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Abstract: The dynamic Sylvester equation (DSE) is frequently encountered in engineering and
mathematics fields. The original zeroing neural network (OZNN) can work well to handle DSE under
a noise-free environment, but may not work in noise. Though an integral-enhanced zeroing neural
network (IEZNN) can be employed to solve the DSE under multiple-noise, it may fall flat under linear
noise, and its convergence speed is unsatisfactory. Therefore, an accelerated double-integral zeroing
neural network (ADIZNN) is proposed based on an innovative design formula to resist linear noise
and accelerate convergence. Besides, theoretical proofs verify the convergence and robustness of the
ADIZNN model. Moreover, simulation experiments indicate that the convergence rate and anti-noise
ability of the ADIZNN are far superior to the OZNN and IEZNN under linear noise. Finally, chaos
control of the sine function memristor (SFM) chaotic system is provided to suggest that the controller
based on the ADIZNN has a smaller amount of error and higher accuracy than other ZNNs.

Keywords: dynamic Sylvester equation; linear noise; accelerated double integral ZNN; chaos control
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1. Introduction

The Sylvester equation is a crucial matrix equation. It has a crucial position in many
fields, such as image fusion [1], object detection [2], control configuration selection [3],
fast tensor product solution [4], robotics [5–8], permanent magnet synchronous motors [9]
and mobile manipulators [10]. Therefore, finding a quick solution to handle the dynamic
Sylvester equation (DSE) is exceptionally crucial. Many scholars previously utilized nu-
merical methods to solve the Sylvester equation, such as the Hessenberg–Schur iteration
method [11] and Krylov subspace methods [12]. Nevertheless, numerical methods are
only suitable for small-scale matrix issues and cannot solve DSE well. In recent years,
the advantages of feedforward neural networks and recurrent neural networks (RNNs)
with the parallel process and easy implementation in hardware have been gradually
excavated [13–16]. The gradient neural network (GNN), an important type of RNN, has
become increasingly popular in high-dimensional Sylvester equation solving [17,18]. Nev-
ertheless, when the GNN approach was extended to dynamic domains, researchers discov-
ered the two defects of GNN: first, the GNN method cannot make the residual value reach
zero; second, its convergence rate is deficient.

After that, the original zeroing neural network (OZNN) was reported, aiming at
the shortcomings of the GNN [19]. With the development of the zeroing neural network
(ZNN) model, many scholars have focused on ZNN because it can deal with many dynamic
mathematical problems [20–22]. Simultaneously, scholars constantly improved and inno-
vated on the basis of the ZNN and they obtained many derived ZNN models for specific
problems [7,9,23–25]. For instance, He et al. presented a double-accelerated ZNN for
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handling dynamic matrix inversion [23]. Xiao et al. proposed two nonlinear ZNN models
and applied them to the 3D moving target location [24]. A noise-suppression variable
parameter ZNN was proposed to handle the DSE [26]. In addition, there is much related
work on the universal DSE [27,28].

It is worth noting that noise cannot be ignored, and it will affect the stability of the
system [29–31]. Therefore, we should consider both convergence and robustness when
designing ZNN models [32–34]. In order to better suppress noise, the PID control method
is usually used by the public [35]. The control principle also mentions that the integral
term can eliminate noise so that the error in the system is continuously reduced. Thus, the
integral-enhanced ZNN model (IEZNN) was designed [32], and the integral term made up
for the defect that the original ZNN could not suppress noise. Besides, many anti-noise
ZNNs were researched and applied [36–38].

Nevertheless, the IEZNN model cannot suppress linear noise well. Many researchers
point out that the activation functions can accelerate convergence and suppress
noise [39–41]. Utilizing double integration and the fixed-time activation function (FTAF),
we propose an accelerated double integral ZNN (ADIZNN) model with anti-linear noise
interference to settle the DSE under linear noise. In brief, the ADIZNN has the charac-
teristic of accelerated convergence and enhanced robustness due to the introduction of
the FTAF and the double integral term. In addition, the theoretical proofs and simulation
experiments under the linear noise environments are given. At last, the design ideas of
ZNNs are extended to chaos control of the SFM chaotic system to show that the controller
based on the ADIZNN has significant advantages compared with other controllers.

The remaining part of this paper is divided into five sections. Section 2 introduces the
OZNN, IEZNN and ADIZNN models. Theoretical analyses of the ADIZNN are provided
in Section 3. Section 4 offers two specific examples under linear noise. Besides, the chaos
control experiment of the SFM chaotic system is provided in Section 5. Section 6 is the
summary part of paper. These are the significant contributions of this research.

• Based on the novel ZNN design formula, an innovative ADIZNN is constructed for
settling the dynamic Sylvester equation under the linear noise.

• The ADIZNN model has a novel double integral structure and activation function,
which guarantees accelerated convergence and enhanced anti-noise capacity.

• Theoretical analyses and simulation results are provided to ensure that the ADIZNN
model can handle the DSE with excellent convergence and robustness.

• Chaos control schemes of the TFM chaotic system are established to display that the
controller based on the ADIZNN has superior performance than that based on the
OZNN and IEZNN.

2. DSE Description and Models Design

Firstly, the general dynamic Sylvester equation (DSE), OZNN and IEZNN are offered.
Posteriorly, the novel ADIZNN model proposed is particularly elaborated.

2.1. Description of DSE

The definition of the DSE is described in detail as follows:

U(t)P(t)− P(t)V(t) + G(t) = 0, (1)

in which U(t), V(t), G(t) ∈ Rn×n are time-varying matrices, and P(t) ∈ Rn×n is an un-
known matrix.

The purpose of the ZNN model is to solve the unknown P(t) in Equation (1) under
noise, and the theoretical solution is denoted by P∗(t). Moving matrix G(t) of (1), we have

U(t)P(t)− P(t)V(t) = −G(t). (2)
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For further derivation, we need to vectorize Equation (2) and obtain(
In ⊗U(t)−VT(t)⊗ In

)
vec(P(t)) = −vec(G(t)), (3)

in which In ∈ Rn×n is an identity matrix, and vec(·) and the symbol ⊗ signify the vector-
ization and Kronecker product operation. Setting Q(t) = In ⊗U(t)−VT(t)⊗ In ∈ Rnn×nn,
p(t) = vec(P(t)) ∈ Rnn×1, g(t) = vec(G(t)) ∈ Rnn×1 of (3), the DSE is transformed into a
linear equation:

Q(t)p(t) = −g(t).

For monitoring the solution process, we define

W(t) = Q(t)p(t) + g(t) (4)

as an error function. The derivative of (4) with respect to time can be written as

Ẇ(t) = Q̇(t)p(t) + Q(t) ṗ(t) + ġ(t). (5)

2.2. Relevant Models Design

A detailed description of the relevant models are introduced in this subsection. The
design formula of error in the ZNN model is defined as

Ẇ(t) = −ξΦ(W(t)), (6)

in which ξ ∈ R+ and Φ(·) is a mapping array composed by the activation function. The
elemental form of (6) is as follows

ẇi(t) = −ξφ(wi(t)),

where φ(·) denotes the nonlinear monotone non-decreasing odd activation function, and
wi(·) and φ(·) are element forms of the W(·) and Φ(·), where i = 1, 2, . . ., n2. When φ(·) is
the linear activation function

(
i.e., φ(ı) = ı

)
, we get the design formula of the OZNN model:

Ẇ(t) = −ξW(t). (7)

Considering the case of linear noise, the design formula of the OZNN is

Ẇ(t) = −ξW(t) + Z(t), (8)

where Z(t) ∈ Rnn×1 refers to linear noise. Linear noise is a significant kind of noise, and it is
generally shaped like Z(t) = At + B, where A, B ∈ Rnn×1. Let zi(t), ai and bi stand for the
ith elements of Z(t), A and B. Then, the element form of Z(t) is rewritten as zi(t) = ait + bi.
Substituting Equations (4) and (5) into (8), the OZNN model to solve the DSE is obtained

Q(t) ṗ(t) = −Q̇(t)p(t)− ġ(t)− ξ(Q(t)p(t) + g(t)) + Z(t). (9)

On this basis, Jin et al. added an integral term to suppress the noise and proposed an
integral-enhanced ZNN (IEZNN) [32], and its design formula is

Ẇ(t) = −ξW(t)− λ
∫ t

0
W(τ)dτ, (10)

with ξ and λ ∈ R > 0. Then, we obtain the case of (10) under noise:

Ẇ(t) = −ξW(t)− λ
∫ t

0
W(τ)dτ + Z(t). (11)
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Substituting (4) and (5) into (11), the model of the IEZNN can be rewritten as

Q(t) ṗ(t) =− Q̇(t)p(t)− ġ(t)− ξ(Q(t)p(t) + g(t))

− λ
∫ t

0
(Q(τ)p(τ) + g(τ))dτ + Z(t).

(12)

Now that all the relevant models descriptions are complete, the accelerated double integral
ZNN will be introduced.

2.3. ADIZNN Model Design

In this subsection, an accelerated double integral ZNN (ADIZNN) model is proposed,
which can resist the linear noise effectively. We know that Ẇ(t) = −ξΦ(W(t)) from
Section 2.2, to describe the evolution of the model more intuitively, set

Θ(t) = Ẇ(t) + ξΦ(W(t)), (13)

where Φ(·) denotes the fixed-time activation function (FTAF) here, and its element form is

φ(ı) = (ε1|ı|µ + ε2|ı|σ)sign(ı) + ε3ı + ε4sign(ı), (14)

in which ε1 and ε2 > 0, ε3 and ε4 ≥ 0, 0 < µ < 1, σ > 1.

Remark 1. We make some detailed remarks about FTAF (14).

• The ε1|ı|µsign(ı) and ε2|ı|σsign(ı) of FTAF (14) are to accelerate convergence.
• The ε3ı and ε4sign(ı) of FTAF (14) are to suppress noise;

In addition, let

Θ(t) = −λ
∫ t

0
Θ(τ)dτ,

with λ ∈ R+. We define

Υ(t) = Θ(t) + λ
∫ t

0
Θ(τ)dτ. (15)

Substituting (13) into (15), one can get

Υ(t) = Ẇ(t) + ξΦ(W(t)) + λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ))

)
dτ. (16)

Similarly, set

Υ(t) = −λ
∫ t

0
Υ(τ)dτ. (17)

Substituting (16) into (17), we obtain

Ẇ(t) + ξΦ(W(t)) + λW(t) + λξ
∫ t

0
Φ(W(τ))dτ

=− λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ)) + λW(τ) + λξ

∫ τ

0
Φ(W(σ))dσ

)
dτ

=− λW(t)− λξ
∫ t

0
Φ(W(τ))dτ − λ2

∫ t

0
W(τ)dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ.

Thus, the design formula of the ADIZNN for DSE is obtained:

Ẇ(t) =− 2λW(t)− ξΦ(W(t))− λ2
∫ t

0
W(τ)dτ

− 2λξ
∫ t

0
Φ(W(τ))dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ.

(18)
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Furthermore, the design formula of the ADIZNN with noise can be written as

Ẇ(t) =− 2λW(t)− ξΦ(W(t))− λ2
∫ t

0
W(τ)dτ

− 2λξ
∫ t

0
Φ(W(τ))dτ − λ2ξ

∫ t

0

∫ τ

0
Φ(W(σ))dσdτ + Z(t).

Furthermore, W(t) = Q(t)p(t) + g(t) and Ẇ(t) = Q̇(t)p(t) + Q(t) ṗ(t) + ġ(t) are already
known. Hence, the ADIZNN model that included noise can be further obtained:

Q(t) ṗ(t) =− Q̇(t)p(t)− ġ(t)− 2λ(Q(t)p(t) + g(t))− ξΦ(Q(t)p(t) + g(t))

− 2λξ
∫ t

0
Φ(Q(τ)p(τ) + g(τ))dτ − λ2

∫ t

0
(Q(τ)p(τ) + g(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
Φ
(
Q̇(σ)p(σ) + Q(σ) ṗ(σ) + ġ(σ)

)
dσdτ + Z(t).

(19)

Remark 2. We make some detailed remarks about ADIZNN (19).

• Based on the novel ZNN design formula, an innovative ADIZNN is constructed for settling
the DSE under the linear noise.

• The novel double integral structure and activation function, which guarantees accelerated
convergence and enhanced anti-noise capacity.

3. Theoretical Analyses

We mainly discuss and prove properties of the ADIZNN in this section. In order
to better express the Frobenius norm of W(t), we introduce the error norm ‖W(t)‖F =
‖Q(t)p(t) + g(t)‖F.

3.1. Convergence

The convergence performance of ADIZNN (19) is investigated and studied under the
ideal noise-free condition in this subsection.

Theorem 1. Given matrices U(t) ∈ Rn×n, V(t) ∈ Rn×n and G(t) ∈ Rn×n. From any initial
value P(0), the error norm ‖W(t)‖F of ADIZNN (19) can reach zero under the ideal noise-free
condition, that is,

lim
t→∞
‖W(t)‖F = 0.

Proof of Theorem 1. In order to give a clearer proof process, let wi(t), θi(t), γi(t) and φ(·)
represent the elements form of W(t), Θ(t), Υ(t) and Φ(·). First, considering

Υ(t) = Ẇ(t) + ξΦ(W(t)) + λ
∫ t

0

(
Ẇ(τ) + ξΦ(W(τ))

)
dτ, (20)

ADIZNN model (19) under the noiseless environment can be transformed into

Υ(t) = −λ
∫ t

0
Υ(τ)dτ. (21)

The element form of (21) is

γi(t) = −λ
∫ t

0
γi(τ)dτ. (22)

Then, the derivative of (22) is
γ̇i(t) = −λγi(t). (23)

Setting a Lyapunov equation
`(t) = γ2

i (t),
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its derivative is
˙̀(t) = 2γ̇i(t)γi(t). (24)

Substituting (23) into (24), we have

˙̀(t) = −2λγi(t)γi(t) = −2λγ2
i (t).

Because `(t) is positive definite and ˙̀(t) is negative definite, `(t) is globally asymptotically
stable, and we have

lim
t→∞
|`(t)| = lim

t→∞

∣∣∣γ2
i (t)

∣∣∣ = lim
t→∞
|γi(t)| = 0. (25)

Thus, γi = ẇi(t) + ξφ(wi(t)) + λ
∫ t

0 (ẇi(τ) + ξφ(wi(τ)))dτ = 0 as t → ∞ based on (20)
and (25). Considering θi(t) = ẇi(t) + ξφ(wi(t)), then we have

θi(t) = −λ
∫ t

0
θi(τ)dτ, t→ ∞. (26)

Therefore,

lim
t→∞

∣∣∣∣θi(t) + λ
∫ t

0
θi(τ)dτ

∣∣∣∣ = 0.

It is not difficult to know

lim
t→∞
|θi(t)| = lim

t→∞

∣∣∣∣−λ
∫ t

0
θi(τ)dτ

∣∣∣∣.
The derivative of the above equation is

lim
t→∞

∣∣θ̇i(t)
∣∣ = lim

t→∞
|−λθi(t)|+ ∆, ∆→ 0,

where ∆ is a small error in the derivative of θi(t). Setting another Lyapunov equation

h̄(t) = θ2
i (t). (27)

The derivative of (27) is
˙̄h(t) = 2θ̇i(t)θi(t) = −2λθ2

i (t).

According to the Lyapunov theorem, we get

lim
t→∞
|θi(t)| = 0.

Because θi(t) = ẇi(t) + ξφ(wi(t)), thus,

lim
t→∞
|θi(t)| = lim

t→∞
|ẇi(t) + ξφ(wi(t))| = 0. (28)

Thus,
ẇi(t) = −ξφ(wi(t)).

Clearly, we get
lim
t→∞
|wi(t)| = 0.

Thus, writing it in matrix form gives the following

lim
t→∞
‖W(t)‖F = 0.

The proof is completed now.
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3.2. Robustness

Furthermore, the ADIZNN model can still approximate the theoretical solution in-
finitely when solving the DSE in a noisy environment. In other words, the ADIZNN model
has strong robustness. Its robustness proof process is presented below.

Theorem 2. Given matrices U(t) ∈ Rn×n, V(t) ∈ Rn×n and G(t) ∈ Rn×n, the identity matrix
In ∈ Rn×n. From any initial value P(0), P(t) of the proposed ADIZNN can reach P∗(t) in solving
the DSE under the linear noise condition, that is,

lim
t→∞
‖W(t)‖F = 0.

Proof of Theorem 2. Linear noise can be written as

Z(t) = At + B, (29)

where A ∈ Rnn×1 and B ∈ Rnn×1 are constant matrices. Its element form can be written as

zi(t) = ait + bi.

According to (20) and (21) of Theorem 1, the ADIZNN model (19) can be converted to

Υ(t) = −λ
∫ t

0
Υ(τ)dτ + Z(t). (30)

Its element is

γi(t) = −λ
∫ t

0
γi(κ)dκ + zi(t). (31)

Taking the derivative of γi twice, we get

γ̈i(t) = −λγ̇i(t) + z̈i(t). (32)

Differentiating the linear noise once and twice yield żi(t) = a and z̈i(t) = 0. Then,

γ̈i(t) = −λγ̇i(t).

We set up a Lyapunov function =(t) = γ̇2
i (t), so

=̇(t) = 2γ̈i(t)γ̇i(t) = −λγ̇2
i (t).

Due to the =(t) being positive definite and =̇(t) being negative definite, =(t) is globally
asymptotically stable, and we have

lim
t→∞
|=(t)| = lim

t→∞

∣∣∣γ̇2
i (t)

∣∣∣ = lim
t→∞
|γ̇i(t)| = 0. (33)

According to (31) and (33), we obtain

lim
t→∞
|γ̇i(t)| = lim

t→∞
|−λγi(t) + żi(t)| = 0.

We know that żi(t) = a, so it is not hard to figure out

lim
t→∞
|−λγi(t) + a| = 0.

Then it is concluded that
lim
t→∞
|λγi(t)| = |a|.
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Thus we get

lim
t→∞
|γi(t)| =

∣∣∣ a
λ

∣∣∣.
Thus |γi(t)| =

∣∣∣ẇi(t) + ξφ(wi(t)) + λ
∫ t

0 (ẇi(τ) + ξφ(wi(τ)))dτ
∣∣∣ = |a/λ| as t→ ∞. Let

θi(t) = ẇi(t) + ξφ(wi(t)), (34)

then we have |γi(t)| =
∣∣∣θi(t) + λ

∫ t
0 θi(τ)dτ

∣∣∣ = |a/λ| as t→ ∞. Thus we can infer that

lim
t→∞

(
θ̇i(t) + λθi(t)

)
= 0.

Then, we can draw
lim
t→∞

θ̇i(t) = lim
t→∞
−λθi(t).

Obviously, due to λ > 0, θ̇i(t) and θi(t) having different signs, thus we get

lim
t→∞
|θi(t)| = 0.

In addition, θi(t) = ẇi(t) + ξφ(wi(t)) is known from (34), that means

lim
t→∞
|θi(t)| = lim

t→∞
|ẇi(t) + ξφ(wi(t))| = 0.

The above equation and (28) are the same, we can say

lim
t→∞
|wi(t)| = 0.

The corresponding matrix form is

lim
t→∞
‖W(t)‖F = 0.

Thus, the proof is accomplished now.

4. Examples Verification

In Section 3, the properties of the ADIZNN are proved. In this section, comparative
experiments are adopted to highlight the outstanding performance of ADIZNN (19). The
OZNN (9), IEZNN (12) and ADIZNN (19) models are applied in solving the dynamic
Sylvester equation problem. Besides, P∗(t) refers to the theoretical value of P(t) in the
experiment 1 and experiment 2.

Remark 3. Sylvester matrix equations play an important role in the field of control [3,42,43], and
they are widely used in the fields of manipulators [10], signal processing [1,44] and statistics [45].
For example, the redundant decomposition of manipulator in the Ref. [10] can first be represented
by the quadratic programming problem with equality constraints, then this problem can be further
converted into a dynamic linear equation (i.e., a special case of the DSE when V(t) = 0) by the
Lagrange multiplier method. Therefore, this paper only verifies the effect of the proposed model to
solve the DSE, which can be extended to related fields.

4.1. Experiment 1

The dynamic matrices U(t), V(t) and G(t) are provided

U(t) =
[

s(−2t) −c(−2t)
c(−2t) s(−2t)

]
, V(t) =

[
t 0
0 2

]
, G(t) =

[
s(3t) c(3t)
2s(3t) −2c(3t)

]
, (35)
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where s(·) and c(·) represent the sine function and cosine function. The default model
parameters are: ξ = 2, λ = 1, ε1 = ε2 = ε3 = ε4 = 0.5 and µ = 0.5, σ = 2.

Figure 1 presents state trajectories synthesized by the OZNN model (9), IEZNN
model (12) and ADIZNN model (19) using FTAF (14) for the DSE with (35) in the noiseless
environment. It is obvious that the OZNN model (9), IEZNN model (12) and ADIZNN
model (19) can fit the theoretical solutions in a noiseless environment. Even without linear
noise, ADIZNN (19) has the fastest convergence speed, which means that its convergence
performance is better than the other two models.

(a) (b)

(c) (d)

Figure 1. State trajectories of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) in the
absence of the noise. (a) State trajectory of p11(t). (b) State trajectory of p12(t). (c) State trajectory of
p21(t). (d) State trajectory of p22(t).

Although in the noiseless environment, all three models can fit the theoretical value,
model testing in noisy environment is more important. In Figure 2, we explore the state
trajectories of these three models under linear noise zi(t) = t/4 + 4 for the DSE with (35).
Obviously, the OZNN’s state trajectory completely deviates from the theoretical results,
that is to say, OZNN (9) cannot calculate the theoretical result of DSE under zi(t) = t/4 + 4.
In Figure 2, the fitting trend of IEZNN (12) is closer and closer to P∗(t) with the increase of t,
p11(t), p12(t), p21(t) and p22(t) of IEZNN (12) still cannot converge to p∗11(t), p∗12(t), p∗21(t)
and p∗22(t). However, the p11(t), p12(t), p21(t) and p22(t) of ADIZNN (19) converge to
theoretical values within 1.3 s. The above results are sufficient to illustrate that ADIZNN (19)
can suppress zi(t) = t/4 + 4 when solving the DSE problem.

Remark 4. Here, we have a discussion of the results of the comparison about Figures 1 and 2. Since
the OZNN model (9) does not contain an integral term, it has no ability to suppress linear noise.
The IEZNN model (12) contains an integral term, which can resist linear noise to a certain extent,
and the error results obtained by solving the DSE with the IEZNN model (12) are not satisfactory.
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However, the ADIZNN model (19) contains the double integral term and FTAF (14), which can
effectively suppress linear noise, and its convergence time is much faster than IEZNN.

(a) (b)

(c) (d)

Figure 2. State trajectories of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) under
the linear noise zi(t) = t/4 + 4. (a) State trajectory of p11(t). (b) State trajectory of p12(t). (c) State
trajectory of p21(t). (d) State trajectory of p22(t).

In Figure 3, we study the error norms ‖W(t)‖F of OZNN model (9), IEZNN model
(12) and ADIZNN model (19) with ξ = 2 and λ = 1 under the different noise environments
for the two-dimensional matrices (35). Figure 3a–d correspond to zi(t) = 0, zi(t) = t/4 + 4,
zi(t) = 4t + 4 and zi(t) = 16t + 4, respectively. From Figure 3a, ‖W(t)‖F of the OZNN
model (9), IEZNN model (12) and ADIZNN model (19) can achieve convergence to zero.
However, in the comparison of convergence time, the OZNN model (9) is the slowest, and
the IEZNN (12) and ADIZNN model (19) can converge within 1.3 and 4.7 s, respectively.
Under linear noise, the information suggested by the Figure 3b–d is that the error norms
‖W(t)‖F of the OZNN model (9) and IEZNN model (12) present a divergence trend.
However, ‖W(t)‖F of the ADIZNN model (19) can converge under the linear noise, and the
convergence accuracy can reach 1× 10−3. It can be seen that the convergence accuracy of
the ADIZNN model (19) does not decrease with the increase of linear noise zi(t). Besides,
the detailed comparison of the three models under the four different noises is given in
Table 1.

Furthermore, the different parameters of ADIZNN (19) are reported for the DSE
with (35) under the noise zi(t) = 16t + 4 in Figure 4. The parameter λ = 1 of the ADIZNN
is fixed, and ξ = 1.2, ξ = 2.4, ξ = 3.6 are selected respectively in Figure 4a. Then, the
parameter ξ = 1 of the ADIZNN is fixed, and λ = 0.8, λ = 1.6, λ = 2.4 are investigated
respectively in Figure 4b. From Figure 4a,b, as ξ and λ increase, the convergence speed of
ADIZNN (19) becomes faster. By contrast, the gain of parameter λ on the convergence rate
of the model is greater than that of parameter ξ.
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(a) (b)

(c) (d)

Figure 3. Error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (35) in
different noise environments. (a) No noise zi(t) = 0. (b) Linear noise zi(t) = t/4 + 4. (c) Linear noise
zi(t) = 4t + 4. (d) Linear noise zi(t) = 16t + 4.

(a) (b)

Figure 4. Error norms ‖W(t)‖F of ADIZNN (19) with different parameters for the DSE with (35) in
linear noise zi(t) = 16t + 4. (a) Fixed λ = 1, different ξ. (b) Fixed ξ = 1, different λ.
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Table 1. The detailed comparison of OZNN (9), IEZNN (12) and ADIZNN (19) with ξ = 2 and λ = 1
for the DSE with (35) under the different noise environments.

Noise OZNN Model (9) IEZNN Model (12) ADIZNN Model (19)

zi(t) = 0 convergent convergent convergent
zi(t) = t/4 + 4 diverging diverging convergent
zi(t) = 4t + 4 diverging diverging convergent
zi(t) = 16t + 4 diverging diverging convergent

4.2. Experiment 2

Furthermore, the two-dimensional matrices are extended to the four-dimensional
matrices are considered:

U(t) =


s(t) −s(t) −s(t) c(t)
s(t) c(t) c(t) s(t)
s(t) −c(t) c(t) −s(t)
−c(t) −s(t) s(t) c(t)

,

V(t) =


t 0 0 0
0 1

t+1 0 0
0 0 t + 2 0
0 0 0 1

, G(t) =


s(3t) s(3t) s(3t) c(3t)

0 s(3t) c(3t) c(3t)
0 0 c(3t) c(3t)
0 0 0 c(3t)

.

(36)

The parameters of FTAF (14) are ε1 = ε2 = ε3 = ε4 = 0.5 and µ = 0.5, σ = 2.
Figure 5 presents the error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19)

with ξ = 2 and λ = 1 under the different noise environments for the four-dimensional matri-
ces (36). In Figure 5a, all three models can achieve convergence in a noiseless environment,
but the convergence rate of ADIZNN (19) is much faster than OZNN (9) and IEZNN (12).
However, the convergence time of these three models is very different. ADIZNN (19) can
achieve convergence within 1.1 s, OZNN (9) can achieve convergence within 5.2 s, and
IEZNN (12) takes a longer time to achieve convergence. Figure 5b–d presents the error
norms ‖W(t)‖F of ADIZNN (19) can achieve convergence, while the error norms of the
other two models are diverging. It can be seen that when the noise are zi(t) = t/4 + 4,
zi(t) = 4t + 4 and zi(t) = 16t + 4, the convergence time of ADIZNN (19) are 1.1 s, 2.1 s and
4.3 s, respectively. It shows that only ADIZNN (19) can still solve the DSE problem under
linear noise well for the high-dimensional matrices.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Error norms ‖W(t)‖F of OZNN (9), IEZNN (12) and ADIZNN (19) for the DSE with (36) in
different noise environments. (a) zi(t) = 0. (b) zi(t) = t/4 + 4. (c) zi(t) = 4t + 4. (d) zi(t) = 16t + 4.

5. Application to the Control of the Sine Function Memristor Chaotic System

The design method of ZNN can not only be effectively used to solve the DSE, but
also can be utilized for the control of the chaotic system. Chaotic system [46] is a kind of
common nonlinear systems, which is widely used in secure communication [47,48], power
systems and network systems [49–51]. Hence, the SFM chaotic control system [52] and
three controllers based on ZNNs are presented in this section.

The SFM [52] is introduced in detail as follows:
ẋ1(t) =s(x2(t)),

ẋ2(t) =−
1
3

s(x1(t)) +
1
2

s(x2(t))−
1
2

η2s(x2(t))s2(x3(t)),

ẋ3(t) =− s(x2(t))− 0.6s(x3(t)) + ηs(x2(t))s(x3(t)),

(37)

where X(t) = [x1(t), x2(t), x3(t)]T are state variables.
When considering uncertainties, noise and the controller, (37) is rewritten as

ẋ1(t) =s(x2(t)) + ∆ f1(x) + h̄1(t) + u1(t),

ẋ2(t) =−
1
3

s(x1(t)) +
1
2

s(x2(t))−
1
2

η2s(x2(t))s2(x3(t)) + ∆ f2(x) + h̄2(t) + u2(t),

ẋ3(t) =− s(x2(t))− 0.6s(x3(t)) + ηs(x2(t))s(x3(t)) + ∆ f3(x) + h̄3(t) + u3(t),

(38)

where ∆ f1(x), ∆ f2(x) and ∆ f3(x) are uncertainties of the system, h̄1(t), h̄2(t) and h̄3(t)
refer to external disturbances, u1(t), u2(t) and u3(t) represent the controllers.

Define error E(t) = X(t)− 0, where E(t) = [e1(t), e2(t), e3(t)]T.
According to design Formula (7), we have

Ė(t) = −ξE(t). (39)

Thus, combining (38) and (39), the controller based on OZNN (39) is
u1(t) =− ξx1(t)− s(x2(t)),

u2(t) =− ξx2(t) +
1
3

s(x1(t))−
1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− ξx3(t) + s(x2(t)) + 0.6s(x3(t))− ηs(x2(t))s(x3(t)).

(40)

Based on the (10), we get

Ė(t) = −ξE(t)− λ
∫ t

0
E(τ)dτ. (41)
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Similarly, combining (38) and (41), we have the controller based on IEZNN (41) as follows:

u1(t) =− ξx1(t)− λ
∫ t

0
x1(τ)dτ − s(x2(t)),

u2(t) =− ξx2(t)− λ
∫ t

0
x2(τ)dτ +

1
3

s(x1(t))−
1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− ξx3(t)− λ
∫ t

0
x3(τ)dτ + s(x2(t)) + 0.6s(x3(t))− ηs(x2(t))s(x3(t)).

(42)

Analogously, the design formula of the ADIZNN is

Ė(t) =− 2λE(t)− ξΦ(E(t))− λ2
∫ t

0
E(τ)dτ − 2λξ

∫ t

0
Φ(E(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
Φ(E(σ))dσdτ.

(43)

Thus, combining (38) and (43), the controller based on ADIZNN (43) is

u1(t) =− 2λx1(t)− ξφ(x1(t))− λ2
∫ t

0
x1(τ)dτ − 2λξ

∫ t

0
φ(x1(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x1(σ))dσdτ − s(x2(t)),

u2(t) =− 2λx2(t)− ξφ(x2(t))− λ2
∫ t

0
x2(τ)dτ − 2λξ

∫ t

0
φ(x2(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x2(σ))dσdτ +

1
3

s(x1(t))−
1
2

s(x2(t)) +
1
2

η2s(x2(t))s2(x3(t)),

u3(t) =− 2λx3(t)− ξφ(x3(t))− λ2
∫ t

0
x3(τ)dτ − 2λξ

∫ t

0
φ(x3(τ))dτ

− λ2ξ
∫ t

0

∫ τ

0
φ(x3(σ))dσdτ +

1
3

s(x1(t)) +
1
2

s(x2(t))−
1
2

η2s(x2(t))s2(x3(t)).

(44)

Let ∆ f (x) = [s(x2(t)), 2c(x1(t)), 3s(x1(t))c(x3(t))]T, h̄(t) = [t/4 + 4] ∈ R3×1 and set
the η = 3, ξ = 2 and λ = 1, the ADIZNN model using the FTAF with ε1 = ε2 = ε3 =
ε4 = 0.5 and µ = 0.5, σ = 2. Figure 6a presents space tracks of the original system (37)
under no controller. Figure 6b–d indicate space tracks of system (38) under controller
(40), controller (42) and controller (44) from initial values X(0) = [0.1, 0.1, 0.1]T. The end
points of system (38) under controller (40), controller (42) and controller (44) are respectively
[1266, 1266, 1266]T, [0.9748, 0.9918,−0.0518]T and [−0.0033, 0.0047, 9.952× 10−7]T. Figure 7a
presents states of original system (37). It is obvious from the Figure 7b–d that the state
(i.e., errors) of system (38) under controller (40) and controller (42) cannot reach zero in a
three-dimensional space. At the same time, the state of and controller (44) can stable to
zero. From the above data, it can be seen that the phase of the SFM system under controller
(44) is fairly close to zero with a tiny error, and we hope that the end point of the phase
of controller is the closest to zero, so as to achieve the smallest error as possible. The
experimental results substantiate the effectiveness and feasibility of the controller (44). In
other words, a double integral design scheme can also effectively suppress the existing
linear noise and other additional interference items in the application of sine function
memristor chaotic system control.
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(a) (b)

(c) (d)

Figure 6. Phases of the original SFM system and the SFM under controller (40), controller (42) and
controller (44) from X(0) = [0.1, 0.1, 0.1]T. (a) Original SFM system; (b) By controller (40); (c) By
controller (42); (d) By controller (44).

(a) (b)

(c) (d)

Figure 7. State trajectories of the original SFM system and the SFM under controller (40), controller
(42) and controller (44) from X(0) = [0.1, 0.1, 0.1]T. (a) Original SFM system; (b) By controller (40);
(c) By controller (42); (d) By controller (44).
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6. Conclusions

An innovative ZNN with a double integral was proposed, which can settle the DSE un-
der linear noise. It is worth mentioning that the ADIZNN model has excellent convergence
and robustness, which has been verified by theory. Additionally, two different dimensional
experiments have revealed that the ADIZNN has more remarkable convergence and anti-
noise ability than the OZNN and IEZNN under various linear noises. Finally, phases and
states trajectories of the SFM chaotic system synthesized by several controllers have been
given to indicate that the controller based on ADIZNN has the highest convergence rate in
three-dimensional space.
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