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Abstract: Statistical methods are essential for describing, predicting, and modeling natural phenom-
ena in numerous application areas. These methods are helpful for modeling and predicting data in
medicine, reliability engineering, actuarial science, and other fields. This paper presents a novel, sim-
ple, and fully flexible modified gamma model. The new model provides various forms of densities,
including symmetric, asymmetric, unimodal, and reversed-J shapes, as well as a bathtub-shaped
failure rate, which is suitable for modeling the lifespan of patients with an increased risk of death.
Some basic and dynamic properties of the model are examined. Four methods for estimating its
parameters are discussed, and a simulation study is used to examine the consistency and efficiency of
these estimators. Finally, the usefulness of the proposed model is demonstrated in the analysis of
some data sets.
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1. Introduction

The gamma model has wide applications in probability theory, reliability theory, sur-
vival analysis, durability testing, physics, econometrics, hydrology, engineering, and many
other scientific fields. It is used to model data from a variety of sources, such as the size of
atmospheric particles (Petty and Huang [1]), the age distribution of cancers (Belikov [2]),
the size of insurance claims (Boland [3]), the amount of precipitation accumulated in a
reservoir (Aksoy [4]), or the interspike intervals in neuroscience (Wright et al. [5]). The
Gamma model is also considered a well-known conjugate prior of Bayesian statistics.

Many authors have extended the Gamma family to develop more flexible models
to describe natural phenomena. Williams [6] introduced a modified gamma model for
analyzing particle size spectra in coagulating aerosols. Ong and Shan [7] applied a gen-
eralized power gamma model to analyze raindrop data from Singapore. Muralidharan
and Kale [8] introduced a modified version of the gamma distribution with a singularity at
zero. Gebrenegus [9] considered an extended gamma model and Nadarajah and Gupta [10]
defined an exponentiated gamma extension and applied it to model data on hydrological
processes. Shawky and Bakoban [11] discussed the problem of estimating exponentiated
gamma extensions. Cordeiro et al. [12] proposed a generalization of gamma by applying
the Weibull model. Feroze and Elbatal [13] introduced and studied a beta-exponentiated
generalization of the gamma model. Barriga et al. [14] used the Marshal–Olkin [15] model
to generalize the gamma distribution. Mead et al. [16] defined a generalization version of
the gamma model. Altun et al. [17] used a mixture of the gamma and xgamma distributions
in their study. Saboor et al. [18] defined a further extended model from the gamma baseline
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model and proved some interesting results. The gamma model and many of its extended
or modified forms have eventually increased risk.

This paper aims to define a new modified gamma (MG) model with a risk intensity
control parameter at the right tail. We propose a modified gamma (MG) model with various
forms of densities, including symmetric, asymmetric, unimodal, and reversed-J forms, as
well as a bathtub-shaped failure rate (FR). It is particularly suitable when increased risks
are involved, such as in patients with severe diseases that progress over time. We add a
coefficient that attenuates the distribution’s right tail to the ordinary gamma reliability
function. From this point of view, the proposed MG is suitable for data that initially follow
a gamma model but have a thinner right tail than the corresponding gamma model. The
model is relatively simple but completely flexible.

The paper is organized as follows. Section 2 introduces the new model, and some
essential properties are explored in addition to its dynamic features. Section 3 discusses four
methods for estimating the model parameters. In Section 4, a simulation study is conducted
to investigate the behavior of these estimators. An illustrative example in Section 5 shows
that this model can describe the data better than alternatives. Finally, Section 6 concludes
the paper with further extended explanations, descriptions, and recommendations for
further research.

2. Model Formulation

The gamma model is known by the probability distribution function (PDF)

f (t) =
λα

Γ(α)
tα−1e−λt, α > 0, λ > 0, t ≥ 0, (1)

where α and λ are shape and rate parameters, respectively.
The new modified gamma model MG(α, β, λ) can be characterized by the

reliability function

R(t) =
Γ
(
α, λteβt)
Γ(α)

, α > 0, λ > 0, β > 0, t ≥ 0, (2)

where Γ(α, x) =
∫ ∞

x yα−1e−ydy shows the upper incomplete gamma function. The PDF of
this model is

f (t) =
1

Γ(α)
λαtα−1eαβte−λteβt

(1 + βt), α > 0, λ > 0, β > 0, t ≥ 0. (3)

This model reduces to the gamma model when β = 0. For α = 1. It is a special case
of the modified Weibull model defined by Lai et al. [19]. As for the shape of the PDF, as
shown in Figure 1a, it shows a decreasing and unimodal shape. The coefficient eβt ensures
that the reliability function falls below the reliability of the baseline gamma distribution. If
an object’s lifetime or life regularly follows the gamma model, it is exposed to a risk that
increases with time under certain conditions. Such conditions may be the survival times of
patients with serious diseases in which the disease progresses over time.
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Figure 1. The PDF (a) and the FR function (b) of the MG model for some parameters. 
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Figure 1. The PDF (a) and the FR function (b) of the MG model for some parameters.

The proposed MG model has a light right tail, and, in comparison with the gamma
distribution, we have

lim
t→∞

R(t)
RG(t)

= lim
t→∞

∫ ∞
λteβt yα−1e−ydy∫ ∞

λt yα−1e−ydy
= lim

t→∞
eαβteλt(1−eβt)(1 + βt) = 0,

where R(t) and RG(t) are the reliability functions of the MG and baseline gamma distribu-
tions, respectively. Thus, the MG model could properly fit to data with light
right tail.
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The kth moment of a random variable T from MG(α, β, λ) is

E
(

Tk
)

=
∫ ∞

0 ktk−1R(t)dt = 1
Γ(α)

∫ ∞
0 ktk−1

∫ ∞
λteβt yα−1e−ydydt

= 1
Γ(α)

∫ ∞
0 yα−1e−y(g−1(y))kdy < 1

Γ(α)λk

∫ ∞
0 yα+k−1e−ydy

= E
(

Xk
)

,

(4)

where X follows from G(α, λ). The function g is defined by g(t) = λteβt, t ≥ 0, and g−1 is
its inverse. The last inequality follows from the fact that g−1(y) <

( y
λ

)k. Thus, since the
moments of the gamma distribution are finite, the moments of the MG distribution are
also finite.

Figure 1 below shows various forms of densities at (a), including symmetric, asym-
metric, unimodal, and reversed-J shapes. At (b), the FR function accommodates increasing
or bathtub-shaped forms.

The pth quantile function q(p), which determines the point t0 for which F(t0) = p
holds, can be computed numerically by solving the following equation as a function of t:

Γ
(

α, λteβt
)
= (1− p)Γ(α). (5)

Dynamic Measures

There are many characterizations of the various lifespan distributions in the literature.
These characterizations are essential because they offer new insights into the meaning of
reliability features. For a random event at time T, the failure rate (FR) function at time
t indicates the instantaneous risk for the occurrence of the event and is mathematically
defined by

r(t) =
f (t)
R(t)

, t ≥ 0,

which for MG(α, β, λ) simplifies to

r(t) =
λαtα−1eαβt−λteβt

(1 + βt)
Γ
(
α, λteβt

) , t ≥ 0.

The function of the mean residual life (MRL) of a random life T at time t represents
the conditional remaining lifetime, given it has been survived until t, i.e.,

m(t) = E(T − t|T > t) =

∫ ∞
t R(x)dx

R(t)
=

∫ ∞
t Γ

(
α, λxeβx)dx

Γ
(
α, λteβt

) . t ≥ 0.

It could not be simplified further and should be computed numerically.
Similarly, the p-quantile residual life (p-QRL) function of a random life T at time t

gives the pth quantile of its conditional residual life if it has survived to t and is formally
written as follows:

qp(t) = q(p|T > t) = R−1(pR(t))− t, t ≥ 0. (6)

The special case p = 0.5 is called the median residual life function and is a good
alternative to the MRL function. Figure 2 shows the MRL and median residual life functions
for some parameters and has decreasing and unimodal forms.
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Figure 2. The MRL (a) and the median residual life (b) functions of MG model for some parameters. 
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Figure 2. The MRL (a) and the median residual life (b) functions of MG model for some parameters.

As a valuable tool to develop different properties of models, stochastic orders by
quantifying the concept of one random variable being more significant than another are
considered. These, however, are partial orders, thus one random variable X may be
neither stochastically greater than, less than, nor equal to another random variable Y. Many
different orders have various applications, as per Lai and Xie [20]. The following results
show that the MG distribution is ordered under the right conditions concerning the usual
stochastic and failure rate orders.

Proposition 1. Let T1 ∼ MG(α, β1, λ), T2 ∼ MG(α, β2, λ), and β1 < β2. Then, T2 < T1 in
stochastic ordering.

Proof. Suppose that R1 and R2 represent the reliability functions of T1 and T2, respectively.
Following the definition of stochastic order (see Lai and Xie [20]), we should show that
R1(t) ≥ R2(t) for all t ≥ 0, which is clear. �
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Specially, if T1 ∼ G(α, λ) and T2 ∼ MG(α, β, λ), then T2 < T1 in stochastic ordering.

Proposition 2. Let α ≥ 1, T1 ∼ MG(α, β1, λ), T2 ∼ MG(α, β2, λ), and β1 < β2. Then,
T2 < T1 in FR ordering.

Proof. Suppose that R1 and R2 are the reliability functions of T1 and T2, respectively.
Following the definition of FR order (see Lai and Xie [20]), we should show that the
following expression is increasing for all t ≥ 0:

η(t) =
R1(t)
R2(t)

=

∫ ∞
λteβ1t yα−1e−ydy∫ ∞
λteβ2t yα−1e−ydy

.

To reduce the complexity of differentiation, take li = λteβit and i = 1, 2. Thus

η(t) =

∫ ∞
l1(t)

yα−1e−ydy∫ ∞
l2(t)

yα−1e−ydy
.

By differentiating η with respect to t, it can be verified that the sign of η′(t) is the same
as the sign of the following expression, where li represents li(t) for simplicity.

η′(t) ∝ l′2(t)lα−1
2 e−l2

∫ ∞
l1

yα−1e−ydy− l′1(t)lα−1
1 e−l1

∫ ∞
l2

yα−1e−ydy
= l′2(t)

∫ ∞
l1

(l2y)α−1e−(y+l2)dy− l′1(t)
∫ ∞

l2
(l1y)α−1e−(y+l1)dy ≥ 0,

(7)

since l′1(t) < l′2(t) and α ≥ 1∫ ∞

l1
(l2y)α−1e−(y+l2)dy ≥

∫ ∞

l2
(l1y)α−1e−(y+l1)dy.

Thus, by (7), η(t) is increasing and, consequently, T2 < T1 in FR ordering. �

As a direct consequence of Proposition 2, and with the assumptions of this proposition,
we can write that T2 < T1 in MRL and p-QRL orderings (see Lai and Xie [20]).

3. Parameters Estimation

Parameters estimation is essential in machine learning, statistics, communication
systems, radar, and many other fields. Suppose we have an ordered independent and
identically distributed realization t1 ≤ t2 ≤ . . . ≤ tn of MG(α, β, λ). In this section, we
discuss some methods for estimating the parameters.

3.1. Maximum Likelihood Method

Model parameters are estimated using the MG distribution’s maximum likelihood
estimators (MLEs). The log–likelihood function corresponding to the MG model is

l(α, β, λ; t) = −nln Γ(α) + nα ln λ + (α− 1)
n

∑
i=1

ln ti + αβ
n

∑
i=1

ti +
n

∑
i=1

ln(1 + βti)− λ
n

∑
i=1

tieβti . (8)

To estimate the parameters, we can maximize the log–likelihood function with respect
to (α, β, λ). In another approach, the answer to the following log–likelihood equations can
be considered as maximum likelihood (ML) estimation.

∂

∂α
l(α, β, λ; t) = −n

Γ′(α)
Γ(α)

+ n ln λ +
n

∑
i=1

ln ti + β
n

∑
i=1

ti = 0,

∂

∂β
l(α, β, λ; t) = α

n

∑
i=1

ti +
n

∑
i=1

ti
1 + βti

− λ
n

∑
i=1

t2
i eβti = 0,
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and
∂

∂λ
l(α, β, λ; t) =

nα

λ
−

n

∑
i=1

tieβti = 0.

To approximate the asymptotic variance of the maximum likelihood estimator (MLE),
we can calculate the observed Fisher information matrix to be

(
α̂, β̂, λ̂

)

M =


− ∂2

∂α2 − ∂2

∂α∂β − ∂2

∂α∂λ

− ∂2

∂β∂α − ∂2

∂β2 − ∂2

∂β∂λ

− ∂2

∂λ∂α − ∂2

∂λ∂β − ∂2

∂λ2

l(α, β, λ; t). (9)

Then,
(
α̂− α, β̂− β, λ̂− λ

)
converges weakly to the multivariate normal N

(
0, M−1).

Therefore, approximate confidence intervals for the MLE can be calculated using the inverse
of the observed information matrix and the standard normal quantiles.

3.2. Least Squared Error Method

In the least squared error (LSE) approach to estimate the parameters, we should
minimize the sum of squared distances between the estimated distribution function and
the empirical distribution function, i.e., the following expression should be minimized.

S2 =
n

∑
i=1

(F(ti)− F̂(ti))
2,

which can be simplified to

S2 =
n

∑
i=1

(
Γ
(
α, λtieβti

)
Γ(α)

− n− i
n

)2

.

Thus, the LSE estimates are computed by

(
α̂, β̂, λ̂

)
= arg min

(α>0,β>0,λ>0)

n

∑
i=1

(
Γ
(
α, λtieβti

)
Γ(α)

− n− i
n

)2

.

3.3. Anderson-Darling Method

In the Anderson–Darling (AD) method, a weighted sum of the squares of the distances
between the estimated distribution function and the empirical distribution function is
minimized. The proper weights are 1

F(ti)(1−F(ti))
. Thus, the estimate could be obtained as in

the following.

(
α̂, β̂, λ̂

)
= arg min

(α>0,β>0,λ>0)

n

∑
i=1

1
F(ti)(1− F(ti))

(
Γ
(
α, λtieβti

)
Γ(α)

− n− i
n

)

2

.

3.4. Quantile Based Method

The quantile-based (QB) method considers the distances between the quantiles of the
estimated model and the empirical quantiles of the data. Thus, the QB estimate of the
parameters is (

α̂, β̂, λ̂
)
= arg min

(α>0,β>0,λ>0)

n

∑
i=1

(
q
(

i
n

)
− ti

)2
,

where the quantile function q is defined by (5).
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4. Investigation of the Estimator’s Behavior

The efficiency and consistency of the discussed estimators of the parameters are
investigated by simulations. To generate an instance T of MG(α, β, λ), we solve the
following equation:

Γ(α, λT)
Γ(α)

= U, (10)

where U is a random instance of the standard uniform model.
In each run, r = 1000 replicates of samples of size n = 80 or 150 from MG are simulated

with selected parameters. Then, the parameters for each sample are estimated using ML,
LSE, AD, or QB methods. The optimizations are performed using the built-in function
“optim” or the programming language R for all methods. The initial values needed for the
optimization are chosen randomly from a uniform distribution, for example, for α on the
interval (0.9α, 1.1α) and similarly for β and λ. Table 1 shows the bias (B) and mean square
error (MSE) of the ML and QB estimators for all parameters. Similarly, Table 2 shows the
results for the LSE and AD estimators. From these tables, the following observations can
be made.

Table 1. Simulation results for methods ML and QB. The first, second, and third lines of each cell
refer to α, β, and λ, respectively.

n

Method
α, β, λ

80 150

B MSE B MSE

ML

1.1, 0.01, 0.1

0.0086 0.04794 0.0054 0.02583

0.0046 0.00017 0.0021 0.00007

−0.0009 0.00125 0.0003 0.00072

1, 0.1, 0.05

0.0681 0.10696 0.0219 0.04698

0.0051 0.00191 0.0045 0.00093

0.0120 0.00212 0.0044 0.00079

2, 0.5, 0.01

0.7002 5.2393 0.3272 1.76903

0.0495 0.06745 0.02533 0.03287

0.05366 0.02518 0.0201 0.00395

QB

1.1, 0.01, 0.1

−0.0014 0.00492 0.0002 0.00403

−0.000013 3.44× 10−7 2.11× 10−6 3.336× 10−7

−0.00012 3.54× 10−5 2.09× 10−5 3.335× 10−5

1, 0.1, 0.05

−0.0039 0.00328 −0.0021 0.00032

−0.00038 3.28× 10−5 −0.0002 3.12× 10−5

−0.00020 8.21× 10−6 −0.00010 8.01× 10−6

2, 0.5, 0.01

−0.0054 0.01338 0.0009 0.01311

−0.0014 0.00087 0.00024 0.00081

2.74× 10−5 3.64× 10−7 4.77× 10−6 3.43× 10−7
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Table 2. Simulation results for the methods LSE and AD. The first, second, and third lines of each cell
refer to α, β, and λ, respectively.

n

Method
α, β, λ

80 150

B MSE B MSE

LSE

1.1, 0.01, 0.1

−0.0475 0.0705 −0.0190 0.03801

0.0091 0.00051 0.0044 0.00020

−0.0052 0.00193 −0.0020 0.00110

1, 0.1, 0.05

0.01710 0.16723 0.0089 0.09612

0.0204 0.00534 0.0123 0.00241

0.0117 0.00363 0.0064 0.00189

2, 0.5, 0.01

0.1615 0.92601 0.1485 0.65873

0.0299 0.02355 0.0167 0.01754

0.0112 0.00104 0.0089 0.00064

AD

1.1, 0.01, 0.1

−0.0870 0.05139 −0.0458 0.02675

0.0079 0.00030 0.0042 0.00013

−0.0113 0.00132 −0.0062 0.00078

1, 0.1, 0.05

−0.0867 0.08498 −0.0474 0.04829

0.0266 0.00348 0.0133 0.00138

−0.0042 0.00133 −0.00211 0.00079

2, 0.5, 0.01

−0.1091 0.85380 −0.0697 0.59151

0.0794 0.03572 0.0540 0.02315

0.0074 0.00112 0.0052 0.00058

• All estimators are consistent and efficient for estimating the model parameters.
• The AD estimator, a weighted form of the LSE method, outperforms the LSE estimator.
• The QB estimator has a very small MSE but does not improve significantly with

sample size.

5. Applications

In this section, we present two applications with real data to demonstrate the MG
model’s flexibility empirically.

5.1. Application 1 Survival Times of AG Positive Patients Data

Table 3 shows 17 survival times in weeks for a group of patients who died from acute
myelogenous leukemia. These patients are designated as AG positive, meaning that they
are identified by the presence of Auer rods and significant granulation of leukemic cells in
the bone marrow at diagnosis. For more details on this dataset and patient specifications,
see Feigl and Zelen [21].
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Table 3. Survival times (weeks) of a group of AG positive patients.

65 156 100 134 16 108 121 4 39 143
56 26 22 1 1 5 65

In a comparative analysis, the alternative distributions gamma, Lehmann gamma
(LG), exponentiated gamma (EG), Marshal–Olkin gamma (MOG), and gamma-exponential-
competitive-risk (GEC) models, respectively, with the following reliability functions
are considered.

R(t) =
Γ(α, λt)

Γ(α)
, α > 0, λ > 0, t ≥ 0,

R(t) = 1− (1− Γ(α, λt)
Γ(α)

)
β

, α > 0, λ > 0, β > 0, t ≥ 0,

R(t) = (
Γ(α, λt)

Γ(α)
)

β

, α > 0, β > 0, λ > 0, t ≥ 0,

R(t) =
βΓ(α, λt)

Γ(α)− βΓ(α, λt)
, α > 0, β > 0, λ > 0, t ≥ 0,

and

R(t) =
Γ(α, λt)

Γ(α)
e−βt, α > 0, β > 0, λ > 0, t ≥ 0,

where β = 1− β. Then, the parameters of all models are estimated using the ML method.
The results of the analysis are summarized in Table 4. Indicated are the Akaike information
criterion (AIC), Bayesian information criterion (BIC), the Kolmogorov–Smirnov (KS) statis-
tic, the Cramer-von Mises (CVM) statistic, and the Anderson–Darling (AD) statistic, as well
as the corresponding p-values. Based on these benchmarks, MG performs significantly
better than the other candidates. Figure 3 shows the Total Time on Test (TTT) plot indicating
a bathtub-shaped FR function for this dataset. This plot shows the empirical and the fitted
CDF for the selected models, which graphically confirms that the MG model provides a
better fit than the other models considered. Figure 4 shows the estimated PDF and FR
functions for the MG model. It provides a bathtub-shaped FR function and a decreasing
shape for PDF.

Table 4. Results of fitting the MG distribution and some alternatives to survival times data.

Model ^
α

^
β

^
λ AIC BIC K-S

p-Value
CVM

p-Value
AD

p-Value

MG 0.4225 0.0140 0.0013 175.67 178.17 0.1015
0.9948

0.0384
0.9459

0.2695
0.9588

Gamma 0.7716 — 0.0123 177.74 179.41 0.1464
0.8591

0.0758
0.7229

0.5217
0.7223

LG 0.8235 0.9319 0.0125 179.72 182.22 0.1466
0.8584

0.0785
0.7227

0.5197
0.7243

EG 0.6295 0.1839 0.0736 179.54 182.04 0.1437
0.8739

0.0678
0.7717

0.4690
0.7763

MOG 0.7761 1.1059 0.0131 179.61 182.11 0.1457
0.8630

0.0720
0.7458

0.5186
0.7254

GEC 0.4549 0.0125 0.00044 179.81 182.31 0.1444
0.8705

0.0680
0.7704

0.4658
0.7795
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5.2. Application 2 The Gauge Lengths Data

Table 5 reports 74 observations of the gauge lengths of 20 mm. The data set was
previously studied by Alfaer et al. [22] and Ahmed et al. [23].

Table 5. The gauge lengths of 20 mm.

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.426 2.434 2.435 2.382 2.478 2.554 2.514 2.511 2.490 2.535
2.566 2.570 2.586 2.629 2.800 2.773 2.770 2.809 3.585 2.818
2.642 2.726 2.697 2.684 2.648 2.633 3.128 3.090 3.096 3.233
2.821 2.880 2.848 2.818 3.067 2.821 2.954 2.809 3.585 3.084
3.012 2.880 2.848 3.433

The parameters of the MG model and all alternatives considered in the previous
example are estimated by the ML method. The results of the analysis are included in Table 6.

Table 6. Results of fitting the MG distribution and some alternatives to gauge lengths data.

Model α̂ β̂ λ̂ AIC BIC
K-S
p-

Value

CVM
p-Value

AD
p-Value

MG 5.3421 0.5058 0.5711 108.34 115.25 0.0582
0.9632

0.0265
0.9866

0.2087
0.9878

Gamma 24.2422 — 9.7858 110.33 114.94 0.0681
0.8821

0.0864
0.6570

0.5642
0.6818

LG 39.8512 0.5021 14.5259 110.76 117.67 0.0619
0.9387

0.0726
0.7368

0.4633
0.7839

EG 14.9782 3.9890 4.5242 109.49 116.41 0.0557
0.9758

0.0474
0.8932

0.3246
0.9183

MOG 9.7186 0.0000024 0.5383 115.17 122.08 0.0631
0.9301

0.0767
0.7124

0.6256
0.6235

GEC 24.2215 6.88 × 10−8 9.7771 112.33 119.24 0.0680
0.8830

0.0863
0.6577

0.5639
0.6822

The AIC, BIC, KS, CVM, AD, as well as the corresponding p-values, are reported.
Based on the results, the MG proves to be better than others. Figure 5a shows the TTT
plot, which shows an increasing failure rate function. Figure 5b draws the empirical and
fitted CDFs for the selected models and shows a very close competition for describing the
data between selected models. Additionally, Figure 6 provides the estimated PDF and FR
functions for the MG model.
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6. Conclusions

Statistical models play an essential role in survival analysis and the medical field.
These models provide satisfactory results in modeling various types of data sets. In
this paper, we have implemented a novel model to update the flexibility level of the
existing models. A modified gamma model is introduced, and some basic properties
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are investigated. The FR function can be increasing or bathtub shaped. In addition, the
MRL and p-QRL functions are studied. Four methods, ML, LSE, AD, and QB, to estimate
the proposed model parameters are discussed. The simulation results show that these
estimators are consistent and efficient. The results of the comparative analysis show that
the proposed model is useful for modeling survival data. In general, the new model could
be presented as a flexible and simple model for the analysis of survival data when the
upper tail seems to be lighter than that of an ordinary gamma model (due to the increased
risk in the occurrence of the event), and the data have a bathtub-shaped FR function. The
results offer new concepts and applications in survival analysis, medical statistics, and risk
theory. The new model will be beneficial to researchers in the future and will be considered
a better choice over the baseline model. Further properties and applications of the new
model may be considered in the future of this research. In particular, the following topics
are exciting and remain open problems:

• Bayesian and E-Bayesian estimation based on complete and different censoring schemes;
• Proposing a bivariate family of this model to extend the univariate case.
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