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Received: 26 December 2022

Revised: 16 February 2023

Accepted: 9 March 2023

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Some New Sufficient Conditions on p-Valency for Certain
Analytic Functions
Lei Shi 1 , Muhammad Arif 2,* , Syed Zakar Hussain Bukhari 3 and Malik Ali Raza 3

1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, China
2 Department of Mathematics, Abdul Wali khan University Mardan, Mardan 23200, Pakistan
3 Department of Mathematics, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
* Correspondence: marifmaths@awkum.edu.pk

Abstract: In the present paper, we develop some implications leading to Carathéodory functions in
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1. Introduction and Definitions

The notion of multivalent functions is a natural extension of the injective. A holomor-
phic function f in an arbitrary domain Ω, a subset of the complex-plane C, is p-valent if it
assumes every value a maximum of p-times, which means that the number of roots of the
equation similar to f (z) = w never exceeds in comparison of p. By the geometrical point
of discussion, this leads to the fact that all points in the w-plane C lie, at most, p-times the
corresponding Riemann surface, where w = f (z) maps the domain Ω. If p = 1, then f is
univalent in Ω. The p-valent mappings plays a vital role in the literature of the complex
multivalent functions.

Suppose that m is the number of roots f (z) = w in the set Ω and let p be a positive
number. The function f is said to be p-valent in the mean of circles in the domain Ω, if for
the number ρ > 0, we can write

2π∫
0

mρeiφdφ < 2πp. (1)

From the geometric point of view, the inequality shows that the measure of the circle
on the Riemann surface where f maps Ω, along with projecting |w| = ρ, never exceeds
p-times the measure of this circle. A function f is termed p-valent in the mean over areas in
the domain Ω, if we have

ρ∫
0

 2π∫
0

m$eiφdφ

$d$ < πpρ2. (2)

This integral inequality implies that the area of a small segment on the Riemann
surface where f takes points from Ω as well as projecting them on the region defined
by |w| < R and this never exceeds p-times the area of the region |w| < R. Multivalent
functions have been under investigation in view of their distortion, as bounds for the
coefficient estimates along with various other aspects; see, for example, [1–5].
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Any convergent power series is used to represent a holomorphic mapping. If f is
holomorphic at a point z0, it is analytic everywhere else in some neighbourhood of z0.
Furthermore, if f is entire, then this domain is the finite complex plane. It is a difficult
task to deal with the complicated domains in the entire complex plane. As a result, the
open unit disc is often used for simplification due to the Riemann mapping theorem. Let
H denote the family of holomorphic functions in D := {z ∈ C : |z| < 1}. Let A ⊆ H
consist of holomorphic functions f satisfying f ′(0) = 1 and f (0) = 0. Further, assume that
S ⊆ A consist of univalent functions. The analytic description of holomorphic mappings
is coupled with the functions that map D to the right half-plane. Let P represent the
family of functions q that is holomorphic in D with q(0) = 1 and <q(D) > 0. The function
q ∈ P is called Carathéodory function. It is known that the class P is compact and normal.
In geometric function theory, the Carathéodory function is well-studied and has a lot of
applications (see, for example, [6–9]).

Some known subfamilies of S are the families S∗ and K of starlike and convex map-
pings, respectively; for detail and further investigations, see [10–15]. These families are
related to the change in argument of the radius vector and tangent vector of the image of
reiϕ as non-decreasing functions of the angle ϕ, respectively.

Let Ap(n) denote the class of analytic functions f in the form

f (z) = zp +
∞

∑
s=p+n

aszs, z ∈ D. (3)

In particular,Ap(1) = Ap,A1(n) = A(n) andA1(1) = A. A function f ∈ Ap is called
p-valent in D if f for ω ∈ C, the equation f (z) = ω has, at most, p roots in D and there
exists a ω0 ∈ C such that f (z) = ω0 has exactly p roots in D.

A function f ∈ Ap is said to be p-valent starlike if

<
{

z f ′(z)
f (z)

}
> 0, z ∈ D. (4)

It is known that the p-valent starlike function in A(p) is p-valent. For some investiga-
tions on properties of p-valent functions, we refer to [16–19].

It was proved that [20,21] if f ∈ A with f ′ ∈ P ; then, the function f is univalent in D.
Ozaki [22] further extended the above assertion. They conclude that if f is holomorphic in
a convex domain ∆ ⊂ C and

eiγ f (p)(z)
p!

∈ P , z ∈ ∆, (5)

for some real γ, then f is, at most, p-valent in ∆. Thus, if f ∈ Ap with the condition

<
{

f (p)(z)
}
> 0, (z ∈ D), (6)

then we see that f is, at most, p-valent in D.
Recently, Nunokawa et al. [23–26] found some interesting sufficient conditions for f to

be a p-valent function, which improved Ozaki’s condition. Motivated from these works, we
aim to develop some new sufficient criteria for Carathéodory functions and obtain certain
new conditions for functions to be p-valent.

The following lemmas will be required for our results.

Lemma 1 (See [27]). Let q(z) be holomorphic in D with q(z) 6= 0 and q(0) = 1. Suppose also
that there is a point z0 ∈ D such that |arg q(z)| < π

2 α for |z| < |z0| and |arg q(z0)| = π
2 α for

some α > 0. Then,
z0q′(z0)

q(z0)
= ikα, (7)
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where k ≥ a+a−1

2 when arg q(z0) =
π
2 α and k ≤ − a+a−1

2 when arg q(z0) = −π
2 α, with

[q(z0)]
1
α = ±ia, a > 0. (8)

Lemma 2 (See [28]). Let f ∈ A(p). If there exists a (p− s + 1)-valent starlike function g in the
form of

g(z) = zp−s+1 +
∞

∑
m=p−s+2

bmzm (9)

such that

<
{

z f (s)(z)
g(z)

}
> 0, z ∈ D, (10)

then f is p-valent in D.

2. Main Results

Theorem 1. Let q be a holomorphic function in D with q(z) 6= 0 and q(0) = 1. Suppose also that∣∣∣∣ 1n arg
{
[q(z)]n + n[q(z)]n−1zq′(z)− β[q(z)]n−1

}∣∣∣∣ < π

2
+

1
n

arctan

(
n

√
n + 2β

n

)
, (11)

where 0 ≤ β < 1. Then, we have

|arg{q(z)}| < π

2
, z ∈ D, (12)

or
<(q(z)) > 0, z ∈ D. (13)

Proof. Suppose that we have a point z0 with |z0| < 1 in such a way that

|arg{q(z)}| < π

2
, |z| < |z0|, (14)

and
|arg{q(z0)}| =

π

2
. (15)

Then, by Lemma 1 with α = 1, we have

z0q′(z0)

q(z0)
= ik. (16)

For the case arg q(z0) =
π
2 , q(z0) = ia and a > 0, we have

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)− β[q(z0)]

n−1
}

=
1
n

arg[q(z0)]
n +

1
n

arg
{

1 +
nz0q′(z0)

q(z0)
− β

[q(z0)]

}
=

π

2
+

1
n

arg
{

1 + nik− β

ia

}
=

π

2
+

1
n

arg
{

1 + i
(

nk +
β

a

)}
=

π

2
+

1
n

arg
{

1 + i
n
2

(
a +

n + 2β

na

)}
.

Define

ϑ(x) =
n
2

(
x +

n + 2β

nx

)
. (17)
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Then, this function ϑ assumes its minimum value for x =
√

n+2β
n . Therefore, in view

of the above equality, we see that

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)− β[q(z0)]

n−1
}
≥ π

2
+

1
n

arctan

(
n

√
n + 2β

n

)
, (18)

which contradicts the hypothesis (11). When arg q(z0) = −π
2 , using the similar technique,

we get that:

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)− β[q(z0)]

n−1
}
≥ −π

2
− 1

n
arctan

(
n

√
n + 2β

n

)
. (19)

This above inequality also contradicts the hypothesis (11). The proof is thus completed.

Corollary 1. Let p ≥ 2. If f ∈ Ap(n) satisfying that f (p−1) 6= 0 in D and∣∣∣∣∣∣ 1n arg

 f (p)(z)
p!

− β

(
f (p−1)(z)

p!z

) n−1
n

∣∣∣∣∣∣ < π

2
+

1
n

arctan

(
n

√
n + 2β

n

)
, z ∈ D, (20)

where 0 ≤ β < 1, then f is p-valent in D.

Proof. Assume that

[q(z)]n =
f (p−1)(z)

p!z
, q(0) = 1. (21)

Then on simplification, it follows that∣∣∣∣ 1n arg
{
[q(z)]n + n[q(z)]n−1zq′(z)− β[q(z0)]

n−1
}∣∣∣∣

=

∣∣∣∣∣∣ 1n arg

 f (p)(z)
p!

− β

(
f (p−1)(z)

p!.z

) n−1
n

∣∣∣∣∣∣

=
π

2
+

1
n

arctan

(
n

√
n + 2β

n

)
.

From Theorem 1, we have

<
{

f (p−1)(z)
z

}
> 0, z ∈ D. (22)

This shows that the mapping f is p-valent in D.

Taking n = 1 and β = 0, we easily get the following result obtained by Nunokawa [29].

Corollary 2. Let p ≥ 2. If f ∈ Ap and∣∣∣arg
{

f (p)(z)
}∣∣∣ < 3π

4
, z ∈ D, (23)

then f is p-valent in D.

Theorem 2. Let q(z) be a holomorphic mapping in D with q(0) = 1 and q(z) 6= 0. Further,
suppose that∣∣∣∣ 1n arg

{
[q(z)]n + n[q(z)]n−1 zq′(z)

q(z)
+ β[q(z)]n−1

}∣∣∣∣ < π

2
− 1

n
arctan

β√
n(n + 2)

, (24)
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where 0 ≤ β < ∞. Then

|arg q(z)| < π

2
, z ∈ D. (25)

Proof. We suppose that there is a point z0 (|z0| < 1) such that

|arg{q(z)}| < π

2
, |z| < |z0|, (26)

and
|arg{q(z0)}| =

π

2
. (27)

Then, by using Lemma 1 with α = 1, we have

z0q′(z0)

q(z0)
= ik, (28)

For the case arg{q(z0)} = π
2 with q(z0) = ia and a > 0, we observe that

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1 z0q′(z0)

q(z0)
+ β[q(z0)]

n−1
}

=
1
n

arg[q(z0)]
n +

1
n

arg
{

1 +
nz0q′(z0)

q(z0)
.

1
q(z0)

+
β

q(z0)

}
=

π

2
+

1
n

arg
{

1 + nk
1
a
− i

β

a

}
=

π

2
+

1
n

arctan
(
−β

a + nk

)

≥π

2
− 1

n
arctan

 β

a + n
2

(
a + 1

a

)
.

Let

ζ(x) = x +
n
2

(
x +

1
x

)
. (29)

It is easy to note that ζ takes the minimum value for x =
√

n
n+2 . Therefore, on some

simple manipulation, the above equality leads to

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1 z0q′(z0)

q(z0)
+ β[q(z0)]

n−1
}
≥ π

2
− 1

n
arctan

β√
n(n + 2)

,

which contradicts the hypothesis in (24). For the case arg q(z0) = −π
2 , applying the same

method as the above, we have

1
n

arg
{
[q(z0)]

n + n[q(z0)]
n−1 z0q′(z0)

q(z0)
+ β[q(z0)]

n−1
}

≥−
(

π

2
− 1

n
arctan

β√
n(n + 2)

)
,

which also contradicts the hypothesis as in (24). This completes the proof of Theorem 2.

Theorem 3. Let q be a holomorphic function in D with q(0) = 1 and q(z) 6= 0. Suppose that

<
{

1
n

√
[q(z)]n + n[q(z)]n−1zq′(z)

}
> 0, z ∈ D. (30)
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Then we have
|arg{q(z)}| < π

2
α1, z ∈ D, (31)

where α1 is the positive zero or root of the equation

α1 +
2

nπ
arctan(nα1) = 2. (32)

Proof. Assume that there is a point z0 (|z0| < 1) such that

|arg q(z)| < π

2
α1, (|z| < |z0|) (33)

and
|arg q(z0)| =

π

2
α1. (34)

Then, by using Lemma 1 with α = α1, we have

z0q′(z0)

q(z0)
= iα1k, (35)

For the case arg q(z0) =
π
2 α1, we have

1
n

arg
√
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)

=
1

2n

(
arg[q(z0)]

n + arg
{

1 +
z0q′(z0)

q(z0)

})
=

1
2n

(nπ

2
α1 + arg{1 + nikα1}

)
=

1
2

.
π

2

(
α1 +

2
nπ

arctan(nα1)

)
=

π

2
,

which implies that

< 1
n

{√
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)

}
≤ 0, (36)

and this contradicts the hypothesis as in (30). For arg q(z0) = −π
2 α1, using the similar

technique yields to

1
n

arg
√
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0) ≤ −

π

2
, (37)

or

<
{

1
n

√
[q(z0)]

n + n[q(z0)]
n−1z0q′(z0)

}
≤ 0. (38)

This also contradicts the hypothesis in (30) and, therefore, the assertion is concluded.

Corollary 3. Suppose that p ≥ 4 and f ∈ Ap(n) satisfying that f (k)(z) 6= 0(k = p− 1, p− 2,
p− 3) in D. If ∣∣∣∣ 1n arg

{
f (p)(z)

}∣∣∣∣ < π, (z ∈ D), (39)

then the mapping f is p-valent in D.
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Proof. Assume that

[q1(z)]
n =

f (p−1)(z)
p!z

, q1(0) = 1. (40)

Then a simple simplification leads to

[q1(z)]
n + n[q1(z)]n−1zq′1(z) =

f (p)(z)
p!

. (41)

In view of Theorem 3, we obtain that∣∣∣∣∣ 1n arg

{
f (p−1)(z)

z

}∣∣∣∣∣ =
∣∣∣∣ 1n arg[q1(z)]

n
∣∣∣∣ < π

2
α1, z ∈ D, (42)

where α1 is the positive zero or root of the above equation given by (32). Next, let us put

[q2(z)]
n =

2 f (p−2)(z)
p!z2 , q2(0) = 1. (43)

Then a simple calculation leads to

2[q2(z)]
n + n[q2(z)]

n−1zq′2(z) =
2 f (p−1)(z)

p!z
. (44)

Let α2 be a positive zero or root of the equation

α +
2

nπ
arctan

(nα

2

)
= α1. (45)

Suppose that there exists a point z1 with |z1| < 1 such that

|arg q2(z)| <
π

2
α2, |z| < |z1| (46)

and |arg q2(z1)| = π
2 α2, then we write

z1q′2(z1)

q2(z1)
= iα2k. (47)

For the choice of arg q2(z1) =
π
2 α2, we have

1
n

arg
{

2[q2(z1)]
n + n[q2(z1)]

n−1z1q′2(z1)
}

=
1
n

arg

{
f (p−1)(z1)

z1

}

=
1
n

arg[q2(z1)]
n +

1
n

arg
{

2 + n
z1q′2(z1)

q2(z1)

}
=

π

2
α2 +

1
n

arg{2 + nikα2}

=
π

2
α2 +

1
n

arctan(
nα2

2
) =

π

2
α1,

which contradicts the result in (42). For the assumption arg q2(z1) = −π
2 α2, we note that

1
n

arg
{

2[q2(z1)]
n + n[q2(z1)]

n−1z1q′2(z1)
}

=
1
n

arg

{
2 f (p−1)(z1)

p!z1

}
=

1
n

arg

{
f (p−1)(z1)

z1

}
≤ −π

2
α1.
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This also contradicts (42). Hence, we have∣∣∣∣ 1n arg[q2(z1)]
n
∣∣∣∣ =

∣∣∣∣∣ 1n arg

{
f (p−2)(z)

z2

}∣∣∣∣∣ < π

2
α2, z ∈ D, (48)

where α2 +
2

nπ arctan
( nα2

2
)
= α1. Let

[q3(z)]
n =

6 f (p−3)(z)
p!z3 , q3(0) = 1. (49)

Then we see that

3[q3(z)]
n + n[q3(z)]

n−1zq′3(z) =
6 f (q−2)(z)

q!.z2 . (50)

Using the similar approach as adopted above, we note that∣∣∣∣ 1n arg
{

3[q3(z)]
n + n[q3(z)]n−1zq′3(z)

}∣∣∣∣
=

∣∣∣∣ 1n arg[q3(z)]
n +

1
n

arg
{

3 + n
zq′3(z)
q3(z)

}∣∣∣∣
=

∣∣∣∣∣ 1n arg

{
6 f (p−2)(z)

p!z2

}∣∣∣∣∣ =
∣∣∣∣∣ 1n arg

{
f (p−2)(z)

z2

}∣∣∣∣∣ < π

2
α2.

This shows that∣∣∣∣∣ 1n arg

{
z f (p−3)(z)

z4

}∣∣∣∣∣ =
∣∣∣∣∣ 1n arg

{
z f (p−3)(z)

z3

}∣∣∣∣∣ < π

2
α3 <

π

2
, z ∈ D, (51)

or

<
{

z f (p−3)(z)
z4

}
> 0, z ∈ D. (52)

Thus, we note that g(z) = z4 is a four-valent starlike function in D. Therefore, using
the result in (52) and Lemma 2, we observe that f is p-valent in D. This leads to the desired
result in Corollary 3.

3. Conclusions

Analytic p-valent functions were intensively studied recently, as in [30–32]. In the
present paper, we introduced several sufficient conditions for functions to be p-valent.
Some simple criteria on p-valents are obtained. This generalizes some know results and
may inspire more effective and concise univalent conditions in geometric function theory.
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