Article

Some New Sufficient Conditions on p-Valency for Certain Analytic Functions

Lei Shi ${ }^{1(D)}$, Muhammad Arif ${ }^{2, *(®)}$, Syed Zakar Hussain Bukhari ${ }^{3}$ © and Malik Ali Raza ${ }^{3}$
1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, China
2 Department of Mathematics, Abdul Wali khan University Mardan, Mardan 23200, Pakistan
3 Department of Mathematics, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
* Correspondence: marifmaths@awkum.edu.pk

Citation: Shi, L.; Arif, M.; Bukhari, S.Z.H.; Raza, M.A. Some New Sufficient Conditions on p-Valency for Certain Analytic Functions. Axioms 2023, 12, 295. https:// doi.org/10.3390/axioms12030295

Academic Editors: Miodrag
Mateljevic, Roman Ger and
Gradimir V. Milovanović

Received: 26 December 2022
Revised: 16 February 2023
Accepted: 9 March 2023
Published: 13 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In the present paper, we develop some implications leading to Carathéodory functions in the open disk and provide some new conditions for functions to be p-valent functions. This work also extends the findings of Nunokawa and others.

Keywords: multivalent functions; p-valent functions; Carathéodory functions
MSC: 30C45; 30C80

1. Introduction and Definitions

The notion of multivalent functions is a natural extension of the injective. A holomorphic function f in an arbitrary domain Ω, a subset of the complex-plane \mathbb{C}, is p-valent if it assumes every value a maximum of p-times, which means that the number of roots of the equation similar to $f(z)=w$ never exceeds in comparison of p. By the geometrical point of discussion, this leads to the fact that all points in the w-plane \mathbb{C} lie, at most, p-times the corresponding Riemann surface, where $w=f(z)$ maps the domain Ω. If $p=1$, then f is univalent in Ω. The p-valent mappings plays a vital role in the literature of the complex multivalent functions.

Suppose that m is the number of roots $f(z)=w$ in the set Ω and let p be a positive number. The function f is said to be p-valent in the mean of circles in the domain Ω, if for the number $\rho>0$, we can write

$$
\begin{equation*}
\int_{0}^{2 \pi} m \rho e^{i \phi} d \phi<2 \pi p \tag{1}
\end{equation*}
$$

From the geometric point of view, the inequality shows that the measure of the circle on the Riemann surface where f maps Ω, along with projecting $|w|=\rho$, never exceeds p-times the measure of this circle. A function f is termed p-valent in the mean over areas in the domain Ω, if we have

$$
\begin{equation*}
\int_{0}^{\rho}\left(\int_{0}^{2 \pi} m \varrho e^{i \phi} d \phi\right) \varrho d \varrho<\pi p \rho^{2} \tag{2}
\end{equation*}
$$

This integral inequality implies that the area of a small segment on the Riemann surface where f takes points from Ω as well as projecting them on the region defined by $|w|<R$ and this never exceeds p-times the area of the region $|w|<R$. Multivalent functions have been under investigation in view of their distortion, as bounds for the coefficient estimates along with various other aspects; see, for example, [1-5].

Any convergent power series is used to represent a holomorphic mapping. If f is holomorphic at a point z_{0}, it is analytic everywhere else in some neighbourhood of z_{0}. Furthermore, if f is entire, then this domain is the finite complex plane. It is a difficult task to deal with the complicated domains in the entire complex plane. As a result, the open unit disc is often used for simplification due to the Riemann mapping theorem. Let \mathcal{H} denote the family of holomorphic functions in $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$. Let $\mathcal{A} \subseteq \mathcal{H}$ consist of holomorphic functions f satisfying $f^{\prime}(0)=1$ and $f(0)=0$. Further, assume that $\mathcal{S} \subseteq \mathcal{A}$ consist of univalent functions. The analytic description of holomorphic mappings is coupled with the functions that map \mathbb{D} to the right half-plane. Let \mathcal{P} represent the family of functions q that is holomorphic in \mathbb{D} with $q(0)=1$ and $\Re q(\mathbb{D})>0$. The function $q \in \mathcal{P}$ is called Carathéodory function. It is known that the class \mathcal{P} is compact and normal. In geometric function theory, the Carathéodory function is well-studied and has a lot of applications (see, for example, [6-9]).

Some known subfamilies of \mathcal{S} are the families \mathcal{S}^{*} and \mathcal{K} of starlike and convex mappings, respectively; for detail and further investigations, see [10-15]. These families are related to the change in argument of the radius vector and tangent vector of the image of $r e^{i \varphi}$ as non-decreasing functions of the angle φ, respectively.

Let $\mathcal{A}_{p}(n)$ denote the class of analytic functions f in the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{s=p+n}^{\infty} a_{s} z^{s}, \quad z \in \mathbb{D} \tag{3}
\end{equation*}
$$

In particular, $\mathcal{A}_{p}(1)=\mathcal{A}_{p}, \mathcal{A}_{1}(n)=A(n)$ and $\mathcal{A}_{1}(1)=\mathcal{A}$. A function $f \in \mathcal{A}_{p}$ is called p-valent in \mathbb{D} if f for $\omega \in \mathbb{C}$, the equation $f(z)=\omega$ has, at most, p roots in \mathbb{D} and there exists a $\omega_{0} \in \mathbb{C}$ such that $f(z)=\omega_{0}$ has exactly p roots in \mathbb{D}.

A function $f \in \mathcal{A}_{p}$ is said to be p-valent starlike if

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D} \tag{4}
\end{equation*}
$$

It is known that the p-valent starlike function in $\mathcal{A}(p)$ is p-valent. For some investigations on properties of p-valent functions, we refer to [16-19].

It was proved that $[20,21]$ if $f \in \mathcal{A}$ with $f^{\prime} \in \mathcal{P}$; then, the function f is univalent in \mathbb{D}. Ozaki [22] further extended the above assertion. They conclude that if f is holomorphic in a convex domain $\Delta \subset \mathbb{C}$ and

$$
\begin{equation*}
\frac{e^{i \gamma} f^{(p)}(z)}{p!} \in \mathcal{P}, \quad z \in \Delta, \tag{5}
\end{equation*}
$$

for some real γ, then f is, at most, p-valent in Δ. Thus, if $f \in \mathcal{A}_{p}$ with the condition

$$
\begin{equation*}
\Re\left\{f^{(p)}(z)\right\}>0, \quad(z \in \mathbb{D}) \tag{6}
\end{equation*}
$$

then we see that f is, at most, p-valent in \mathbb{D}.
Recently, Nunokawa et al. [23-26] found some interesting sufficient conditions for f to be a p-valent function, which improved Ozaki's condition. Motivated from these works, we aim to develop some new sufficient criteria for Carathéodory functions and obtain certain new conditions for functions to be p-valent.

The following lemmas will be required for our results.
Lemma 1 (See [27]). Let $q(z)$ be holomorphic in \mathbb{D} with $q(z) \neq 0$ and $q(0)=1$. Suppose also that there is a point $z_{0} \in \mathbb{D}$ such that $|\arg q(z)|<\frac{\pi}{2} \alpha$ for $|z|<\left|z_{0}\right|$ and $\left|\arg q\left(z_{0}\right)\right|=\frac{\pi}{2} \alpha$ for some $\alpha>0$. Then,

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i k \alpha \tag{7}
\end{equation*}
$$

where $k \geq \frac{a+a^{-1}}{2}$ when $\arg q\left(z_{0}\right)=\frac{\pi}{2} \alpha$ and $k \leq-\frac{a+a^{-1}}{2}$ when $\arg q\left(z_{0}\right)=-\frac{\pi}{2} \alpha$, with

$$
\begin{equation*}
\left[q\left(z_{0}\right)\right]^{\frac{1}{\alpha}}= \pm i a, \quad a>0 \tag{8}
\end{equation*}
$$

Lemma 2 (See [28]). Let $f \in \mathcal{A}(p)$. If there exists $a(p-s+1)$-valent starlike function g in the form of

$$
\begin{equation*}
g(z)=z^{p-s+1}+\sum_{m=p-s+2}^{\infty} b_{m} z^{m} \tag{9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\Re\left\{\frac{z f^{(s)}(z)}{g(z)}\right\}>0, \quad z \in \mathbb{D} \tag{10}
\end{equation*}
$$

then f is p-valent in \mathbb{D}.

2. Main Results

Theorem 1. Let q be a holomorphic function in \mathbb{D} with $q(z) \neq 0$ and $q(0)=1$. Suppose also that

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{[q(z)]^{n}+n[q(z)]^{n-1} z q^{\prime}(z)-\beta[q(z)]^{n-1}\right\}\right|<\frac{\pi}{2}+\frac{1}{n} \arctan \left(n \sqrt{\frac{n+2 \beta}{n}}\right), \tag{11}
\end{equation*}
$$

where $0 \leq \beta<1$. Then, we have

$$
\begin{equation*}
|\arg \{q(z)\}|<\frac{\pi}{2}, \quad z \in \mathbb{D} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\Re(q(z))>0, \quad z \in \mathbb{D} . \tag{13}
\end{equation*}
$$

Proof. Suppose that we have a point z_{0} with $\left|z_{0}\right|<1$ in such a way that

$$
\begin{equation*}
|\arg \{q(z)\}|<\frac{\pi}{2}, \quad|z|<\left|z_{0}\right| \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left\{q\left(z_{0}\right)\right\}\right|=\frac{\pi}{2} \tag{15}
\end{equation*}
$$

Then, by Lemma 1 with $\alpha=1$, we have

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i k . \tag{16}
\end{equation*}
$$

For the case $\arg q\left(z_{0}\right)=\frac{\pi}{2}, q\left(z_{0}\right)=i a$ and $a>0$, we have

$$
\begin{aligned}
& \frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)-\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \\
= & \frac{1}{n} \arg \left[q\left(z_{0}\right)\right]^{n}+\frac{1}{n} \arg \left\{1+\frac{n z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}-\frac{\beta}{\left[q\left(z_{0}\right)\right]}\right\} \\
= & \frac{\pi}{2}+\frac{1}{n} \arg \left\{1+n i k-\frac{\beta}{i a}\right\} \\
= & \frac{\pi}{2}+\frac{1}{n} \arg \left\{1+i\left(n k+\frac{\beta}{a}\right)\right\} \\
= & \frac{\pi}{2}+\frac{1}{n} \arg \left\{1+i \frac{n}{2}\left(a+\frac{n+2 \beta}{n a}\right)\right\} .
\end{aligned}
$$

Define

$$
\begin{equation*}
\vartheta(x)=\frac{n}{2}\left(x+\frac{n+2 \beta}{n x}\right) . \tag{17}
\end{equation*}
$$

Then, this function ϑ assumes its minimum value for $x=\sqrt{\frac{n+2 \beta}{n}}$. Therefore, in view of the above equality, we see that

$$
\begin{equation*}
\frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)-\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \geq \frac{\pi}{2}+\frac{1}{n} \arctan \left(n \sqrt{\frac{n+2 \beta}{n}}\right) \tag{18}
\end{equation*}
$$

which contradicts the hypothesis (11). When $\arg q\left(z_{0}\right)=-\frac{\pi}{2}$, using the similar technique, we get that:

$$
\begin{equation*}
\frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)-\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \geq-\frac{\pi}{2}-\frac{1}{n} \arctan \left(n \sqrt{\frac{n+2 \beta}{n}}\right) \tag{19}
\end{equation*}
$$

This above inequality also contradicts the hypothesis (11). The proof is thus completed.
Corollary 1. Let $p \geq 2$. If $f \in \mathcal{A}_{p}(n)$ satisfying that $f^{(p-1)} \neq 0$ in \mathbb{D} and

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{\frac{f^{(p)}(z)}{p!}-\beta\left(\frac{f^{(p-1)}(z)}{p!z}\right)^{\frac{n-1}{n}}\right\}\right|<\frac{\pi}{2}+\frac{1}{n} \arctan \left(n \sqrt{\frac{n+2 \beta}{n}}\right), \quad z \in \mathbb{D} \tag{20}
\end{equation*}
$$

where $0 \leq \beta<1$, then f is p-valent in \mathbb{D}.
Proof. Assume that

$$
\begin{equation*}
[q(z)]^{n}=\frac{f^{(p-1)}(z)}{p!z}, \quad q(0)=1 \tag{21}
\end{equation*}
$$

Then on simplification, it follows that

$$
\begin{aligned}
& \left|\frac{1}{n} \arg \left\{[q(z)]^{n}+n[q(z)]^{n-1} z q^{\prime}(z)-\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\}\right| \\
= & \left|\frac{1}{n} \arg \left\{\frac{f^{(p)}(z)}{p!}-\beta\left(\frac{f^{(p-1)}(z)}{p!. z}\right)^{\frac{n-1}{n}}\right\}\right| \\
= & \frac{\pi}{2}+\frac{1}{n} \arctan \left(n \sqrt{\frac{n+2 \beta}{n}}\right) .
\end{aligned}
$$

From Theorem 1, we have

$$
\begin{equation*}
\Re\left\{\frac{f^{(p-1)}(z)}{z}\right\}>0, \quad z \in \mathbb{D} \tag{22}
\end{equation*}
$$

This shows that the mapping f is p-valent in \mathbb{D}.
Taking $n=1$ and $\beta=0$, we easily get the following result obtained by Nunokawa [29].
Corollary 2. Let $p \geq 2$. If $f \in \mathcal{A}_{p}$ and

$$
\begin{equation*}
\left|\arg \left\{f^{(p)}(z)\right\}\right|<\frac{3 \pi}{4}, \quad z \in \mathbb{D} \tag{23}
\end{equation*}
$$

then f is p-valent in \mathbb{D}.
Theorem 2. Let $q(z)$ be a holomorphic mapping in \mathbb{D} with $q(0)=1$ and $q(z) \neq 0$. Further, suppose that

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{[q(z)]^{n}+n[q(z)]^{n-1} \frac{z q^{\prime}(z)}{q(z)}+\beta[q(z)]^{n-1}\right\}\right|<\frac{\pi}{2}-\frac{1}{n} \arctan \frac{\beta}{\sqrt{n(n+2)}}, \tag{24}
\end{equation*}
$$

where $0 \leq \beta<\infty$. Then

$$
\begin{equation*}
|\arg q(z)|<\frac{\pi}{2}, \quad z \in \mathbb{D} \tag{25}
\end{equation*}
$$

Proof. We suppose that there is a point $z_{0}\left(\left|z_{0}\right|<1\right)$ such that

$$
\begin{equation*}
|\arg \{q(z)\}|<\frac{\pi}{2}, \quad|z|<\left|z_{0}\right| \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left\{q\left(z_{0}\right)\right\}\right|=\frac{\pi}{2} \tag{27}
\end{equation*}
$$

Then, by using Lemma 1 with $\alpha=1$, we have

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i k, \tag{28}
\end{equation*}
$$

For the case $\arg \left\{q\left(z_{0}\right)\right\}=\frac{\pi}{2}$ with $q\left(z_{0}\right)=i a$ and $a>0$, we observe that

$$
\begin{aligned}
& \frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} \frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}+\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \\
= & \frac{1}{n} \arg \left[q\left(z_{0}\right)\right]^{n}+\frac{1}{n} \arg \left\{1+\frac{n z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)} \cdot \frac{1}{q\left(z_{0}\right)}+\frac{\beta}{q\left(z_{0}\right)}\right\} \\
= & \frac{\pi}{2}+\frac{1}{n} \arg \left\{1+n k \frac{1}{a}-i \frac{\beta}{a}\right\} \\
= & \frac{\pi}{2}+\frac{1}{n} \arctan \left(\frac{-\beta}{a+n k}\right) \\
\geq & \frac{\pi}{2}-\frac{1}{n} \arctan \left(\frac{\beta}{a+\frac{n}{2}\left(a+\frac{1}{a}\right)}\right) .
\end{aligned}
$$

Let

$$
\begin{equation*}
\zeta(x)=x+\frac{n}{2}\left(x+\frac{1}{x}\right) \tag{29}
\end{equation*}
$$

It is easy to note that ζ takes the minimum value for $x=\sqrt{\frac{n}{n+2}}$. Therefore, on some simple manipulation, the above equality leads to

$$
\frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} \frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}+\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \geq \frac{\pi}{2}-\frac{1}{n} \arctan \frac{\beta}{\sqrt{n(n+2)}},
$$

which contradicts the hypothesis in (24). For the case $\arg q\left(z_{0}\right)=-\frac{\pi}{2}$, applying the same method as the above, we have

$$
\begin{aligned}
& \frac{1}{n} \arg \left\{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} \frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}+\beta\left[q\left(z_{0}\right)\right]^{n-1}\right\} \\
\geq & -\left(\frac{\pi}{2}-\frac{1}{n} \arctan \frac{\beta}{\sqrt{n(n+2)}}\right)
\end{aligned}
$$

which also contradicts the hypothesis as in (24). This completes the proof of Theorem 2.

Theorem 3. Let q be a holomorphic function in \mathbb{D} with $q(0)=1$ and $q(z) \neq 0$. Suppose that

$$
\begin{equation*}
\Re\left\{\frac{1}{n} \sqrt{[q(z)]^{n}+n[q(z)]^{n-1} z q^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{30}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
|\arg \{q(z)\}|<\frac{\pi}{2} \alpha_{1}, \quad z \in \mathbb{D} \tag{31}
\end{equation*}
$$

where α_{1} is the positive zero or root of the equation

$$
\begin{equation*}
\alpha_{1}+\frac{2}{n \pi} \arctan \left(n \alpha_{1}\right)=2 . \tag{32}
\end{equation*}
$$

Proof. Assume that there is a point $z_{0}\left(\left|z_{0}\right|<1\right)$ such that

$$
\begin{equation*}
|\arg q(z)|<\frac{\pi}{2} \alpha_{1}, \quad\left(|z|<\left|z_{0}\right|\right) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg q\left(z_{0}\right)\right|=\frac{\pi}{2} \alpha_{1} . \tag{34}
\end{equation*}
$$

Then, by using Lemma 1 with $\alpha=\alpha_{1}$, we have

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i \alpha_{1} k \tag{35}
\end{equation*}
$$

For the case $\arg q\left(z_{0}\right)=\frac{\pi}{2} \alpha_{1}$, we have

$$
\begin{aligned}
& \frac{1}{n} \arg \sqrt{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)} \\
= & \frac{1}{2 n}\left(\arg \left[q\left(z_{0}\right)\right]^{n}+\arg \left\{1+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}\right\}\right) \\
= & \frac{1}{2 n}\left(\frac{n \pi}{2} \alpha_{1}+\arg \left\{1+n i k \alpha_{1}\right\}\right) \\
= & \frac{1}{2} \cdot \frac{\pi}{2}\left(\alpha_{1}+\frac{2}{n \pi} \arctan \left(n \alpha_{1}\right)\right) \\
= & \frac{\pi}{2},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\Re \frac{1}{n}\left\{\sqrt{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)}\right\} \leq 0 \tag{36}
\end{equation*}
$$

and this contradicts the hypothesis as in (30). For $\arg q\left(z_{0}\right)=-\frac{\pi}{2} \alpha_{1}$, using the similar technique yields to

$$
\begin{equation*}
\frac{1}{n} \arg \sqrt{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)} \leq-\frac{\pi}{2} \tag{37}
\end{equation*}
$$

or

$$
\begin{equation*}
\Re\left\{\frac{1}{n} \sqrt{\left[q\left(z_{0}\right)\right]^{n}+n\left[q\left(z_{0}\right)\right]^{n-1} z_{0} q^{\prime}\left(z_{0}\right)}\right\} \leq 0 . \tag{38}
\end{equation*}
$$

This also contradicts the hypothesis in (30) and, therefore, the assertion is concluded.
Corollary 3. Suppose that $p \geq 4$ and $f \in \mathcal{A}_{p}(n)$ satisfying that $f^{(k)}(z) \neq 0(k=p-1, p-2$, $p-3)$ in \mathbb{D}. If

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{f^{(p)}(z)\right\}\right|<\pi, \quad(z \in \mathbb{D}) \tag{39}
\end{equation*}
$$

then the mapping f is p-valent in \mathbb{D}.

Proof. Assume that

$$
\begin{equation*}
\left[q_{1}(z)\right]^{n}=\frac{f^{(p-1)}(z)}{p!z}, \quad q_{1}(0)=1 \tag{40}
\end{equation*}
$$

Then a simple simplification leads to

$$
\begin{equation*}
\left[q_{1}(z)\right]^{n}+n\left[q_{1}(z)\right]^{n-1} z q_{1}^{\prime}(z)=\frac{f^{(p)}(z)}{p!} \tag{41}
\end{equation*}
$$

In view of Theorem 3, we obtain that

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{\frac{f^{(p-1)}(z)}{z}\right\}\right|=\left|\frac{1}{n} \arg \left[q_{1}(z)\right]^{n}\right|<\frac{\pi}{2} \alpha_{1}, \quad z \in \mathbb{D}, \tag{42}
\end{equation*}
$$

where α_{1} is the positive zero or root of the above equation given by (32). Next, let us put

$$
\begin{equation*}
\left[q_{2}(z)\right]^{n}=\frac{2 f^{(p-2)}(z)}{p!z^{2}}, \quad q_{2}(0)=1 \tag{43}
\end{equation*}
$$

Then a simple calculation leads to

$$
\begin{equation*}
2\left[q_{2}(z)\right]^{n}+n\left[q_{2}(z)\right]^{n-1} z q_{2}^{\prime}(z)=\frac{2 f^{(p-1)}(z)}{p!z} \tag{44}
\end{equation*}
$$

Let α_{2} be a positive zero or root of the equation

$$
\begin{equation*}
\alpha+\frac{2}{n \pi} \arctan \left(\frac{n \alpha}{2}\right)=\alpha_{1} . \tag{45}
\end{equation*}
$$

Suppose that there exists a point z_{1} with $\left|z_{1}\right|<1$ such that

$$
\begin{equation*}
\left|\arg q_{2}(z)\right|<\frac{\pi}{2} \alpha_{2}, \quad|z|<\left|z_{1}\right| \tag{46}
\end{equation*}
$$

and $\left|\arg q_{2}\left(z_{1}\right)\right|=\frac{\pi}{2} \alpha_{2}$, then we write

$$
\begin{equation*}
\frac{z_{1} q_{2}^{\prime}\left(z_{1}\right)}{q_{2}\left(z_{1}\right)}=i \alpha_{2} k \tag{47}
\end{equation*}
$$

For the choice of $\arg q_{2}\left(z_{1}\right)=\frac{\pi}{2} \alpha_{2}$, we have

$$
\begin{aligned}
& \frac{1}{n} \arg \left\{2\left[q_{2}\left(z_{1}\right)\right]^{n}+n\left[q_{2}\left(z_{1}\right)\right]^{n-1} z_{1} q_{2}^{\prime}\left(z_{1}\right)\right\} \\
= & \frac{1}{n} \arg \left\{\frac{f^{(p-1)}\left(z_{1}\right)}{z_{1}}\right\} \\
= & \frac{1}{n} \arg \left[q_{2}\left(z_{1}\right)\right]^{n}+\frac{1}{n} \arg \left\{2+n \frac{z_{1} q_{2}^{\prime}\left(z_{1}\right)}{q_{2}\left(z_{1}\right)}\right\} \\
= & \frac{\pi}{2} \alpha_{2}+\frac{1}{n} \arg \left\{2+n i k \alpha_{2}\right\} \\
= & \frac{\pi}{2} \alpha_{2}+\frac{1}{n} \arctan \left(\frac{n \alpha_{2}}{2}\right)=\frac{\pi}{2} \alpha_{1},
\end{aligned}
$$

which contradicts the result in (42). For the assumption $\arg q_{2}\left(z_{1}\right)=-\frac{\pi}{2} \alpha_{2}$, we note that

$$
\begin{aligned}
& \frac{1}{n} \arg \left\{2\left[q_{2}\left(z_{1}\right)\right]^{n}+n\left[q_{2}\left(z_{1}\right)\right]^{n-1} z_{1} q_{2}^{\prime}\left(z_{1}\right)\right\} \\
= & \frac{1}{n} \arg \left\{\frac{2 f^{(p-1)}\left(z_{1}\right)}{p!z_{1}}\right\}=\frac{1}{n} \arg \left\{\frac{f^{(p-1)}\left(z_{1}\right)}{z_{1}}\right\} \leq-\frac{\pi}{2} \alpha_{1} .
\end{aligned}
$$

This also contradicts (42). Hence, we have

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left[q_{2}\left(z_{1}\right)\right]^{n}\right|=\left|\frac{1}{n} \arg \left\{\frac{f^{(p-2)}(z)}{z^{2}}\right\}\right|<\frac{\pi}{2} \alpha_{2}, \quad z \in \mathbb{D}, \tag{48}
\end{equation*}
$$

where $\alpha_{2}+\frac{2}{n \pi} \arctan \left(\frac{n \alpha_{2}}{2}\right)=\alpha_{1}$. Let

$$
\begin{equation*}
\left[q_{3}(z)\right]^{n}=\frac{6 f^{(p-3)}(z)}{p!z^{3}}, \quad q_{3}(0)=1 \tag{49}
\end{equation*}
$$

Then we see that

$$
\begin{equation*}
3\left[q_{3}(z)\right]^{n}+n\left[q_{3}(z)\right]^{n-1} z q_{3}^{\prime}(z)=\frac{6 f^{(q-2)}(z)}{q!\cdot z^{2}} \tag{50}
\end{equation*}
$$

Using the similar approach as adopted above, we note that

$$
\begin{aligned}
& \left|\frac{1}{n} \arg \left\{3\left[q_{3}(z)\right]^{n}+n\left[q_{3}(z)\right]^{n-1} z q_{3}^{\prime}(z)\right\}\right| \\
= & \left|\frac{1}{n} \arg \left[q_{3}(z)\right]^{n}+\frac{1}{n} \arg \left\{3+n \frac{z q_{3}^{\prime}(z)}{q_{3}(z)}\right\}\right| \\
= & \left|\frac{1}{n} \arg \left\{\frac{6 f^{(p-2)}(z)}{p!z^{2}}\right\}\right|=\left|\frac{1}{n} \arg \left\{\frac{f^{(p-2)}(z)}{z^{2}}\right\}\right|<\frac{\pi}{2} \alpha_{2} .
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\left|\frac{1}{n} \arg \left\{\frac{z f^{(p-3)}(z)}{z^{4}}\right\}\right|=\left|\frac{1}{n} \arg \left\{\frac{z f^{(p-3)}(z)}{z^{3}}\right\}\right|<\frac{\pi}{2} \alpha_{3}<\frac{\pi}{2}, \quad z \in \mathbb{D}, \tag{51}
\end{equation*}
$$

or

$$
\begin{equation*}
\Re\left\{\frac{z f^{(p-3)}(z)}{z^{4}}\right\}>0, \quad z \in \mathbb{D} \tag{52}
\end{equation*}
$$

Thus, we note that $g(z)=z^{4}$ is a four-valent starlike function in \mathbb{D}. Therefore, using the result in (52) and Lemma 2, we observe that f is p-valent in \mathbb{D}. This leads to the desired result in Corollary 3.

3. Conclusions

Analytic p-valent functions were intensively studied recently, as in [30-32]. In the present paper, we introduced several sufficient conditions for functions to be p-valent. Some simple criteria on p-valents are obtained. This generalizes some know results and may inspire more effective and concise univalent conditions in geometric function theory.
Author Contributions: The idea of the present paper comes from M.A. and L.S.; S.Z.H.B. wrote and completed the calculations. M.A.R. checked the results. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Data Availability Statement: No data were used in this study.
Conflicts of Interest: The authors declare that they have no conflicts of interest. The authors declare that there are no competing interests.

References

1. Hayman, W.K. Multivalent Functions; Cambridge University Press: Cambrige, UK, 1958.
2. Leach, R.J. Coefficient estimates for certain multivalent functions. Pac. J. Math. 1978, 74, 133-142.
3. Khan, Q.; Arif, M.; Ahmad, B.; Tang, H. On analytic multivalent functions associated with lemniscate of Bernoulli. AIMS Math. 2020, 5, 2261-2271. [CrossRef]
4. Alb Lupaş, A. Applications of the q-Sǎlǎgean differential operator involving multivalent functions. Axioms 2022, 11, 512. [CrossRef]
5. Lashin, A.M.Y.; El-Emam, F.Z. On certain classes of multivalent analytic functions defined with higher-order derivatives. Mathematics 2023, 11, 83. [CrossRef]
6. Mateljević, M.; Mutavdžić, N.; Örnek, B.N. Note on some classes of holomorphic functions related to Jack's and Schwarz's lemma. Appl. Anal. Discret. Math. 2022, 16, 111-131. [CrossRef]
7. Nunokawa, M.; Sokół, J. On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions. Anal. Math. Phys. 2019, 9 2367-2378. [CrossRef]
8. Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [CrossRef]
9. Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [CrossRef]
10. Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189-196. [CrossRef]
11. Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl. 2000, 45, 647-657.
12. Mateljević, M. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl. 2018, 464, 78-100. [CrossRef]
13. Khalfallah, A.; Mateljević, M.; Purtić, B. Schwarz-Pick Lemma for harmonic and Hyperbolic harmonic functions. Results Math. 2022, 77, 167. [CrossRef]
14. Mateljević, M.; Mutavdžić, N. The boundary Schwarz lemma for harmonic and pluriharmonic mappings and some generalizations. Bull. Malays. Math. Sci. Soc. 2022, 45, 3177-3195. [CrossRef]
15. Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jp. Acad. Ser. A 1993, 69, 234-237. [CrossRef]
16. Arif, M.; Ayaz, M.; Iqbal, J.; Haq, W. Sufficient conditions for functions to be in a class of p-valent analytic functions. J. Comput. Anal. Appl. 2013, 16, 159-164.
17. Arif, M. Sufficiency criteria for a class of p-valent analytic functions of complex order. Abstr. Appl. Anal. 2013, 2013, 517296. [CrossRef]
18. Cho, N.E.; Aouf, M.K.; Srivastava, R. The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator. Symmetry 2019, 11, 1083. [CrossRef]
19. Hadid, S.B.; Ibrahim, R.W.; Momani, S. Multivalent functions and differential operator extended by the quantum calculus. Fractal Fract. 2022, 6, 354. [CrossRef]
20. Warschawski, S. On the higher derivatives at the boundary in conformal mappings. Trans. Am. Math. Soc. 1935, 38, 310-340. [CrossRef]
21. Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. 1934, 1, 129-155. [CrossRef]
22. Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku A 1935, 2, 167-188.
23. Nunokawa, M.; Sokól, J. On the multivalency of certain analytic functions. J. Ineq. Appl. 2014, 2014, 357. [CrossRef]
24. Nunokawa, M.; Sokól, J. On some geometric properties of multivalent functions. J. Ineq. Appl. 2015, 2015, 300. [CrossRef]
25. Nunokawa, M.; Cho, N.E.; Kwon, O.S.; Sokół, J. An improvement of Ozaki's q-valent conditions. Acta Math. Sin. Engl. Ser. 2016, 32, 406-410. [CrossRef]
26. Nunokawa, M.; Sokół, J.; Trojnar-Spelina, L. On a sufficient condition for function to be p-valent close-to-convex. Ramanujan J. 2020, 53, 483-492. [CrossRef]
27. Nunokawa, M. On properties of non-Carathéodory functions. Proc. Jpn. Acad. Ser. A 1992, 68, 152-153. [CrossRef]
28. Nunokawa, M. On the theory of multivalent functions. Tsukuba J. Math. 1987, 11, 273-286. [CrossRef]
29. Nunokawa, M. A note on multivalent functions. Tsukuba J. Math. 1989, 1, 453-455. [CrossRef]
30. Khan, Q.; Dziok, J.; Raza, M.; Arif, M. Sufficient conditions for p-valent functions. Math. Slovaca 2021, 71, 1089-1102. [CrossRef]
31. Cotîrlǎ, L.I.; Juma, A.R.S. Properties of differential subordination and superordination for multivalent functions associated with the convolution operators. Axioms 2023, 12, 169. [CrossRef]
32. Liu, J.L.; Srivastava, R. Hadamard products of certain classes of p-valent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 2001-2015. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

