; 

LINEXbj, (j =1, 2, 3) are the MSE of Bayes estimates based on LINEX (� = 1.5) with 

different parameters; 

ELFaj, (j =1, 2, 3) are the MSE of Bayes estimates based on ELF (� = −1.5) with 

different parameters; 

ELFbj, (j =1, 2, 3) are the MSE of Bayes estimates based on ELF (� = 1.5) with 

different parameters. 

The Y-label belongs to cases and sample sizes, where C1n1 for � = 0.5 and n = 40; 

C1n2 for � = 0.5 and n = 80; C1n3 for � = 0.5 and n = 80. 

 

Figure 4. Heatmap for MSE when � = 0.5, � = 0.6. 

 

Figure 5. Heatmap for MSE when � = 0.5, � = 1.7. 
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Figure 6. Heatmap for MSE when � = 2, � = 0.6. 

 

Figure 7. Heatmap for MSE when � = 2, � = 1.7. 

6. Application of Real Data 

This section analyses two real-world datasets to show the adaptability and practical 

application of the UPBXD. The UPBXD is compared with the following models: 

unit-exponentiated half-logistic (UEHL) [23], Type II power Topp–Leone exponential 

(TIIPTLE) [34], Topp–Leone generalized exponential (TLGE) [35], Kumaraswamy (K), 

Beta, unit Weibull (UW), and Marshall–Olkin–Kumaraswamy (MOK). Two actual 

COVID-19 mortality rate datasets from Saudi Arabia and the United Kingdom are pro-

vided in this section to evaluate the UPBXD goodness of fit. The two real datasets were 

utilized to estimate the unknown parameters of the specified models using the maximum 

likelihood and Bayesian approaches. Kolmogorov–Smirnov statistics (KSS) with p-value, 

Cramer–von Mises statistics (WS), and Anderson–Darling statistics (AS) were used to 

compare all of the models. 

6.1. Analysis for First Data 

Data set I: The first set of data shows Saudi Arabia’s COVID-19 mortality rates over a 

36-day period (22 July 2021 to 26 August 2021). The information is as follows: 0.1310, 

0.1319, 0.1497, 0.1504, 0.1686, 0.1689, 0.1706, 0.1716, 0.1879, 0.1890, 0.1924, 0.1951, 0.2063, 

0.2077, 0.2091, 0.2113, 0.2126, 0.2140, 0.2167, 0.2249, 0.2259, 0.2271, 0.2278, 0.2314, 0.2329, 

0.2347, 0.2353, 0.2375, 0.2452, 0.2487, 0.2666, 0.2674, 0.2683, 0.2711, 0.2752, 0.2962. Table 7 

shows the ML estimate of parameters with their standard errors (SEs) for each distribu-

tion and obtained  the goodness of fit measures as KSS, WS, and AD. By the results shown 

in Table 7, we are able to see that the UPBXD is be�er than the other distributions,  such as 

TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK, for COVID-19 mortality rates in the 

Saudi Arabia data set. 
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Table 7. ML estimates with SE and goodness of fit statistics: Saudi Arabia data set. 

  a b � KSS p-Value WS AS 

UPBXD 
Estimates 2.2717 0.5609 2813.2886 

0.0778 0.9693 0.0327 0.2364 
SE 0.0708 0.0692 469.2354 

TLPTLE 
Estimates 693.1774 0.6471 0.6476 

0.0938 0.8800 0.0479 0.3110 
SE 1626.8445 0.0939 0.8346 

TLGE 
Estimates 0.3682 20.4075 179.7044 

0.1403 0.4378 0.0965 0.5911 
SE 0.2843 2.7038 178.4010 

K 
Estimates 3.3085 125.2161  

0.1821 0.1621 0.0421 0.2793 
SE 0.2821 49.4480  

Beta 
Estimates 20.8174 76.5218  

0.1127 0.7089 0.0636 0.3992 
SE 4.8690 18.0555  

UW 
Estimates 0.0203 7.7557  

0.1633 0.2624 0.1824 1.0950 
SE 0.0110 0.9132  

UEHL 
Estimates 6.0655 3670.3422  

0.0792 0.9641 0.0330 0.2393 
SE 0.7918 405.8862  

MOK 
Estimates 703.3130 1.3097 45.4476 

0.0811 0.9567 0.0336 0.2554 
SE 4615.4897 1.5712 72.4483 

As can be seen, the TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK distributions 

work well for modelling the COVID-19 mortality rates indicated in the Saudi Arabia data 

set, but that the UPBXD is the best. This is based on a significance level of 0.05. Figure 8 

illustrates the estimated CDF in the red line with empirical CDF in the black line. It also 

shows the probability–probability (PP) plots of the UPBXD in the red line, also known as 

“parametric plots”, for the COVID-19 mortality rates of the Saudi Arabia data set, which 

demonstrate the empirical findings, reported in Table 7 and the empirical CDF line the 

(black) with the estimated CDF line (red).  

 

Figure 8. The CDF plot with empirical line and PP plot for Saudi Arabia data set. 

Figure 9 shows three plots of COVID-19 mortality rates for the Saudi Arabia data set, 

where the left is a boxplot of data that explains that the data have no outlier values, the 

center is a TTT plot of data that explains this data set is increasing, and the right is a 

hazard estimated plot line that indicates the HF is increasing. 
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Figure 9. Boxplot, TTT plots and hazard line of UPBXD plot for Saudi Arabia data set. 

6.2. Analysis for Second Data  

Data set II: The second set of data shows the United Kingdom COVID-19 mortality 

rates over a 28-day period (1 January 2022 to 28 January 2022). The information is as fol-

lows: 0.1484, 0.1174, 0.0522, 0.0296, 0.0339, 0.2274, 0.1555, 0.1530, 0.2079, 0.0640, 0.1407, 

0.2463, 0.2569, 0.2150, 0.1723, 0.1823, 0.1807, 0.1823, 0.2736, 0.2228, 0.2036, 0.1767, 0.1814, 

0.1361, 0.1620, 0.2639, 0.2067, 0.2008. 

Table 8 shows the ML estimate of parameters for each distribution and obtained the 

goodness of fit measures as KSS, WS, and AD. By the results of Table 8, we can see that 

the UPBXD is be�er than the other distributions, such  as TLPTLE, TLGE, K, Beta, UW, 

UEHL, and MOK, for COVID-19 mortality rates in the United Kingdom data set. Addi-

tionally, we can see that the TLPTLE, TLGE, K, Beta, UW, UEHL, and MOK distributions 

work well for modelling the COVID-19 mortality rates of the United Kingdom data set, 

though the UPBXD is the best. This is based on a significance level of 0.05.  

Table 8. Estimates with SE and goodness of fit statistics of ML: The United Kingdom data set. 

  a b � KSS p-Value WS AS 

UPBXD 
Estimates 2.3471 0.3354 2154.8742 

0.1100 0.8512 0.1115 0.7238 
SE 0.0716 0.0478 402.9847 

TLPTLE 
Estimates 3760.8372 0.1127 0.0216 

0.2571 0.0404 0.4656 2.6059 
SE 5117.2571 0.0287 0.0151 

TLGE 
Estimates 0.2968 10.3896 13.8963 

0.2097 0.1471 0.2804 1.6718 
SE 0.3076 2.3410 15.4726 

K 
Estimates 2.9163 125.0007  0.1329 0.6570 0.1492 0.9456 

SE 0.4689 94.0394 

Beta 
Estimates 3.9277 19.1899  0.1925 0.2202 0.2609 1.5673 

SE 1.0090 5.1885 

UW 
Estimates 0.0904 3.2548  0.2468 0.0548 0.4622 2.5905 

SE 0.0386 0.4231 

UEHL 
Estimates 2.9789 69.5723  0.1294 0.6888 0.1476 0.9369 

SE 0.4808 53.4192 

MOK 
Estimates 0.0124 3.5483 6.7014 

0.1506 0.5020 0.3117 1.8656 
SE 0.0299 0.6026 14.9920 

Figure 10 illustrates the PP plots for the COVID-19 mortality rates of the United 

Kingdom data set, which demonstrate the empirical findings reported in Table 8 and the 

empirical CDF line (black) with the estimated CDF line (red). Figure 11 shows three plots 

of COVID-19 mortality rates for the United Kingdom data set, where the left is a boxplot 

of data that explains that these data have no outlier values, the center is a TTT plot of data 

that explains that these data are increasing, and the right is a hazard estimated plot line 

that indicates the hazard is increasing. 
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Figure 10. The CDF plot with empirical line and PP plot for the United Kingdom data set. 

 

Figure 11. Boxplot, TTT plots and hazard line of UPBXD plot for the United Kingdom data set. 

6.3. Data Analysis via Bayesian Method 

Here, we analyze data sets presented in previous sub-sections using the proposed 

Bayesian estimation method. 

The Bayesian estimation parameters of UPBXD for each of the data sets, respective-

ly are given in Table 9. The Bayesian estimates of UPBXD parameters under SELF and 

the corresponding SEs are calculated. The lower and upper HPD intervals are also cal-

culated. 

Table 9. Bayesian estimation based on SELF for parameters of UPBXD. 

Data  Estimates SE Lower Upper 

Saudi Arabia 

� 2.3235 0.0619 1.9541 2.7490 

� 0.5556 0.0558 0.3990 0.7320 

� 2979.2033 2.4931 2974.2166 2984.1337 

The United 

Kingdom 

� 2.3852 0.0560 2.0108 2.8278 

� 0.3353 0.0314 0.2064 0.4830 

� 2154.8743 0.0787 2154.7169 2155.0299 

Figures 12 and 13 display the trace plot of the UPBXD's parameter values for the 

MCMC finding. 
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Figure 12. Trace plots of MCMC results with interval limit line for Saudi Arabia data set. 

 

Figure 13. Trace plots of MCMC results with interval limit line for the United Kingdom data set. 

The autocorrelation function (ACF) is generated as shown in Figures 14 and 15. 

Figures 16 and 17 demonstrate the symmetric normal distribution of the posterior den-

sity for the parameters of the UPBXD. 

 

Figure 14. The ACF plot of MCMC results for Saudi Arabia data set. 



Axioms 2023, 12, 297 24 of 27 
 

 

Figure 15. ACF plot of MCMC results for the United Kingdom data set. 

 

Figure 16. Histogram plots of MCMC results for Saudi Arabia data set. 

 

Figure 17. Histogram plots of MCMC results for the United Kingdom data set. 

Figures 18 and 19 display the parameter convergence charts for UPBXD draws as 

well as the parameter random draw plot, respectively. 

 

Figure 18. Convergence lines of MCMC results for Saudi Arabia data set. 
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Figure 19. Convergence lines of MCMC results for the United Kingdom data set. 

7. Conclusions 

This article focuses on a three-parameter unit distribution created based on the 

power Burr X distribution and called the UPBXD. The statistical properties of the UP-

BXD have been derived and expressed in closed forms. The presented unit distribution 

can be used as a statistical tool to model different types of HFs, including those that are 

bathtub, increasing and unimodally shaped. Its important features are carefully studied, 

including the analytical expression of moments, quantile function, incomplete moments, 

stochastic ordering, and stress–strength reliability. Moreover, the uncertainty-measuring 

metrics Rényi, Havrda, and Charvat as well as d-generalized entropy were obtained. The 

UPBXD parameters have been estimated utilizing ML approach as well as Bayesian es-

timation approach with different loss functions. Additionally, Bayesian credible intervals 

were constructed based on the marginal posterior distribution. For some difficult calcu-

lations, the Markov chain Monte Carlo method was used. To assess how various esti-

mates work, simulation studies based on various sample sizes have been carried out. In 

light of the simulation study’s findings, it was found that the Bayesian-based symmetric 

loss function and LINEX loss function techniques work quite effectively for estimating 

the UPBXD parameters. Bayesian estimates under an entropy loss function with positive 

weight are superior to those under other loss functions. The MSE and length of the 

credible confidence interval for Bayesian estimates with positive weight are smaller than 

the corresponding values with negative weight. Finally, two actual COVID-19 mortality 

rate data sets from Saudi Arabia and the United Kingdom have been analyzed and dis-

cussed to illustrate the notability of the UPBXD. The UPBXD gives superior fits over 

several other competing models, as shown by a real data application. Future discussions 

can be expanded on the use of Bayesian estimation in stress–strength reliability for the 

UPBXD based on some sampling techniques [36–38]. Furthermore, the proposed meth-

odology can be expanded in multivariate and Bivariate case as [39–41]. 
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