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Abstract: In this paper, we consider a random entire function of the form f (z, ω) = ∑+∞
n=0 εn(ω1)×

ξn(ω2) fnzn, where (εn) is a sequence of independent Steinhaus random variables, (ξn) is the a
sequence of independent standard complex Gaussian random variables, and a sequence of numbers
fn ∈ C is such that lim

n→+∞
n
√
| fn| = 0 and #{n : fn 6= 0} = +∞. We investigate asymptotic estimates

of the probability P0(r) = P{ω : f (z, ω) has no zeros inside rD} as r → +∞ outside of some set E
of finite logarithmic measure, i.e.,

∫
E∩[1,+∞) d ln r < +∞. The obtained asymptotic estimates for the

probability of the absence of zeros for entire Gaussian functions are in a certain sense the best possible
result. Furthermore, we give an answer to an open question of A. Nishry for such random functions.

Keywords: Gaussian entire functions; Steinhaus entire functions; zeros distribution of random entire
functions

MSC: 30B20; 30D35; 30E15

1. Introduction: Notations and Preliminaries

One of the problems of random functions is investigation of value distribution of
such functions and also the asymptotic properties of the probability of the absence of
zeros in a disc (“hole probability”). These problems were considered in the papers of
J. E. Littlewood and A. C. Offord [1–6]; M. Sodin and B. Tsirelson [7–9]; Yu. Peres and
B. Virag [10]; P. V. Filevych and M. P. Mahola [11–13]; M. Sodin [14,15]; F. Nazarov, M. Sodin,
and A. Volberg [16,17]; M. Krishnapur [18]; A. Nishry [19–25]; and many others [26].

So, in [9] they considered a random entire function of the form

ψ(z, ω) =
+∞

∑
k=0

ξk(ω)
zk
√

k!
, (1)

where {ξk(ω)} are independent complex valued random variables defined on the Steinhaus
probability space (Ω,A, P), that is Ω = [0, 1], P is the Lebesgue measure on R and A is the
σ-algebra of Lebesgue measurable subsets of Ω.

We denote by NC(0, 1) the class of sequences of independent random complex-valued
variables (ξk) with standard Gaussian distribution in the complex plane, i.e., this is the
distribution with the density function of the form

pξk (z) =
1
π

e−|z|
2
, z ∈ C, k ∈ Z+.

Let (cn), cn = cn(ω), be the zeros of of the function ψ(z, ω) of form (1). For r > 0 let us
denote nψ(r, ω) = ∑

|cn |≤r
1 as the counting function of zeros of the function ψ(z, ω) in the disk

rD := {z : |z| < r}. Then [9] for any δ ∈ (0, 1/4] and all r ≥ 1 the following inequality holds

P
{

ω :
∣∣∣n(r, ω)

r2 − 1
∣∣∣≥ δ

}
≤ exp(−c(δ)r4),
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where the constant c(δ) depends only on δ. Furthermore, in [9] it was investigated the
probability of absence of zeros of the function ψ(z, ω),

P0(r) = P{ω : nψ(r, ω) = 0}, p0(r) = ln− P0(r),

where ln− x := −min{ln x; 0}. In particular, it was proved in [9] that there exist constants
c1, c2 > 0 such that

exp(−c1r4) ≤ P0(r) ≤ exp(−c2r4) (r ≥ 1).

Furthermore, in [9] the authors put the following question: Does the limit exist?

lim
r→+∞

ln− P0(r)
r4 ?

We find the answer to this question in [20]. For the function ψ(z, ω) it was proved that

lim
r→+∞

ln− P0(r)
r4 =

e2

4
.

Let K ⊂ C be some compact such that 0 6∈ K. In [19], it was proved that if all of
ξn(ω) : ξn(ω) ⊂ K, there exists r0(K) < +∞ such that ψ(z, ω) must vanish somewhere in
the disc r0D.

For the function of the form (1) one can fix the disc of radius r and ask for the
asymptotic behaviour of P{ω : nψ(r, ω) ≥ m} as m → +∞. So in [18] it was proved, that
for any r > 0, we obtain

ln P{ω : nψ(r, ω) ≥ m} = −1
2

m2 ln m(1 + o(1)) (m→ +∞).

Very large deviations of zeros of function (1) were also considered in [17]. There we
find such a relation

lim
r→+∞

ln
(
− ln

(
P{ω : |nψ(r, ω)− r2| > rα}

))
ln r

=


2α− 1, 1

2 ≤ α ≤ 1;
3α− 2, 1 ≤ α ≤ 2;
2α, α ≥ 2.

In the papers [21,23] an Gaussian entire functions of the following general form

f (z, ω) =
+∞

∑
n=0

ξn(ω) fnzn,

were considered, where f0 6= 0, lim
n→+∞

n
√
| fn| = 0,

(
ξn(ω2)

)
∈ NC(0, 1) is a sequence of the

independent standard Gaussian random variables. For ε > 0 there exists [21,23] a set of
finite logarithmic measure E ⊂ (1,+∞) (

∫
E

dr
r < +∞) such that

q(r)− q1/2+ε(r) ≤ p0(r) ≤ q(r) + q1/2+ε(r) (2)

for all r ∈ (1,+∞) \ E, where q(r) = 2
+∞

∑
n=0

ln+(| fn|rn). Remark [22], that there is a Gaussian

entire function f (z, ω) and a set E of infinite Lebesgue’s measure such that

p0(r) ≥ 2q(r)− c
√

q(r), r ∈ E, C > 0,

that is, the finiteness of the Lebesgue measure of the exceptional set in the above statement
is a necessary condition.
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Similar results for Gaussian analytic functions in the unit disc can be found
in [10,15,18,23,27].

Furthermore, in [23] (p. 119) they formulated the following question: Is the error term
in inequality (2) optimal for a regular sequence of coefficients { fn}? In this paper, we obtain
instead of inequalities (2) the following asymptotic estimates

0 ≤ lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

, lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

≤ 1
2

, (3)

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

= 1 (4)

in the case of general coefficients fn ∈ C (n ∈ Z+), f0 6= 0, such that lim
n→+∞

n
√
| fn| = 0,

#{n : fn 6= 0} = +∞. However, this inequality is proved for the functions of the form

f (z, ω) =
+∞

∑
n=0

εn(ω1)ξn(ω2) fnzn. (5)

Here, εn(ω1) = eiθn(ω1), (θn) is a sequence of the independent random variables uniformly
distributed on [−π, π),

(
ξn(ω2)

)
∈ NC(0, 1). We prove that there exists a set E of finite

logarithmic measure such that inequalities (3) hold.
An earlier version of the main statement of this paper (Theorem 5) is available in our

preprint [28] and was obtained for random entire functions of the form

f (z, ω) =
+∞

∑
n=0

ξn(ω) fnzn. (6)

However, the proof in the preprint [28] contains gaps in reasoning.

2. Notations

For r > 0, δ ∈ R denote

N ′ = {n : fn = 0}, Nδ(r) = {n : ln(| fn|rn) > −δn},
Nδ(r) = #Nδ(r), N (r) = N0(r), N(r) = N0(r),

mδ(r) = ∑
n∈Nδ(r)

n, m(r) = m0(r) = ∑
n∈N (r)

n,

µ f (r) = max{| fn|rn : n ∈ Z+}, ν f (r) = max{n : µ f (r) = | fn|rn},

M f (r) = max{| f (z)| : |z| ≤ r}, M2
f (r) =

+∞

∑
n=0
| fn|2r2n.

Remark, q(r) = 2 ∑+∞
n=0 ln+(| fn|rn) = 2 ∑n∈N (r) ln(| fn|rn).

3. Auxiliary Statements

Lemma 1 (Borel–Nevanlinna, [29] (p. 90)). Let u(r) be a nondecreasing continuous function
on [r0;+∞) and lim

r→+∞
u(r) = +∞, and ϕ(u) be a continuous nonincreasing positive function

defined on [u0;+∞) and (1) u0 = u(r0); (2) lim
u→+∞

ϕ(u) = 0; (3)
∫ +∞

u0
ϕ(u)du < +∞.

Then, the set
E = {r ≥ r0 : u

(
r + ϕ(u(r))

)
< u(r) + 1}.

has a finite measure.

We need the following elementary corollary of this lemma.
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Lemma 2. There exists a set E ⊂ (1;+∞) of finite logarithmic measure such that

m(reδ) exp{−2
√

ln m(r)} < em(r) < m(re−δ) exp{2
√

ln m(r)}

for all r ∈ (1;+∞) \ E, where δ = 1
2 ln m(r) .

Lemma 3. Let ε > 0. There is a set E ⊂ (1;+∞) of finite logarithmic measure such that

N(r) < q1/2(r) exp{(1 + ε)
√

ln q(r)} (7)

for all r ∈ (1;+∞) \ E.

Proof. Remark that (see also [20])

N−δ(r) = #{n : | fn|rn ≥ eδn} = #{n : | fn|(re−δ)n ≥ 1} = N(re−δ).

If N (r) = {nk : 1 ≤ k ≤ N(r)}, where nk < nk+1 (1 ≤ k ≤ N(r)− 1), then nk ≥ k − 1
(1 ≤ k ≤ N(r)) and

m(r) ≥
N(r)−1

∑
k=0

k =
(N(r)− 1)N(r)

2
>

N2(r)
e

for all r > r0, where r0 such that N(r0) > 4. So, by Lemma 2 we obtain

q(r)
2

= ∑
n∈N (r)

ln(| fn|rn) ≥ ∑
n∈N−δ(r)

ln(| fn|rn) ≥ ∑
n∈N−δ(r)

nδ =

= δm(re−δ) >
e

2 ln m(r)
m(r) exp{−2

√
ln m(r)}.

for r ∈ (r0;+∞) \ E. Then,

ln q(r) > 1 + ln m(r)− 2
√

ln m(r)− ln ln m(r)

and for r ∈ (r2;+∞) \ E, where r2 is large enough, we obtain ln m(r) < 2 ln q(r). Therefore,
for any ε > 0

q(r) > em(r) exp{−2
√

ln m(r)− ln ln m(r)} >

> e
N2(r)

e
exp{−2

√
(1 + ε) ln q(r)− ln((1 + ε) ln q(r))} >

> N2(r) exp{−(2 + 2ε)
√

ln q(r)}

as r → +∞ outside some set of finite logarithmic measure.

The exponent 1/2 in the inequality (7) can not be replaced by a smaller number.

Lemma 4. There exist a random entire function of form (5) and a set E ⊂ (1;+∞) of finite
logarithmic measure such that

N(r) >
q1/2(r)

ln5/2 q(r)

for all r ∈ (1;+∞) \ E.
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Proof. We will consider the following entire function

f (z) = 1 +
+∞

∑
n=1

zn

( n
2 )

n
2

.

The function y(n) = ln fn = − n
2 ln( n

2 ) is concave function and the sequence ( fn) is log-
concave ([21,27]). Since m!em > mm (m ≥ 1), one has

M f (r) > 1 +
+∞

∑
m=1

r2m

mm > 1 +
+∞

∑
m=1

r2m

m!em = exp
{ r2

e

}
, ln M f (r) >

r2

e
.

By Wiman–Valiron’s theorem there exists a set E1 of finite logarithmic measure such
that M f (r) ≤ µ f (r) ln1/2+ε µ f (r) for all r ∈ (1;+∞) \ E1. Thus, for all r ∈ (1;+∞) \ E1 we
obtain ln µ f (r) + ln ln µ f (r) > ln M f (r) > r2/e, ln µ f (r) > r2/2e and finally

r2

2e
< ln µ f (r) = ln fν + ν f (r) ln r, ν f (r) >

1
ln r

( r2

2e
− ln fν

)
> r, r → +∞.

Therefore, outside some set E of finite logarithmic measure we obtain ([21])

q(r) < 2(N(r) + 1) ln µ f (r) < ln2 µ f (r)(ln ln µ f (r))2 = ln3 r
ln2 µ f (r)

ln2 r

(ln ln µ f (r))2

ln r
<

< ln3 rν2
f (r) ln2 ν f (r) < ν2

f (r) ln5 ν f (r) < N2(r) ln5 N(r) < N2(r) ln5 q(r).

Hence,

N(r) >

√
q(r)

ln5 q(r)
.

By Eξ we denote the mathematical expectation of a random variable ξ. Furthermore,
we will use the following lemma.

Lemma 5. Let
(
ηn(ω)

)
be a sequence of independent non-negative identically distributed random

variables, such that Eηn < +∞ and E( 1
ηn
) < +∞, n ∈ Z+. Then

P
{

ω : (∃N∗(ω))(∀n > N∗(ω))
[ 1

n
≤ ηn(ω) ≤ n

]}
= 1.

Proof. Let Fη(t) = Fηn(t) be the distribution function of the random variable ηn, n ∈ Z+.
Denote Bm = {ω : |ηm(w)| ≥ m}, m ∈ Z+. Then

+∞

∑
m=1

P{ω : |ηm(w)| ≥ m} =
+∞

∑
m=1

∫
|t|≥m

dF|η|(t) =
+∞

∑
m=1

+∞

∑
s=m

∫
|t|∈[s,s+1)

dF|η|(t) =

=
+∞

∑
s=1

s

∑
m=1

∫
|t|∈[s,s+1)

dF|η|(t) =
+∞

∑
s=1

s
∫

|t|∈[s,s+1)

dF|η|(t) ≤

≤
+∞

∑
s=1

∫
|t|∈[s,s+1)

|t|dF|η|(t) ≤ E|η| < +∞.

Therefore, ∑+∞
m=1 P(Bm) < +∞. So, by the Borel–Cantelli lemma with probability that

is equal to 1 only finite quantity of the events Bn can occur. That A1 exists such that

P(A1) = P
{

ω : (∃N∗1 (ω))(∀n > N∗1 (ω))
[
|ηn(ω)| ≤ n

]}
= 1.
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Since E( 1
|η| ) < +∞, we similarly obtain for the random variable 1

|η(ω)|

P(A2) = P
{

ω : (∃N∗2 (ω))(∀n > N∗2 (ω))
[ 1
|ηn(ω)| ≤ n

]}
=

= P
{

ω : (∃N∗2 (ω))(∀n > N∗2 (ω))
[
|ηn(ω)| ≥ 1

n

]}
= 1.

Finally,

P(A1 ∩ A2) = P
{

ω : (∃N∗(ω))(∀n > N∗(ω))
[ 1

n
≤ |ηn(ω)| ≤ n

]}
= 1.

4. Upper and Lower Bounds for p0(r)

Theorem 1. Let ε > 0 and f (z, ω) be random entire function of the form (5) with f0 6= 0. There
exists a set E ⊂ (1;+∞) of finite logarithmic measure such that

p0(r) ≤ q(r) + N(r) exp{(2 + ε)
√

ln N(r)} (8)

for all r ∈ (1;+∞) \ E.

Proof. Similarly as in [20], for fixed r we consider the event A = ∩4
i=1 Ai, where

A1 =
{

ω : |ξ0(ω2)| ≥
2eN1/3(r) exp{2

√
ln N(r)}

| f0|

}
,

A2 =
{

ω : (∀n ∈ N (r) \ {0})
[
|ξn(ω2)| ≤

1
| fn|rnN2/3(r)

]}
,

A3 =
{

ω : (∀n ∈ Nδ(r) \ (N (r) ∪ {0}))
[
|ξn(ω2)| ≤

1
N2/3(r)

]}
,

A4 =
{

ω : (∀n 6∈ Nδ(r) ∪N ′ ∪ {0})
[
|ξn(ω2)| ≤ n

]}
, δ =

1
2 ln N(r)

.

If A occurs, then for r 6∈ E we obtain

|ε0(ω1)ξ0(ω2) f0| −
∣∣∣∣∣+∞

∑
n=1

εn(ω1)ξn(ω2) fnrn

∣∣∣∣∣≥ 2eN1/3(r) exp{2
√

ln N(r)}−

− ∑
n∈N (r)

| fn|rn

| fn|rnN2/3(r)
− ∑

n∈Nδ(r)\N (r)

| fn|rn

N2/3(r)
− ∑

n 6∈Nδ(r)∪N ′
ne−nδ >

> 2eN1/3(r) exp{2
√

ln N(r)} − ∑
n∈Nδ(r)

1
N2/3(r)

−
∫ +∞

1
xe−δxdx >

> 2eN1/3(r) exp{2
√

ln N(r)} − N1/3(r)− eN1/3(r) exp{2
√

ln N(r)} − 8 ln2 N(r) > 0

as r → +∞, because ∫ +∞

1
xe−δxdx =

e−δ

δ2 (δ + 1) <
2
δ2 = 8 ln2 N(r).

So, we proved that first term dominants the sum of all the other terms inside rD, i.e.,

|ε0(ω1)ξ0(ω2) f0| >
∣∣∣∣∣+∞

∑
n=1

εn(ω1)ξn(ω2) fnrn

∣∣∣∣∣. (9)
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If A occurs then the function f (z, ω) has no zeros inside rD. Now we find a lower bound
for the probability of the event A.

P(A1) = exp
{
−4e2N2/3(r) exp{4

√
ln N(r)}

| f0|2
}

,

P(A2) ≥ ∏
n∈N (r)

1
2| fn|2r2nN4/3(r)

= ∏
n∈N (r)

1
2| fn|2r2n×

× exp{−N(r) ln(N4/3(r))} = exp
{
−q(r)− 4

3
N(r) ln N(r)− N(r) ln 2

}
,

P(A3) ≥ ∏
n∈N (reδ)

1
2N4/3(r)

≥ exp
{
−N(reδ) ln(2N4/3(r))

}
≥

≥ exp
{
−eN(r) exp{2

√
N(r)} ln(2N4/3(r))

}
,

P(A4) = P{ω : (∀n 6∈ Nδ(r) ∪N ′ ∪ {0})[|ξn(ω2)| < n]} ≥

≥ 1− ∑
n 6∈Nδ(r)∪N ′∪{0}

e−n2
>

1
2

, r → +∞ (r /∈ E).

From the definition of ln− x and independence of events Aj, j ∈ {1, 2, 3, 4}we deduce

ln− P(A) =
4

∑
n=1

ln− P(An).

Therefore, it follows from A ⊂ {ω : n(r, ω) = 0} that for any ε > 0 and for every
r ∈ [r0,+∞) \ E we obtain

p0(r) ≤ ln− P(A) ≤

≤ ln 2 +
4e2N2/3(r) exp{4

√
ln N(r)}

| f0|2
+ q(r) + 2N(r) ln N(r) + N(r) ln 2+

+eN(r) exp{2
√

N(r)} ln(2N4/3(r)) ≤ q(r) + N(r) exp{(2 + ε)
√

N(r)}.

A random entire function of the form

g(z, ω1) =
+∞

∑
n=0

eiθn(ω1) fnzn, (10)

where f0 6= 0 and independent random variables θn(ω1) are uniformly distributed on [−π, π),
was considered in [13]. For such functions there were proved the following statements.

Theorem 2 ([11]). Let g(z, ω1) be a random entire function of the form (10). Then, for r > r0 and
all ω1 we obtain

Ng(r, ω1) ≤
1
2e

+ lnMg(r),

where

Ng(r, ω1) =
1

2π

∫ 2π

0
ln |g(reiα, ω1)|dα− ln | f0|.

Theorem 3 ([13]). There is an absolute constant C > 0 such that for a function g(z, ω1) of the
form (10) P1-almost surely we have

lnMg(r) ≤ Ng(r, ω1) + C ln Ng(r, ω1), r0(ω1) ≤ r < +∞. (11)
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Let P = P1 × P2 be a direct product of the probability measures P1 and P2 defined on
(Ω1 ×Ω2,A1 ×A2). Here, A1 ×A2 is the minimal σ-algebra, which contains all A1 × A2
such that A1 ∈ A1 and A2 ∈ A2. Let εn(ω1) = eiθn(ω1), (θn) is a sequence of the independent
random variables uniformly distributed on [−π, π) on (Ω1,A1, P1), ξn(ω2) ∈ NC(0, 1) on
(Ω2,A2, P2), where (Ω1,A1, P1), (Ω2,A2, P2) are two probability spaces.

Corollary 1. Let (ζn(ω2)) be a sequence of independent identically distributed random variables
such that for any n ∈ Z+ the density function of the distribution of the random variable η = ζn has the
form pη(z) = q(|z|) and E|η| < +∞, E( 1

|η| ) < +∞. There exist an absolute constant C > 0 and a

set B ∈ A : P(B) = 1 such that for the functions f (z, ω) = ∑+∞
n=0 εn(ω1)ζn(ω2) fnzn, f0 6= 0 and

for all ω ∈ B and all r ∈ [r0(ω);+∞) we obtain

1
2π

∫ 2π

0
ln | f (reiα, ω)|dα− ln | f0ε0(ω1)ζ0(ω2)| ≥

≥ lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2).

Remark that, if density function of ζn(ω1) has the following form pζn(z) = q(|z|), n ∈ N,
then arg ζn(ω1) are uniformly distributed on [−π, π). Really, for any α, β ∈ [−π, π) :
α < β we obtain

P1(ω1 : ζn(ω1) ∈ C) =
π∫
−π

dϕ

+∞∫
0

rq(r)dr = 2π

+∞∫
0

rq(r)dr = 1,

P1(ω1 : arg ζn(ω1) ∈ (α, β)) =

β∫
α

dϕ

+∞∫
0

rq(r)dr =
β− α

2π
.

Note that random variables ξn(ω1) satisfies this condition (here pξk (z) = q(|z|) =
1
π e−|z|

2
, z ∈ C, k ∈ Z+ we have the following statement for the functions of the form (5).

Corollary 2. There exist an absolute constant C > 0 and a set B ∈ A : P(B) = 1 such that for
the functions of the form (5) and for all ω ∈ B and all r ∈ [r0(ω);+∞) we obtain

1
2π

∫ 2π

0
ln | f (reiθ , ω)|dθ − ln | f0ε0(ω1)ξ0(ω2)| ≥ lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2).

Proof of Corollary 1. It follows from Theorem 2 that ln Ng(r, ω1) ≤ 1 + ln lnMg(r) and
by Theorem 3 we have ω1

Ng(r, ω1) ≥ lnMg(r)− C ln Ng(r, ω1) ≥ lnMg(r)− (C + 1) ln lnMg(r),

for r0(ω1) ≤ r < +∞. Therefore,

P1{ω : (∃r0(ω1))(∀r > r0(ω1)) [Ng(r, ω1) ≥ lnMg(r)− (C + 1) ln lnMg(r)]} = 1.

Consider a random function f (z, ω1, ω2) of the form (5). Define

A f = {(ω1, ω2) : (∃r0(ω1, ω2))(∀r > r0(ω1, ω2))

[N f (r, ω1, ω2) ≥ lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2)]},

where

M2
f (r, ω2) =

+∞

∑
n=0
|εn(ω1)|2|ζn(ω2)|2|an|2r2n =

+∞

∑
n=0
|ζn(ω2)|2|an|2r2n.
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Consider the events

F = {ω2 : (∀n ∈ N) [ζn(ω2) 6= 0]}, H =
{

ω2 : lim
n→+∞

n
√
| fn||ζn(ω2)| = 0

}
.

Then by Lemma 5 for ηn = |ζn|, one has P2(H) = 1. Since E( 1
ζn
) < +∞, the probability of

the event F

1 ≥ P2(F) ≥ 1−
+∞

∑
n=0

P2{ω2 : ζn(ω2) = 0} = 1.

Denote G = F ∩ H. So, P2(G) = 1. Then, for fixed ω0
2 ∈ G

P1(A f (ω
0
2)):=P1{ω1 : (∃r0(ω1, ω0

2))(∀r > r0(ω1, ω0
2))

[N f (r, ω1, ω0
2) ≥ lnM f (r, ω0

2)− (C + 1) ln lnM f (r, ω0
2)]} = 1.

It remains to use Fubini’s theorem

P(A f ) =
∫

Ω2

( ∫
A f (ω2)

dP1(ω1)

)
dP2(ω2) ≥

∫
G

( ∫
A f (ω2)

dP1(ω1)

)
dP2(ω2) =

=
∫
G

dP2(ω2) = P2(G) = 1.

Theorem 4. Let f be a random entire function of the form (5) such that f0 6= 0. Then P1-almost
surely there is r0(ω) > 0 such that for all r ∈ (r0(ω);+∞) we obtain

p0(r) ≥ q(r) + N(r) ln N(r)− 4N(r).

Proof of Theorem 4. By Jensen’s formula we reliably obtain

0 =
∫ r

0

n(t, ω)

t
dt =

1
2π

∫ 2π

0
ln | f (reiθ , ω)|dθ − ln | f0ε0(ω1)ξ0(ω2)|,

ln | f0ε0(ω1)ξ0(ω2)| =
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ.

Therefore,

P{ω : n(r, ω) = 0} ≤ P
{

ω : ln | f0ε0(ω1)ξ0(ω2)| =
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ

}
.

We fix r > r0(ω) and define

A =
{

ω :
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ ≥

≥ lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2) + ln | f0ε0(ω1)ξ0(ω2)|
}

,

G1(r) = {ω : ln | f0ε0(ω1)ξ0(ω2)| ≥ ln γ(ω2)},

G2(r) =
{

ω :
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ ≤ ln γ(ω2)

}
,

where r0(ω) is from Corollary 2 and γ(ω2) > 1. By this corollary we obtain that P(A) = 1.
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Then, for r > r0(ω)

G1(r)
⋂

G2(r) =
{

ω :
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ > ln γ(ω2) > ln | f0ε0(ω1)ξ0(ω2)|

}
,

G1(r)
⋂

G2(r) ⊂
{

ω :
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ 6= ln | f0ε0(ω1)ξ0(ω2)|

}
,

G1(r)
⋃

G2(r) = G1
⋂

G2 ⊃
{

ω :
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ = ln | f0ε0(ω1)ξ0(ω2)|

}
.

So, for r > r0(ω)

P{ω : n(r, ω) = 0} ≤ P(G1 ∪ G2) ≤ P(G1) + P(G2), r → +∞. (12)

Put γ(ω2) = C1 · | f0| · |ξ0(ω2)|, C1 > 1. Then we may calculate the probability of the
event G1

P(G1) = P
{

ω : ln | f0ε0(ω1)ξ0(ω2)| ≥ ln C1 + ln | f0ε0(ω1)ξ0(ω2)|
}
=

= P
{

ω : ln C1 ≤ 0
}
= 0

and estimate the probability of the event G2 as r > r0(ω)

P(G2) = P(G2 ∩ A) + P(G2 ∩ A) ≤ P(G2 ∩ A) + P(A) = P(G2 ∩ A) =

= P
{

ω : lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2)+

+ ln | f0ε0(ω1)ξ0(ω2)| ≤
1

2π

∫ 2π

0
ln | f (reiθ , ω)|dθ ≤ ln γ(r, ω)

}
=

= P
{

ω : lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2) + ln | f0ε0(ω1)ξ0(ω2)| ≤

≤ ln C1 + ln | f0ε0(ω1)ξ0(ω2)|
}
=

= P
{

ω : lnM f (r, ω2)− (C + 1) ln lnM f (r, ω2) ≤ ln C1

}
≤

≤ P
{

ω : lnM f (r, ω2) ≤ 2 ln C1

}
= P

{
ω : M f (r, ω2) ≤ C2

1

}
=

≤ P
{

ω : ∑
n∈N (r)

|ξn(ω2)|2| fn|2r2n ≤ C4
1

}
, r → +∞. (13)

The distribution function of the random variable |ξn(ω2)|

F|ξn |(x) = 1− exp{−x2}, F|ξn |2(x) = F|ξn |(
√

x) = 1− exp{−x},

F|ξn |2| fn |2r2n(x) = F|ξn |2
( x
| fn|2r2n

)
= 1− exp

{
− x
| fn|2r2n

}
for n 6∈ N ′ and x ∈ R+. Then for the random vector η(ω2) = (|ξ1(ω2)|a1rj1 , . . . ,
|ξ jk (ω2)|ajk rjk ), jk ∈ N (r), the density function

pη(x) =


∏

n∈N (r)

1
| fn |2r2n exp

{
− xn
| fn |2r2n

}
, x ∈ RN (r)

+ ,

0, x 6∈ RN (r)
+ .
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So, for r > r0(ω) we obtain

P
{

ω : ∑
n∈N (r)

|ξn(ω2)|2| fn|2r2n ≤ C4
1

}
= P{ω : η(ω2) ∈W(r)} =

= ∏
n∈N (r)

1
| fn|2r2n ·

∫
· · ·

∫
W(r)

∏
n∈N (r)

exp
{
− xn

| fn|2r2n

}
dx1 . . . dxN(r) ≤

≤ exp(−q(r)) ·measN(r)W(r), (14)

where

W(r) =

{
x ∈ RN(r)

+ : ∑
n∈N (r)

xn ≤ C4
1

}
.

For C > 0 by elementary calculation we obtain

measn

{
x ∈ Rn

+ :
n

∑
i=1

xi ≤ C
}
=

Cn

n!
.

From this equality and Stirling’s formula

n! =
√

2πn
(n

e

)n
· exp

{
− θn

12n

}
, θn ∈ [0, 1], n ∈ N,

it follows that the volume of the set B(r)

ln
(

measN(r)W(r)
)
≤ −1

2
ln(2π)− 1

2
ln N(r)− N(r) ln N(r) +

1
12N(r)

+

+N(r) + 4N(r) ln C1 ≤ −N(r)(ln N(r)− 1− 4 ln C1).

Let us choose C1 = 2. From (14) it follows p0(r) ≥ q(r) + N(r) ln N(r)− 4N(r), for
r > r0(ω).

Using Lemma 3 from Theorems 1 and 4 we deduce such a statement.

Theorem 5. Let ε > 0, and f be a random entire function of the form (5) such that f0 6= 0. Then
P-almost surely there exist a nonrandom set E of finite logarithmic measure and r0(ω) > 0 such
that for all r ∈ (r0(ω),+∞) \ E we obtain

(1− ε)N(r) ln N(r) ≤ p0(r)− q(r) ≤ N(r) exp{(2 + ε)
√

ln N(r)}, (15)

in particular,

0 ≤ lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

, lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

≤ 1
2

(16)

and

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

= 1.

Proof. It follows from Theorems 1 and 4 inequality (15). Furthermore, from (15) we deduce
for r ∈ (r0(ω);+∞) \ E

− ln 2 + ln N(r) + ln ln N(r)
ln N(r)

≤ ln(p0(r)− q(r))
ln N(r)

≤ ln N(r) + 3
√

ln N(r)
ln N(r)

,

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

= 1.
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By Lemma 3 we obtain

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

= lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

· N(r)
q(r)

= lim
r→+∞

r/∈E

N(r)
q(r)

≤ 1
2

.

Since N(r) and q(r) are non-negative functions

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

= lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

· N(r)
q(r)

= lim
r→+∞

r/∈E

N(r)
q(r)

≥ 0.

5. Examples on Sharpness of Inequalities (16)

Theorem 6. There is a random entire function of form (5) for which f0 6= 0, a nonrandom set E of
finite logarithmic measure and P–almost surely r0(ω) > 0— such that for all r ≥ r0(ω) we obtain

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

=
1
2

.

Proof. Consider the entire function

f (z) = 1 +
+∞

∑
n=1

zn

( n
2 )

n
2

.

For this function and r ∈ (r0(ω);+∞) \ E we have√
q(r)

ln3 q(r)
< N(r) <

√
q(r) exp{(1 + ε)

√
ln q(r)}, lim

r→+∞
r/∈E

ln N(r)
ln q(r)

=
1
2

.

By Theorem 5 we have for r ∈ (r0(ω);+∞) \ E

− ln 2 + ln N(r) + ln ln N(r)
ln q(r)

≤ ln(p0(r)− q(r))
ln q(r)

≤ ln N(r) + 3
√

ln N(r)
ln q(r)

,

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

= lim
r→+∞

r/∈E

ln N(r)
ln q(r)

=
1
2

.

Theorem 7. There is a random entire function of form (5) for which f0 6= 0, a nonrandom set E of
finite logarithmic measure and P–almost surely r0(ω) > 0— such that for all r ≥ r0(ω)

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

= 0.

Proof. Consider the entire functions

f (z) = 1 +
+∞

∑
n=1

zn

( n
2 )

n
2

, h(z) = 1 + ∑
n∈N ∗

zn

( n
2 )

n
2

,

where N ∗ = {n : n = [ek] + 1 for some k ∈ Z+}. Here [ek] means the integral part of the
real number ek. We denote
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N f (r) = {n ∈ Z+ : ln(| fn|rn) > 0} \ {0}, Nh(r) = {n ∈ N ∗ : ln(| fn|rn) > 0},

q f (r) = 2 ∑
n∈N f (r)

ln(| fn|rn), qh(r) = 2 ∑
n∈Nh(r)

ln(| fn|rn), fn =
(n

2

)− n
2
, n ∈ N.

Remark that the sequence {(n/2)−n/2} is log-concave and

N f (r) = {1, . . . , N f (r)}.

Then by the definition of Nh(r) we obtain Nh(r) ≤ 2 ln N f (r), r → +∞. For r ∈ (r0;+∞) \ E
we obtain

Nh(r) ≤ 2 ln N f (r) ≤ 2 ln(ln µ f (r) ln2(ln µ f (r))) < 4 ln ln µ f (r).

Remark that min{n ∈ N ′ : n > νh(r)} ≤ [eνh(r)] + 1 < (e + 1) ln νh(r). Let us fix r > 0.
Consider the function y(t) = ln(a(t)rt) = − t

2 ln( t
2 ) + t ln r, for which a(n) = fn. The graph

of the function y(t) passes through the points (0; 0) and (νh(r), ln µh(r)). It follows from log-
concavity of the function y(t) that the point (ν f (r), ln µ f (r)) belongs to the triangle with the
vertices (νh(r), ln µh(r)), ((e + 1)νh(r), ln µh(r)) and ((e + 1)νh(r), (e + 1) ln µh(r)). Then,

ln µ f (r) ≤ (e + 1) ln µh(r), qh(r) ≥ 2 ln µh(r) ≥
2

e + 1
ln µ f (r).

For the function h(z) and r ∈ (r0;+∞) \ E we obtain

0 ≤ lim
r→+∞

r/∈E

ln(p0(r)− qh(r))
ln qh(r)

= lim
r→+∞

r/∈E

ln Nh(r)
ln qh(r)

≤ lim
r→+∞

r/∈E

ln(4 ln ln µ f (r))

ln( 2
e+1 ln µ f (r))

= 0.

6. Discussion

Open Problem. Let ε ∈ (0, 1/2). Note, that for random entire function of the form (6)
P0(r) = P{ω : nψ(r, ω) = 0}, p0(r) = ln− P0(r), we have ([23])

p0(r) = q(r) + O((q(r))1/2+ε), r → +∞, r /∈ E.

Here, E is a non-random exceptional set of finite logarithmic measure. Is the error term in
the previous inequality optimal?
Conjecture. Let ε > 0, and f be a random entire function of the form (6) such that
f0 6= 0. Then, P–almost surely there is a nonrandom set E of finite logarithmic measure and
r0(ω) > 0—such that for all r ∈ (r0(ω),+∞) \ E we obtain

(1− ε)N(r) ln N(r) ≤ p0(r)− q(r) ≤ N(r) exp{(2 + ε)
√

ln N(r)},

in particular,

0 ≤ lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

, lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln q(r)

≤ 1
2

and

lim
r→+∞

r/∈E

ln(p0(r)− q(r))
ln N(r)

= 1.
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