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Abstract: In this paper, we study a feasibility problem with infinitely many sets in a metric space.
We present a novel algorithm and analyze its convergence. The algorithms used for the feasibility
problem in the literature work for finite collections of sets and cannot be applied if the collection of
sets is infinite. The main feature of these algorithms is that, for iterative steps, we need to calculate
the values of all the operators belonging to our family of maps and even their sums with weighted
coefficients. This is impossible if the family of maps is not finite. In the present paper, we introduce a
new algorithm for solving feasibility problems with infinite families of sets and study its convergence.
It turns out that our results hold for feasibility problems in a general metric space.
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1. Introduction

The convex feasibility problem is used to obtain a common element of a finite family of
convex and closed sets or at least its approximation. This problem, investigated in [1–23], is
very important in the optimization with constraints. It is also used in engineering, medical,
and natural sciences.

Assume that Ci, i = 1, . . . , m, where m ≥ 2 is a natural number, are closed and convex
sets in a real Hilbert space endowed with an inner product 〈·, ·〉 and a complete norm ‖ · ‖,
which is induced by the inner product. We consider the problem

Find z ∈ ∩m
i=1Ci

under the assumption that ∩m
i=1Ci is nonempty. It is well-known [3] that, for each

i ∈ {1, . . . , m} and each x ∈ X, there exists a unique element PCi (x) ∈ Ci such that

‖x− PCi (x)‖ = inf{‖x− y‖ : y ∈ Ci},

‖PCi (x)− PCi (y)‖ ≤ ‖x− y‖, x, y ∈ X

and
‖z− x‖2 ≥ ‖z− Pi(x)‖2 + ‖x− Pi(x)‖2

for each x ∈ X and each z ∈ Ci. For each i ∈ {1, . . . , m} and each x ∈ X set,

d(x, Ci) = ‖x− PCi (x)‖.

This convex feasibility problem can be written as the optimization problem

m

∑
i=1

d(x, Ci)→ min, x ∈ C.

This is a convex minimization problem and one can try to solve it using some opti-
mization methods. However, in the practice for solving convex feasibility problems, the
following iterative method is used.
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Fix an integer N̄ ≥ 1 and denote by R the collection of all maps r : {1, 2, . . . , } →
{1, . . . , m} such that for every positive integer s,

{1, . . . , m} ⊂ {r(s), . . . , r(s + N̄ − 1)}.

We associate with any map r ∈ R the following iterative algorithm:
Initialization: choose any starting point x0 of the space X.
Iterative step: given a current iterate xk ∈ X calculate

xk+1 = Pr(k+1)(xk).

It is known that iterates obtained using this method weakly converge to a solution of
our feasibility problem. The same result is also guaranteed by the well-known Cimmino
algorithm described below:

Initialization: choose any starting point x0 of the space X.
Iterative step: given a current iterate xk ∈ X calculate

xk+1 =
m

∑
i=1

m−1Pi(xk).

Recently, Y. Censor, T. Elfving, and G. T. Herman in [24] introduced dynamic string-
averaging methods, which are, in some sense, a combination of the iterative algorithm and
the Cimmino algorithm. In these dynamic string-averaging methods, which became very
popular in the literature, a family of sets is divided into blocks and the algorithms operate
in such a manner that all the blocks are processed in parallel.

In the present paper, we study a feasibility problem with a collection of sets that is
not necessarily finite. Clearly, the algorithms described above cannot be applied if the
collection of sets is infinite. The main feature of these algorithms is that, for iterative steps,
we need to calculate the values of all the operators belonging to our family of maps and
even their sums with weighted coefficients. Of course, this is impossible if the family of
maps is not finite. In the present paper, we introduce a new algorithm for solving feasibility
problems with infinite families of sets and study its convergence. It turns out that our
results hold for feasibility problems in a general metric space.

2. Preliminaries and the First Main Result

Let (X, ρ) be a metric space endowed with a metric ρ. For every element x ∈ X and
every positive number r, put

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For every element x ∈ X and every nonempty set D ⊂ X, define

ρ(x, D) = inf{ρ(x, y) : y ∈ D}.

Fix θ ∈ X. Denote by Card(E) the cardinality of a set E. We assume that the sum over
an empty set is zero.

Assume that A is a nonempty set, for each α ∈ A, Cα ⊂ X is a nonempty, closed set
and that there exists Pα : X → Cα such that

Pα(x) = x, x ∈ Cα. (1)

In the sequel, we use the following assumption.
(A1) There exists c̄ ∈ (0, 1) such that, for each α ∈ A, each z ∈ Cα and each x ∈ X,

ρ(z, x)2 ≥ ρ(z, Pα(x))2 + c̄ρ(x, Pα(x))2. (2)
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Assume that there exists
ẑ ∈ ∩α∈ACα. (3)

We consider the problem
Find z ∈ ∩α∈ACα

and use the following algorithm.
Let a sequence {∆i}+∞

i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0.

Initialization: choose any element x0 ∈ X.
Iterative step: given a current iterate xk calculate α(k) ∈ A such that

ρ(xk, Pα(k)(xk)) ≥ sup{ρ(xk, Pα(xk)) : α ∈ A} − ∆k+1

and calculate
xk+1 = Pα(k)(xk).

The following theorem is our first main result.

Theorem 1. Let (A1) hold,
M > max{1, ρ(θ, ẑ)}, (4)

ε ∈ (0, 1), a natural number Q satisfy

Q ≥ 16M2 c̄−1ε−2, (5)

a sequence {∆i}+∞
i=1 ⊂ (0, ∞) satisfy

lim
i→+∞

∆i = 0 (6)

and let an integer n0 ≥ 1 satisfy

∆i ≤ ε/2 for each integer i ≥ n0. (7)

Assume that a sequence {xt}+∞
t=0 ⊂ X satisfies

ρ(x0, θ) ≤ M (8)

and that, for each integer t ≥ 0, there exists α(t) ∈ A such that

xt+1 = Pα(t)(xt) (9)

and
ρ(xt, xt+1) ≥ sup{ρ(xt, Pα(xt)) : α ∈ A} − ∆i+1. (10)

Then,
ρ(xt, θ) ≤ 3M, t = 0, 1, . . . ,

Card({k ∈ {0, 1, . . . , } : ρ(xk, xk+1) ≥ ε/2}) ≤ Q,

if an integer t ≥ n0 satisfies ρ(xt, xt+1) < ε/2, then

ρ(xt, Pα(xt)) ≤ ε, α ∈ A

and
Card({k ∈ {0, 1, . . . , } : sup{ρ(xk, Pα(xk)) : α ∈ A} > ε}) ≤ Q + n0.
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Proof. Assumption (A1) and Equations (2) and (3) imply that, for each integer t ≥ 0,

ρ(ẑ, xt+1) ≤ ρ(ẑ, xt). (11)

It follows from (4), (8), and (11) that, for each integer t ≥ 0,

ρ(ẑ, xt) ≤ ρ(ẑ, x0) ≤ 2M, ρ(θ, xt) ≤ 3M. (12)

Assumption (A1) and Equations (3), (9) and (12) imply that for each integer
t ≥ 0 satisfying

ρ(xt, xt+1),≥ ε/2

we have
ρ(xt, ẑ)2 − ρ(xt+1, ẑ)2 ≥ c̄ρ(xt, xt+1)

2 ≥ c̄ε2/4. (13)

Let n be a natural number. By (4), (5), (8), and (13),

4M2 ≥ (ρ(ẑ, θ) + M)2 ≥ (ρ(ẑ, θ) + ρ(θ, x0))
2

≥ ρ(ẑ, x0)
2 ≥ ρ(ẑ, x0)

2 − ρ(ẑ, xn)
2

=
n−1

∑
k=0

(ρ(ẑ, xk)
2 − ρ(ẑ, xk+1)

2)

∑{(ρ(ẑ, xk)
2 − ρ(ẑ, xk+1)

2) : k ∈ {0, . . . , n− 1},

ρ(xk, xk+1) ≥ 2−1ε}

≥ 4−1 c̄ε2Card({k ∈ {0, . . . , n− 1} : ρ(xk, xk+1) ≥ ε/2})

and
Card({k ∈ {0, . . . , n− 1} : ρ(xk, xk+1) ≥ ε/2}) ≤ 16M2 c̄−1ε−2 ≤ Q.

Since n is any natural number, we conclude that

Card({k ∈ {0, 1, . . . , } : ρ(xk, xk+1) ≥ ε/2}) ≤ Q. (14)

Since ε is any element of (0, 1), we have

lim
t→+∞

ρ(xt, xt+1) = 0.

Set
E = {k ∈ {0, 1, . . . , } : ρ(xk, xk+1) < ε/2 and k ≥ n0}. (15)

In view of (14) and (15),

Card({k ∈ {0, 1, . . . , } \ E}) ≤ Q + n0.

Assume that
t ∈ E. (16)

By (15) and (16),
ρ(xt, xt+1) < ε/2. (17)

It follows from (7) and (15)–(17) that, for each α ∈ A,

ρ(xt, Pα(xt)) ≤ ∆t+1 + ρ(xt, xt+1) ≤ ε/2 + ε/2

and
B(xt, ε) ∩ Cα 6= ∅.

Theorem 1 is proved.
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We say that the family Cα, α ∈ A has a bounded regularity property (or (BRP) for
short) [3] if, for each M, ε > 0, there exists δ > 0 such that, for each x ∈ B(θ, M) satisfying
ρ(x, Cα) ≤ δ, α ∈ A, the inequality ρ(∩α∈ACα) ≤ ε holds.

Clearly, (BRP) holds if the space X is finite dimensional or if there is a set in the
collection such that all its bounded, closed subsets are compact.

Theorem 1 implies the following result.

Proposition 1. Let (BRP) and (A1) hold,

M > max{1, ρ(θ, ẑ)};

ε ∈ (0, 1) and a let sequence {∆i}+∞
i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0.

Then, there exists a natural number Q such that for each sequence {xt}+∞
t=0 ⊂ X, which

satisfies
ρ(x0, θ),≤ M

and such that for each integer t ≥ 0 there exists α(t) ∈ A satisfying

xt+1 = Pα(t)(xt)

and
ρ(xt, xt+1) ≥ sup{ρ(xt, Pα(xt)) : α ∈ A} − ∆i+1

the equations
Card({k ∈ {0, 1, . . . , } : ρ(xk,∩α∈ACα) > ε}) ≤ Q

and
lim

t→+∞
ρ(xt,∩α∈ACα) = 0

hold.

Example 1. The results of this section can be applied for the feasibility problem, where X is the
Hilbert space l2 of square-summable sequences of the real numbers x = (x1, x2, . . . , xn, xn+1, . . . ),
for each integer i ≥ 1, Ci = {x ∈ l2 : x2i = 0}, and for each x ∈ l2, Pi(x) = y ∈ Ci such that
yj = xj for each natural number j 6= 2i. It is easy to see that the assumptions posed in this section
as well as its results hold for this family of sets.

3. The Second Main Result

We use the notation and definitions introduced in Section 2.
We continue to assume thatA is a nonempty set, for each α ∈ A, Cα ⊂ X is a nonempty,

closed set and that there exists Pα : X → Cα such that

Pα(x) = x, x ∈ Cα. (18)

In the sequel, we use the following assumption.
(A2) For each M, γ > 0, there exists δ > 0 such that for each α ∈ A, each

z ∈ Cα ∩ B(θ, M) and each x ∈ B(θ, M) satisfying

ρ(x, Pα(x)) ≥ ε,

the inequality
ρ(z, x)− δ ≥ ρ(z, Pα(x))

holds.
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Assume that there exists
ẑ ∈ ∩αACα. (19)

The following theorem is our second main result.

Theorem 2. Let (A2) hold,
M > max{1, ρ(θ, ẑ)}, (20)

a sequence {∆i}+∞
i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0,

ε ∈ (0, 1), and let an integer n0 ≥ 1 satisfy

∆i ≤ ε/2 for each integer i ≥ n0. (21)

Then, there exists a natural number Q depending on M, ε such that, for each sequence,
{xt}∞

t=0 ⊂ X, which satisfies
ρ(x0, θ),≤ M (22)

and such that, for each integer t ≥ 0, there exists α(t) ∈ A satisfying

xt+1 = Pα(t)(xt) (23)

and
ρ(xt, xt+1) ≥ sup{ρ(xt, Pα(xt)) : α ∈ A} − ∆i+1. (24)

The inequalities
ρ(xt, θ) ≤ 3M, t = 0, 1, . . .

and
Card({k ∈ {0, 1, . . . , } : ρ(xk, xk+1) ≥ ε/2}) ≤ Q

hold, if an integer t ≥ n0 satisfies ρ(xt, xt+1) ≤ ε/2; then,

ρ(xt, Pα(xt)) ≤ ε, α ∈ A

and
Card({k ∈ {0, 1, . . . , } : sup{ρ(xk, Pα(xk)) : α ∈ A} > ε}) ≤ Q + n0.

Proof. Assumption (A2) implies that there exists δ ∈ (0, ε/2) such that the following
property holds:

(i) For each α ∈ A, with each z ∈ Cα ∩ B(θ, 3M) and each x ∈ B(θ, 3M) satisfying

ρ(x, Pα(x)) ≥ ε/2,

we have
ρ(z, x)− δ ≥ ρ(z, Pα(x)).

Fix an integer
Q > 2Mδ−1. (25)

Assume that {xt}+∞
t=0 ⊂ X and {α(t)}+∞

t=0 ⊂ A satisfy (22)–(24) for each integer t ≥ 0.
By (A2) and Equations (19), (20) and (22), for each integer t ≥ 0,

ρ(ẑ, xt+1) ≤ ρ(ẑ, xt), (26)

ρ(ẑ, xt) ≤ ρ(ẑ, x0) ≤ 2M (27)

and
ρ(θ, xt) ≤ 3M. (28)
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Property (i) and Equations (19), (20), (23) and (28) imply that, for each integer t ≥ 0
satisfying

ρ(xt, xt+1),≥ ε/2 (29)

we have
ρ(xt+1, ẑ) = ρ(ẑ, Pα(t)(xt)) ≤ ρ(xt, ẑ)− δ. (30)

Thus, the following property holds:
(ii) If t ≥ 0 is an integer and (29) holds, then (30) is true.
Let n be a natural number. Property (ii) and Equations (20), (22), (26), (29) and (30)

imply that
2M ≥ ρ(ẑ, θ) + ρ(θ, x0) ≥ ρ(ẑ, x0)

≥ ρ(ẑ, x0)− ρ(ẑ, xn)

=
n−1

∑
k=0

(ρ(ẑ, xk)− ρ(ẑ, xk+1))

∑{(ρ(ẑ, xk)− ρ(ẑ, xk+1)) : k ∈ {0, . . . , n− 1},

ρ(xk, xk+1) ≥ 2−1ε}

≥ δCard({k ∈ {0, . . . , n− 1} : ρ(xk, xk+1) ≥ ε/2})

and
Card({k ∈ {0, . . . , n− 1} : ρ(xk, xk+1) ≥ ε/2}) ≤ 2Mδ−1.

Since n is any natural number, we conclude using (25) that

Card({k ∈ {0, 1, . . . , } : ρ(xk, xk+1) ≥ ε/2}) ≤ 2Mδ−1 < Q. (31)

Since ε is any element of (0, 1), we have

lim
t→+∞

ρ(xt, xt+1) = 0.

Assume that t ≥ n0 is an integer and that

ρ(xt, xt+1) ≤ ε/2.

It follows from (21) and (24) that, for each α ∈ A,

ρ(xt, Pα(xt)) ≤ ∆t+1 + ρ(xt, xt+1) ≤ ε/2 + ε/2.

Together with (31), this implies that

Card({k ∈ {0, 1, . . . , } : sup{ρ(xk, Pα(xk)) : α ∈ A} > ε})

≤ Card({k ∈ {n0, n0 + 1, . . . , } : ρ(xk, xk+1) ≥ ε/2}) + n0 < Q + n0.

Theorem 3 is proved.

Theorem 3 implies the following result.

Proposition 2. Let (BRP) and (A2) hold,

M > max{1, ρ(θ, ẑ)};

ε ∈ (0, 1) and a sequence {∆i}+∞
i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0.
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Then, there exists a natural number Q such that, for each integer sequence {xt}+∞
t=0 ⊂ X,

which satisfies
ρ(x0, θ),≤ M

and such that, for each integer t ≥ 0, there exists α(t) ∈ A satisfying

xt+1 = Pα(t)(xt)

and
ρ(xt, xt+1) ≥ sup{ρ(xt, Pα(xt)) : α ∈ A, } − ∆i+1

the equations
Card({k ∈ {0, 1, . . . , } : ρ(xk,∩α∈ACα) > ε}) ≤ Q

and
lim

t→+∞
ρ(xt,∩α∈ACα) = 0

hold.

4. The Third Main Result

We use the notation and definitions introduced in Section 2.
We continue to assume thatA is a nonempty set, for each α ∈ A, Cα ⊂ X is a nonempty,

closed set, that there exists Pα : X → Cα, and that (18) and (19) hold.
In the sequel, we use the following assumption.
(A3) For each M, γ > 0, there exists δ > 0 such that, for each α ∈ A, each

z ∈ Cα ∩ B(θ, M) and each x ∈ B(θ, M) satisfying

ρ(x, Cα) ≥ γ

the inequality
ρ(z, x)− δ ≥ ρ(z, Pα(x))

holds.
The following theorem is our third main result.

Theorem 3. Let (A3) hold,
M > max{1, ρ(θ, ẑ)}, (32)

ε ∈ (0, 1), a sequence {∆i}+∞
i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0

and an integer n0 ≥ 1 satisfy

∆i < ε/2 for each integer i ≥ n0. (33)

Then, there exists a natural number Q depending on M, ε such that, for each sequence
{xt}+∞

t=0 ⊂ X, which satisfies
ρ(x0, θ) ≤ M (34)

and such that, for each integer t ≥ 0, there exists α(t) ∈ A satisfying

xt+1 = Pα(t)(xt) (35)

and
ρ(xt, xt+1) ≥ sup{ρ(xt, Pα(xt)) : α ∈ A} − ∆i+1, (36)

the inequalities
ρ(xt, θ) ≤ 3M, t = 0, 1, . . .
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and
Card({k ∈ {0, 1, . . . , } : ρ(xk, Cα(k)) ≥ ε/4}) < Q

hold; if an integer t ≥ n0 satisfies ρ(xt, Cα(t)) ≤ ε/4, then

ρ(xt, Pα(xt)) ≤ ε, α ∈ A

and
Card({k ∈ {0, 1, . . . , } : sup{ρ(xk, Pα(xk)) : α ∈ A} > ε}) ≤ Q + n0.

Proof. Assumption (A3) implies that there exists δ ∈ (0, ε/4) such that the following
property holds:

(i) For each α ∈ A, with each z ∈ Cα ∩ B(θ, 3M) and each x ∈ B(θ, 3M) satisfying

ρ(x, Cα) ≥, ε/4

we have
ρ(z, x)− δ ≥ ρ(z, Pα(x)).

Fix an integer
Q > 2Mδ−1. (37)

Assume that {xt}+∞
t=0 ⊂ X and {α(t)}+∞

t=0 ⊂ A satisfy (34)–(36) for each integer t ≥ 0.
By (A3) and Equations (18), (19), (32), and (34), for each integer t ≥ 0,

ρ(ẑ, xt+1) ≤ ρ(ẑ, xt), (38)

ρ(ẑ, xt) ≤ ρ(ẑ, x0) ≤ 2M, (39)

and
ρ(θ, xt) ≤ 3M. (40)

Property (i) and Equations (19), (32) and (40) imply that, for each integer t ≥ 0
satisfying

ρ(xt, Cα(t)) ≥ ε/4, (41)

we have
ρ(ẑ, Pα(t)(xt)) ≤ ρ(xt, ẑ)− δ. (42)

Thus, the following property holds:
(ii) If t ≥ 0 is an integer and (41) holds, then (42) is true.
Assume that t ≥ n0 is an integer and that

ρ(xt, Cα(t)) < ε/4.

Then, there exists z ∈ X such that

z ∈ Cα(t), ρ(xt, z) < ε/4. (43)

By (A3), (35) and (43),

ρ(xt+1, z) = ρ(Pα(t)(xt), z) ≤ ρ(xt, z) < ε/4. (44)

In view of (43) and (44),
ρ(xt, xt+1) ≤ ε/2. (45)

By (33), (36), (45), and the inequality t ≥ n0, for each α ∈ A,

ρ(xt, Pα(xt)) ≤ ε.

Therefore, the following property holds:
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(iii) If t ≥ n0 is an integer and

ρ(xt, Cα(t)) < ε/4,

then
ρ(xt, Pα(xt)) ≤ ε, α ∈ A.

Let n be a natural number. Property (ii) and Equations (38), (39), (41) and (42) im-
ply that

2M ≥ ρ(ẑ, x0)

≥ ρ(ẑ, x0)− ρ(ẑ, xn)

=
n−1

∑
k=0

(ρ(ẑ, xk)− ρ(ẑ, xk+1))

∑{ρ(ẑ, xk)− ρ(ẑ, xk+1) : k ∈ {0, . . . , n− 1},

ρ(xk, Cα(k)) ≥ 4−1ε}

≥ δCard({k ∈ {0, . . . , n− 1} : ρ(xk, Cα(k)) ≥ 4−1ε})

and
Card({k ∈ {0, . . . , n− 1} : ρ(xk, Cα(k)) ≥ 4−1ε}) ≤ 2Mδ−1.

Since n is any natural number, we conclude using (37) that

Card({k ∈ {0, 1, . . . , } : ρ(xk, Cα(k)) ≥ 4−1ε}) ≤ 2Mδ−1 < Q. (46)

Property (iii) and (46) imply that

Card({k ∈ {0, 1, . . . , } : sup{ρ(xk, Pα(xk)) : α ∈ A} > ε})

≤ Card({k ∈ {0, 1, . . . , } : ρ(xk, Cα(k)) ≥ 4−1ε}+ n0 ≤ n0 + Q.

Theorem 5 is proved.

Theorem 5 implies the following result.

Proposition 3. Let (BRP) and (A3) hold,

M > max{1, ρ(θ, ẑ)};

ε ∈ (0, 1) and a sequence {∆i}+∞
i=1 ⊂ (0,+∞) satisfy

lim
i→+∞

∆i = 0.

Then, there exists a natural number Q such that for each sequence {xt}+∞
t=0 ⊂ X satisfying

ρ(x0, θ) ≤ M

and such that, for each integer t ≥ 0, there exists α(t) ∈ A satisfying (35) and (36), the inequality

Card({k ∈ {0, 1, . . . , } : ρ(xk,∩α∈ACα) > ε}) ≤ Q

holds.

5. Conclusions

In this paper, we study a feasibility problem with infinitely many sets in a metric space.
Usually, in the literature, the feasibility problem is studied with a finite family of sets using
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the iterative method, the Cimmino algorithm, and the dynamic string-averaging methods,
which are, in some sense, a combination of the iterative algorithm and the Cimmino
algorithm. These algorithms work well for problems with finite families of sets but cannot
be applied when a family of sets is infinite. The main feature of these algorithms is that, for
iterative steps, we need to calculate the values of all the operators belonging to our family
of maps and even their sums with weighted coefficients. Of course, this is impossible if
the family of maps is not finite. In our paper, we introduce a new algorithm that can be
applied for feasibility problems with infinite families of sets and analyze its convergence.
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