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Abstract: We consider a fluctuation test experiment in which cell colonies were grown from a single
cell until they reach a given population size and were then exposed to treatment. While they grow,
the cells may, with a low probability, acquire resistance to treatment and pass it on to their offspring.
Unlike the classical Luria–Delbrück fluctuation test, and motivated by recent work on drug-resistance
acquisition in cancer/microbial cells, we allowed the resistant cell state to switch back to a drug-
sensitive state. This modification did not affect the central part of the Luria–Delbrück distribution of
the number of resistant survivors: the previously developed approximation by the Landau probability
density function applied. However, the right tail of the modified distribution deviated from the power
law decay of the Landau distribution. Here, we demonstrate that the correction factor was equal to the
Landau cumulative distribution function. We interpreted the appearance of the Landau laws from the
standpoint of singular perturbation theory and used the asymptotic matching principle to construct
uniformly valid approximations. Additionally, we describe the corrections to the distribution tails in
populations initially consisting of multiple sensitive cells, a mixture of sensitive and resistant cells,
and a cell with a randomly drawn state.

Keywords: Luria–Delbrück fluctuation test; reversible state switching; back-mutation; mutation rate;
Landau distribution; mathematical biology

1. Introduction

In a fluctuation experiment, a colony of bacterial/cancer cells is grown and eventually
exposed to a treatment [1]. Most cells are killed, but some are resistant to the treatment.
Repeated experiments each give a different number of resistant cells. The variability in
the number of survivors is key in a fluctuation test. If the resistance is acquired when the
treatment is administered, a low Poissonian variability is expected; on the other hand, if it
can be acquired by a cell at an early stage of colony growth and passed on to its (many)
descendants, variability is large. Resistant cells are typically assumed to have developed a
genetic mutation and are referred to as “mutants”. However, several studies have shown
that stochastic expression of specific proteins can lead to resistance to drug therapy arising
transiently. In such cases, cells switch to becoming resistant for several generations, but
then switch back into a drug-sensitive state [2–6]. Several tools that exploit colony-to-colony
variation to estimate the rates of switching into and out of the resistant state have recently
been developed [7,8].

Mathematical analysis has been applied for decades to quantify variability in a fluctu-
ation test experiment under different modelling assumptions and parameter regimes [9].
The modelling framework is either semideterministic or fully stochastic [10]. In the former
case, proliferation is deterministic, and the acquisition of resistance is stochastic [11–13]; in
the latter case, both are stochastic. A fully stochastic framework further differentiates into
fixed-time or fixed-population statistical ensembles. In the former case, one waits until a
given end time and then measures the cell population [14]. The final measurement includes
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the effect of total population noise. In the fixed population case, the measurement is taken
when the total cell population reaches a given level [15,16]. Such an approach excludes
the population noise and is thus consistent with the semideterministic framework. An
alternative approach is to look at the proportion of resistant cells rather than the absolute
number [8].

In most models, resistance is never lost once acquired: resistant mothers bear resistant
daughters. Such models are asymmetric, whereas ones in which bidirectional change is
possible are structurally symmetric. The possibility of a “back-mutation” was considered
in [17,18] and modelled deterministically in [19]. Back-mutation was inherently present in
a recent innovative model that combined population growth with mutations in a sequence
of nucleotides [20]. The loss of resistance through random changes in gene expression was
suggested to reduce variability in a fluctuation experiment [2,7,8].

The aim of this paper is to understand the probability distribution of the number
of resistant cells in a structurally symmetric, fully stochastic, fixed-population-ensemble
fluctuation test. Some explicit results are available in the asymmetric case, but they reveal
little [15]. In the asymptotic regime of small probability of resistance acquisition, the
Luria–Delbrück distribution of the number of surviving resistors can be approximated
through (discrete) Lea–Coulson distribution [10,15,21,22]. Lea–Coulson distribution has a
shape parameter that corresponds to the population rate of resistance acquisition. If this
is sufficiently large, (discrete) Lea–Coulson distribution simplifies to its coarse-grained
continuous counterpart, the Landau distribution [10,23,24]. The Landau distribution is
one-sided stable with characteristic exponent 1 [25–27]. Landau approximation is universal
(or self-similar) because the resistance rate only affects its position and scale parameters.
Both Lea–Coulson and Landau distributions have a heavy tail. Our paper contributes by
characterizing the correction to the power-law tail that is due to loss of resistance.

Lea–Coulson and Landau distributions approximate the Luria–Delbrück distribution
provided that the overwhelming majority of cells are sensitive, and few are resistant.
This represents a small layer at the left boundary of the interval of all possible sizes
of the resistant subpopulation. In a nod to the classical asymptotic theory of ordinary
differential equations [28], we refer to the Lea–Coulson/Landau approximations as the
(left) boundary layer solution. This approximation can be combined with a regular power
series solution to construct a composite solution that uniformly approximates the Luria–
Delbrück distribution [10]. Here, we argue that the reversal of resistance introduces another
(right) boundary layer solution that is valid if the overwhelming majority of cells are
resistant. We constructed a uniform solution that combined the regular power series
solution with two boundary-layer solutions.

Our results were methodologically based on the matched asymptotic framework.
While falling short of providing rigorous estimates, matched asymptotics have been an
effective tool throughout applied mathematics [29], including stochastic modelling [30–32].

2. Model Formulation

The growing population of resistant and sensitive cells is modelled with a two-type
branching process in continuous time [33]. In the model, each cell has an exponentially
distributed cell-cycle duration that is independent of other cells in the population. We
assumed that the mean cell cycle was the same for sensitive and resistant cells. Cells
divide at the end of the cell cycle; the state of the daughter cell is chosen probabilistically
depending on the mother cell, as given in Figure 1.

We consider this branching process at the time points of cell division. If there are N cells
immediately before a cell division time point of which m are resistant, then the dividing cell
is resistant with probability m/N and sensitive with complementary probability 1−m/N.
As shown in Figure 1, the daughter cell is, thus, resistant with probability (1− λ)m/N +
µ(1−m/N) or sensitive with complementary probability (1− µ)(1−m/N) + λm/N. As
the total population increases by 1 in the cell division event, the number of resistant cells
can remain the same or increase by 1 depending on the state of the new cell (Figure 2a).
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1− µ µ λ 1− λ

Figure 1. White balls in the diagram represent sensitive cells, while black balls represent resistant
cells. Arrows pointing from the top tier balls (mother cells) downwards illustrate the four possible
outcomes of cell division: (left) Either a sensitive parent cell has a sensitive descendant or its offspring
is resistant with probabilities 1− µ and µ, respectively; (right) a resistant cell may produce a sensitive
or resistant offspring with probabilities λ and 1− λ, respectively.
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Figure 2. Forward and adjoint schematic illustrations of transitional probabilities in the Markov
chain model. Parameters µ and λ are the resistance acquisition and loss probabilities, respectively.
(a) Forward diagram: given a population of size N containing m resistant cells, the probabilities
that one offspring becomes resistant or sensitive are illustrated. (b) Adjoint diagram: considering a
population of size N + 1 containing m resistant cells, the probabilities of the two possible ways by
which the state could have been reached are illustrated.

The aim of this paper was to characterise the probability PN(m) of observing m
resistant cells as the total population reached N. This probability could be evaluated
recursively with a variation in the above argument. In order to have m resistant cells in
the population of N + 1 cells after a cell division event, we must have had m resistant cells
before the division and added a sensitive cell or added an extra resistant cell to the m− 1
resistant cells before the division (Figure 2b). Adding up the probabilities of these two
options, PN(m) satisfies the master equation:

PN+1(m) =
1
N

{
PN(m− 1)

[
µ(N − (m− 1)) + (1− λ)(m− 1)

]
+ PN(m)

[
(1− µ)(N −m) + λm

]}
.

(1)

Equation (1) was considered in [34]. For λ = 0, (1) is simplified into the master equation
for the irreversible case as previously studied in [10].

Master Equation (1) is studied subject to the following boundary conditions:

PN(m) = 0 if m < 0 or m > N (2)
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and the following initial condition:

PN0(m) =

{
1 if m = m0,
0 otherwise,

(3)

where N0, the initial population size; m0, the initial resistant subpopulation size.

3. Methods

Following the previous studies in [10,11] and empirical evidence [2], we assumed that
the resistance acquisition and loss probabilities were small perturbation parameters µ� 1
and λ � 1. The aim of this paper was to characterise the asymptotic behaviour of the
solution to Master Equation (1) subject to (2) and (3) as the perturbation parameters tended
to zero. Therefore, we assumed that they tended to zero with the same rate: µ/λ = O(1).

3.1. Overview of Asymptotic Approximations

The problem in question is singularly perturbed, and there are several alternative
distinguished approximations that apply to different regions of the definition domain
0 ≤ m ≤ N < ∞ of the solution PN(m), and intermediate approximations through which
the former can be matched. Additionally, the analysis proceeds differently depending
on whether we start with a homogeneous population, i.e., with m0 = 0 resistant and
N0 > 0 sensitive cells or m0 = N0 > 0 resistant cells, or we start with a mixed population
with m0 > 0 resistant and N0 − m0 > 0 sensitive cells. Our aim was to treat all the
possible combinations exhaustively; to help the reader in navigating through the resulting
complexity, Table 1 outlines the region of validity for the individual approximations and
gives references to their formulae. Below, we provide a brief commentary on the table. The
derivations are found in the subsections that follow.

The first asymptotic approximation was developed under the assumption of bounded
population sizes N = O(1) as the perturbation parameters tended to zero. The number of
resistant cells was then also bounded via the natural constraint m ≤ N. Mathematically,
the solution was developed into a regular power series in a perturbation parameter and
approximated with the leading order term. Therefore, it is a regular approximation to the
solution or simply regular solution. The approximation occupies the first row of Table 1
and is derived in Section 3.2.

Regular approximation is an example of a distinguished limit [35]: the variables are
of definite order O(1). Another distinguished limit occurs if the total population size N is
inversely proportional to the small perturbation parameter while the number m of resistant
cells is O(1) (Table 1, row 3, column 1). This is the large-population and low-mutation rate
scenario discussed in previous works on the unidirectional case [10,11]. Given that m� N,
this scenario represents a left boundary layer of the definition interval 0 ≤ m ≤ N of the
solution PN(m). Our structurally symmetric model could also develop a right boundary layer
in which the number N −m of sensitive cells is O(1) (Table 1, row 3, column 3).

Three intermediate limits are obtained by taking the total large population in the
regular solution and considering various scales of resistant and sensitive subpopula-
tions (Table 1, row 2; Sections 3.3–3.5). The intermediate left and right regular solu-
tions are used for the asymptotic matching of the distinguished left and right solutions
(Sections 3.6 and 3.7). The coarse-grained regular solution is applicable to the space be-
tween the two boundary layers (Table 1, row 3, middle column) and can be combined with
the layer solutions into a uniform composite approximation (Section 3.8).

The triangular character of definition domain 0 ≤ m ≤ N < ∞ in Table 1 renders the
concept of inner and outer solutions ambiguous. On the one hand, following [10], one
can refer to the boundary layer solutions as inner because they focus on small fractions
of the total population. On the other hand, following classical applications of singular
perturbations in biology [36], one can also refer to the regular solution as inner because it



Axioms 2023, 12, 249 5 of 20

captures the system’s early dynamics. In order to avoid a clash with earlier conventions,
we do not use “inner and outer solutions” in this work.

Table 1. Overview of approximate solutions to Equation (1) and their regions of validity within
definition domain 0 ≤ m ≤ N < ∞. The first reference indicates a formula that applies for a
mixed initial population; the second reference indicates an exclusively sensitive initial population.
The linked formulae contain population transition Rates (23) and the (partial summations of the)
Lea–Coulson probability mass function (33)–(34).

m = O(1) m = O(N) = N − m N − m = O(1)

N = O(1) regular (4), (10)

1� N � 1
µ regular left (13), (14) regular coarse-grained

(20), (21)

regular right (16), (17)

N = O
(

1
µ

)
left (32), (36) right (40) (41)

3.2. Regular Solution

Through a regular solution to Master Equation (1), we find a solution that regularly
depends on perturbation parameter µ , i.e., is a power series in µ. Our aim was to determine
this solution at the leading order, i.e., to provide the first nonzero term of the power series.
Cases m0 > 0 and N0 −m0 > 0 (initially present resistant and sensitive cells) were, perhaps
surprisingly, easier than the m0 = 0 and N0 > 0 cases or the symmetrically opposite case of
m0 = N0 > 0, and were treated first.

3.2.1. Case m0 > 0 and N0 −m0 > 0

Rather than formally solving Difference Equation (1), it is both easier and more in-
structive to derive the regular solution from probabilistic considerations. The leading-order
behaviour of the regular solution was obtained simply by neglecting perturbations µ and
λ in (1). The resulting equation describes a growing culture of cells that deterministically
pass their state to their progeny. Growth is as follows: one chooses a cell at random and
looks at its state; the chosen cell is returned to the culture, and another cell (a daughter) is
added that has the same state.

Aside from the terminology (cells = balls; state = colour), this is a classical Polya urn
model [37]. A detailed description of this model can be found in Appendix A. As a result,
with µ (and λ) approaching zero,

PN(m) ∼ (m− 1)!(N −m− 1)!(N − N0)!
B(m0, N0 −m0)(m−m0)!(N −m− N0 + m0)!(N − 1)!

, (4)

where m0 ≤ m ≤ N− N0 and the tilde sign are understood in the usual sense of asymptotic
expansions [35]. B(x, y) = Γ(x)Γ(y)/Γ(x + y) = (x − 1)!(y − 1)!/(x + y − 1)! is the
beta function.

3.2.2. Case m0 = 0, N0 > 0

The case of an entirely sensitive initial population is of prime interest here. It is more
difficult than the mixed initial population case in Section 3.2.1. We used the previous case
in deriving the new result. First, neglecting perturbations µ and λ in (1) leads to a problem
with a trivial solution, namely, one always chooses a sensitive cell and keeps adding new
sensitive cells. Mathematically,

PN(0) = 1 + O(µ),

PN(m) = O(µ), m > 0. (5)

The second equation in (5) tells us that the probability of finding some sensitive cells is
small, but does not describe the leading-order behaviour—here, O(µ). For this, we needed
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a subtler estimate that we once again obtained from probabilistic considerations rather than
formal solution techniques for difference equations.

Let L̃ denote the population size, such that the first L̃ cells are sensitive, and the (L̃+ 1)-
th cell is resistant. Its distribution is shifted geometrically: Prob(L̃ = L) = (1− µ)L−N0 µ,
L ≥ N0. Conditioning the value of L̃ = L, we have

PN(m) =
N−m

∑
L=N0

P(m, N|1, L + 1) (1− µ)L−N0 µ, (6)

where P(m, N|1, L+ 1) denotes the probability of observing m resistant cells in a population
of size N that was initially of size L + 1 and contained one resistant cell. This can be
estimated by setting m0 = 1 N0 = L + 1 into (4), which yields

P(m, N|1, L + 1) ∼ L (N −m− 1)! (N − L− 1)!
(N − 1)! (N −m− L)!

. (7)

Since the main aim was to derive a leading-order approximation of PN(m), we could neglect
µ in the factors (1− µ) appearing in (6). As a result, we obtained

PN(m) ∼ µ
(N −m− 1)!
(N − 1)!

N−m

∑
L=N0

L
(N − L− 1)!
(N −m− L)!

. (8)

Moreover, using symbolic software (details in Appendix B), the sum appearing in the
previous equation can be simplified as follows:

N−m

∑
L=N0

L
(N − L− 1)!
(N − L−m)!

=
(N − N0)! (N −m + mN0)

m (m + 1) (N − N0 −m)!
, (9)

giving the final result

PN(m) ∼ µ
(N − N0)! (N −m− 1)! (N −m + mN0)

m(m + 1) (N − 1)! (N − N0 −m)!
, m > 0. (10)

Formula (10) was derived with other means for the unidirectional model in [10].

3.2.3. Case m0 = N0 > 0

This case is a mirror reflection of the case discussed in Section 3.2.2. The result, which
reads PN(N) ∼ 1 and

PN(m) ∼ λ
(N − N0)! (m− 1)! (m + (N −m)N0)

(N −m)(N −m + 1) (N − 1)! (m− N0)!
, m < N, (11)

was readily obtained by replacing µ by λ, N0 − m0 by m0, N − m by m, and vice versa
in (10).

3.3. Regular Left Solution

A regular left solution means the approximate solution that considers a relatively large
total population 1� N � 1

µ that includes only a small number of resistant cells m = O(1).
The regular left solution can be derived from regular solution Formulae (4), (10), and (11)
by approximating descending factorials by powers as appropriate; for example, one has

(N − N0)!
(N − 1)!

=
1

(N − 1)(N − 2) . . . (N − N0 + 1)
∼ 1

NN0−1 (12)

for N � 1.
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1. Case m0 > 0 and N0 −m0 > 0

PN(m) ∼ (m− 1)(m− 2) . . . (m−m0 + 1)
Nm0 B(m0, N0 −m0)

. (13)

2. Case m0 = 0, N0 > 0

PN(m) ∼
{

1 if m = 0,
µN

m(m+1) otherwise.
(14)

3. Case m0 = N0 > 0

PN(m) ∼ λN0(m− 1)(m− 2) . . . (m− N0 + 1)
NN0

. (15)

3.4. Regular Right Solution

A regular right solution is the approximate solution that considers a relatively large
total population, 1� N � 1

µ that includes a large number of resistant cells; mathematically,
N − m = O(1). These approximations are most conveniently obtained by performing
substitutions m↔ N −m, m0 ↔ N0 −m0, and λ↔ µ in (13), (14), and (15).

3.4.1. Case m0 > 0 and N0 −m0 > 0

The approximation reads

PN(m) ∼ (N −m− 1)(N −m− 2) . . . (N −m− (N0 −m0) + 1)
NN0−m0 B(m0, N0 −m0)

. (16)

3.4.2. Case m0 = 0, N0 > 0

The approximation reads

PN(m) ∼ µ N0(N −m− 1)(N −m− 2) . . . (N −m− N0 + 1)
NN0

. (17)

3.4.3. Case m0 = N0 > 0

The approximation reads

PN(m) ∼
{

λN
(N−m)(N−m+1) if m < N,

1 if m = N.
(18)

3.5. Regular Coarse-Grained Solution

A regular coarse-grained solution is an approximate solution that considers a large
number of cells in the total population, while the order of the number of resistant and
sensitive cells in the population is the same. Mathematically, m = O(N) = N −m. The
regular coarse-grained solution was obtained, similarly as regular left/right solutions, by
approximating descending factorials by appropriate powers in regular solution Formulas
(4), (10), and (11). For example,

(N −m− 1)!
(N −m− N0 + m0)!

= (N −m− 1) (N −m− 2) . . . (N −m− N0 + m0 + 1)

∼ (N −m)N0−m0−1 (19)

holds for m and N both large and of the same order.
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3.5.1. Case m0 > 0 and N0 −m0 > 0

The approximation reads

PN(m) ∼ mm0−1 (N −m)N0−m0−1

NN0−1B(m0, N0 −m0)
. (20)

3.5.2. Case m0 = 0, N0 > 0

The approximation reads

PN(m) ∼ µ (N −m + mN0)

m2

(
1− m

N

)N0−1
. (21)

3.5.3. Case m0 = N0 > 0

The approximation reads

PN(m) ∼ λ (m + (N −m)N0)

(N −m)2

(m
N

)N0−1
. (22)

The (20) relates to the classical convergence result to the beta distribution for the Polya
urn [38]; (21) and (22) are symmetric.

3.6. Left Boundary Layer Solution

As in the previous sections, we assumed that the resistance acquisition and loss
probabilities were small, i.e., µ � 1 and λ � 1 such that λ/µ = O(1), and that the total
population size was large, i.e., N � 1. In contrast with the previous sections, here, we focus
on the distinguished large-population low-mutation-rate regime in which the population is
so large as to produce the population rates of resistance acquisition and loss

y = µN, ỹ = λN, (23)

of order 1. The distinguished limit was found for m = O(1) resistant cells. This represents a
(left) boundary layer of the large interval of admissible values m ∈ {0, 1, . . . , N}. The right
boundary layer occurring for N − m = O(1) is treated in the next section with symmetry
arguments. Unless stated otherwise, asymptotic equivalence sign ∼ is used in this section in
the context of limit process µ→ 0, y = O(1), ỹ = O(1), m = O(1).

The boundary-layer solution is found with the method of the generating function,
which is defined via

GN(x) =
N

∑
m=0

PN(m)xm. (24)

The usual rules [39] transform Master Equation (1) into a difference–differential equation:

N(GN+1(x)− GN(x)) = (x− 1)(µN + (1− µ− λ)x∂x)GN(x) (25)

for the generating function.
Guided by Intermediate Asymptotics (13), (14), and (15) of the regular solution, we

looked for a generating function with the same kind of asymptotics:

GN(x) ∼ N−β H(x, y), 0 < x < 1, (26)

where β is to be matched to a regular solution.

GN+1(x) = (N + 1)−β H(x, y(1 + 1/N)) ∼ N−β H + N−β−1(−βH + y∂yH) + O(N−β−2). (27)
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Inserting (26) and (27) into (25), and collecting leading order terms, we obtained the
following partial differential equation:

−βH + y∂y H = (x− 1)(y + x∂x)H. (28)

For β = 0, (28) is the Lea–Coulson equation [9]. Parameter β can be viewed as an eigenvalue,
and solution H as an eigenfunction of the Lea–Coulson differential operator.

Solving (28) with the method of characteristics, one uncovers the following parametric
family of solutions:

H(x, y) = Cyγ

(
x

1− x

)β−γ

(1− x)y(1−x)/x, (29)

where C and γ are arbitrary constants. In what follows, we determine these constants and
eigenvalue β by matching them to the regular solution. The distinct previously introduced
cases were thereby treated separately.

3.6.1. Case m0 > 0, N0 −m0 > 0

The limiting operations of infinite summation (to obtain a generating function from a
sequence of probabilities) and the asymptotic limit process can be interchanged for x < 1
using a dominated convergence-type argument. Specifically, the left–regular approxima-
tion (13) can be expressed in terms of the generating function as follows:

GN(x) ∼ N−m0
Γ(N0)

Γ(N0 −m0)

(
x

1− x

)m0

, 0 < x < 1. (30)

The approximation is valid in the left boundary layer m = O(1) for an intermediate range
of population sizes 1� N � 1/µ.

Matching (30) with (26) and (29) yields γ = 0, β = m0, and C = Γ(N0)/Γ(N0 −m0),
i.e.,

GN(x) ∼ N−m0
Γ(N0)

Γ(N0 −m0)

(
x

1− x

)m0

(1− x)y(1−x)/x, 0 < x < 1, (31)

which is valid in the left boundary layer m = O(1) for population sizes extending up to
N = O(1/µ).

The right-hand side of (31) can be transformed into the probability space by combining
the following rules:

• x transforms into the shift operator.
• (1 − x)−1 transforms into the summation operator (a discrete convolution with a

sequence of ones).
• (1− x)−k transforms into the kth power of this operator (a discrete convolution with

the sequence {Γ(k + m)/Γ(k)m!}m≥0).
• (1− x)y(1−x)/x transforms into the Lea–Coulson probability mass function (PMF).

Therefore, Approximation (31), when expressed in terms of the probability mass
function, reads

PN(m) ∼ N−m0
Γ(N0)

Γ(N0 −m0)
P(m0)

L−C (m−m0; y), (32)

where P(k)
L−C(m; y) is the kth summation of the Lea–Coulson probability mass function, i.e.,

P(0)
L−C(m; y) =

∂m
x (1− x)y(1−x)/x

m!

∣∣∣∣∣
x=0

, (33)

P(k)
L−C(m; y) =

m

∑
j=0

P(k−1)
L−C (j; y) =

m

∑
j=0

Γ(k + m)

Γ(k)m!
P(0)

L−C(m− j; y), k = 1, 2, . . . (34)
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In particular, P(0)
L−C(m; y) is the Lea–Coulson PMF and P(1)

L−C(m; y) is the Lea–Coulson
cumulative distribution function (CDF).

3.6.2. Case m0 = 0, N0 > 0

The left-regular intermediate approximation (14) implies GN(x) ∼ 1 for 1� N � 1/µ
at leading order. Matching this to (29) and (26) gives β = γ = 0, C = 1. The left boundary
approximation then reads

GN(x) ∼ (1− x)y(1−x)/x (35)

in the generating function space and

PN(m) ∼ P(0)
L−C(m; y) (36)

in the probability space. In this case, the matching procedure is equivalent to directly
imposing the initial condition (of starting without any resistant cells) on the solution to the
Lea–Coulson equation [10].

3.6.3. Case m0 = N0 > 0

Intermediate Approximation (15) implies

GN(x) ∼ ỹN−N0−1Γ(N0 + 1)
(

x
1− x

)N0

, 0 < x < 1, (37)

for 1 � N � 1/µ. Matching with (29) and (26) yields γ = 1, β = N0 + 1, C = Γ(N0 +
1)λ/µ, i.e.,

GN(x) ∼ ỹN−N0−1Γ(N0 + 1)
(

x
1− x

)N0

(1− x)y(1−x)/x, 0 < x < 1. (38)

This reads
PN(m) ∼ ỹN−N0−1Γ(N0 + 1)P(N0)

L−C (m− N0; y) (39)

in the probability space.

3.7. Right Boundary Layer Solution

Symmetry considerations imply that PN(m) = P̄N(N −m), where the bar indicates
a model in which the substitutions m0 ↔ N0 − m0 and λ ↔ µ (ỹ ↔ y) are performed.
Combining the symmetry result with the previous section’s results on the left boundary
layer yields the following list of approximations. The equivalence sign is used in the context
of µ→ 0, y = O(1), ỹ = O(1), N −m = O(1).

3.7.1. Case m0 > 0, N0 −m0 > 0

The approximation reads

PN(m) ∼ N−N0+m0
Γ(N0)

Γ(m0)
P(N0−m0)

L−C (N −m− N0 + m0; ỹ). (40)

3.7.2. Case m0 = 0, N0 > 0

The approximation reads

PN(m) ∼ yN−N0−1Γ(N0 + 1)P(N0)
L−C (N −m− N0; ỹ). (41)

3.7.3. Case m0 = N0 > 0

The approximation reads

PN(m) ∼ P(0)
L−C(N −m; ỹ). (42)
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3.8. Log-Composite Solution

Composite solutions provide a means of combining multiscale asymptotic approxi-
mations into a single uniformly valid approximation. Typically, the composite solution
is equal to the sum of the inner and outer solutions minus their common limit value in
the overlap region; this construction was applied to, e.g., enzyme kinetics [36] and the
mathematical analysis of a hematopoietic genetic switch [40]. In a log-composite solution,
addition and subtraction are replaced by multiplication and division.

For N = O(1/µ), three approximations are available in different sections of the
definition domain m ∈ {0, 1, . . . , N}: the left boundary layer solution applies to m = O(1);
the regular coarse-grained solution applies to m = O(N) = N − m; the right boundary
layer solution applies to N −m = O(1). Table 1, row 3, contains references to the specific
formulae for the mixed and exclusively sensitive initial conditions. The product of these
three approximations provides the numerator of the log-composite solution, which is
constructed according to the following scheme:

PN(m) ∼ left× regular coarse-grained× Right
left overlap× right overlap

, (43)

in which the ‘left’, ’right’, and ’regular coarse-grained’ labels are replaced with the appro-
priate formulae in the usual cases of different initial conditions. Let us now define the ‘left
overlap’ and ’right overlap’ terms in the denominator; for concreteness, consider the case
m0 = 0 of a sensitive initial population. The overlap between Left Solution (36) and Regular
Coarse-Grained Solution (21) can be obtained by taking m → ∞ in the former or m → 0
in the latter; both procedures yield the same left overlap solution PN(m) ∼ µN/m2 [23]
because of the asymptotic matching principle [35]. Similarly, taking N −m→ ∞ in Right
Solution (41) or N−m→ 0 in the Regular Coarse-Grained Solution (21) yields right overlap
solution PN(m) ∼ µN0(1−m/N)N0−1/N. For any value of m, one of the three factors in
the numerator of (43) provides a valid approximation to the exact distribution, while the
two remaining factors reduce to their overlap form and cancel with the denominator. Thus,
Formula (43) provides a uniform approximation across the entire interval of admissible
values of m.

The application of Pattern (43) in the usual cases leads to the following.

3.8.1. Case m0 > 0, N0 −m0 > 0

The approximation reads

PN(m) ∼ N−N0+1Γ(N0)P(m0)
L−C (m−m0; y)P(N0−m0)

L−C (N −m− N0 + m0; ỹ). (44)

3.8.2. Case m0 = 0, N0 > 0

The approximation reads

PN(m) ∼ N−N0+1Γ(N0)P(0)
L−C(m; y)

(
1 +

(N0 − 1)m
N

)
P(N0)

L−C (N −m− N0; ỹ). (45)

3.8.3. Case m0 = N0 > 0

The approximation reads

PN(m) ∼ N−N0+1Γ(N0)P(N0)
L−C (m− N0; y)

(
N0 −

(N0 − 1)m
N

)
P(0)

L−C(N −m; ỹ). (46)

3.9. Landau Distribution

As the shape parameter y of the Lea–Coulson PMF P(0)
L−C(m; y) increases, the PMF can

be approximated with the probability density function (PDF) of the Landau distribution [10].



Axioms 2023, 12, 249 12 of 20

Additionally, partial summation P(k)
L−C(m; y), k = 1, 2, . . . can be approximated with the

partial integration of the PDF. Precisely,

P(k)
L−C(m− k; y) ∼ yk−1F(k)

Landau

(
m
y
− lny

)
, (47)

where
F(0)

Landau(ξ) = fLandau(ξ) =
1
π

∫ ∞

0
exp(−v(ξ + lnv)) sin(πv)dv (48)

is the density of Landau distribution [26,41] and

F(k)
Landau(ξ) =

∫ ξ

−∞
F(k−1)

Landau(ξ̃)dξ̃ =
1

Γ(k)

∫ ξ

−∞
ξ̃k−1 fLandau(ξ − ξ̃)dξ̃ (49)

is the kth partial integration of the density. In particular, FLandau(ξ) = F(1)
Landau(ξ) is the

CDF of the Landau distribution.

4. Results

This paper provides asymptotic approximations to the Luria–Delbrück distribution
PN(m) of observing m resistant cells as the total population reaches size N. Specifically,
distribution PN(m) is defined as the solution to Master Equation (1), subject to boundary
and initial Conditions (2)–(3). The input parameters of the distribution were the final popu-
lation size N and the probabilities µ and λ of resistance acquisition and loss, respectively.
In the examples below, we adopt the values N = 2× 105 and µ = 10−3 from the study
of the unidirectional model [10]; we compare the unidirectional (λ = 0) and bidirectional
(λ = 10−3) cases.

The distribution PN(m) also depends on the initial population size N0 and the initial
number of resistant cells m0. In the following subsections, we report the distribution asymp-
totics for initial conditions of increasing complexity. Section 4.1 deals with a population
that starts from a single sensitive cell (N0 = 1, m0 = 0). Section 4.2 focuses on a population
that begins with two cells of different kinds (N0 = 2, m0 = 1). The case of a general
(deterministic) initial condition is outlined in Section 4.3. Section 4.4 briefly considers the
case of a nondeterministic initial condition.

4.1. One Sensitive Cell at the Beginning

This type of initial condition has been widely considered in studies concerning the
Luria–Delbrück fluctuation test. Approximations of the resistant population distribution
by the Lea–Coulson probability mass function and the Landau probability density function
were reported. This paper establishes the appearance of partial summations/integrations
of these distributions, in particular the cumulative distribution function, in the tail of the
population distribution.

For low-to-moderate values m, the probability of seeing m resistant cells among N
total cells is approximated with the following (see Figure 3a):

PN(m) ∼ 1
µN

fLandau

(
m

µN
− ln µN

)
, (50)

where fLandau(ξ) is Density (48) of Landau distribution. The approximation follows from
(36) and (47). This approximation was previously derived for the unidirectional model
in [10].

For a large number of resistant cells m in the population, we have the following
approximation (see Figure 3b):

PN(m) ∼ µ

N
FLandau

(
N −m

λN
− ln λN

)
, (51)
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where FLandau(x) =
∫ x
−∞ fLandau(y)dy is the cumulative distribution function of Landau

distribution. The approximation follows from (41) for N0 = 1 and (47).
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Figure 3. The probability PN(m) of having m resistant cells in a total population of N cells as
calculated numerically (blue dashed lines) and its asymptotic approximations (50), (51), (52) (red
solid lines). The population started from a single sensitive cell and was left to grow until it had
consisted of N = 2× 105 cells. (a–c) Bidirectional case: the probabilities of resistance acquisition and
loss were µ = λ = 10−3. (d–f) Unidirectional case: µ = 10−3, λ = 0.
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Lastly, the following composite approximation (Figure 3c):

PN(m) ∼ 1
µN

fLandau

(
m

µN
− ln µN

)
FLandau

(
N −m

λN
− ln λN

)
(52)

works well for all possible numbers m of resistant cells. The approximation follows from
(45) for N0 = 1 and (47).

In the irreversible and unidirectional case (λ = 0), Landau PDF (50) applies uniformly
for the entire range of 0 ≤ m < N of resistant subpopulation sizes (Figure 3d–f). The
probability distribution then exhibits a sharp cut-off at m = N (Figure 3e); contrastingly,
the presence of a reverse transition smooths the cut-off into a Landau CDF in the right
boundary layer (Figure 3b).

4.2. One Sensitive and One Resistant Cell at the Beginning

A mixed model develops a dramatically different dynamics than the homogeneous
initial population. In an initial phase, which lasts until the population size reaches the
reciprocal of the small resistance acquisition parameter, the dynamics are driven by the
competition between the independent progeny of the two parent cells. A classical result
implies that this tug of war leads to the uniform distribution of resistant/sensitive cells [38].
In this paper, this classical result was incorporated into Regular Coarse-Grained Approx-
imation (20) with m0 = 1, N0 = 2. After the initial phase, boundary layers appeared at
the left and right corners of m ∈ {0, 1, . . . , N} due to resistance acquisition and loss. This
paper provides nontrivial approximations of the boundary behaviour through the Landau
cumulative distribution function.

For a small-to-moderate number of resistant cells m in the population, we have the
following approximation (Figure 4a):

PN(m) ∼ 1
N

FLandau

(
m

µN
− ln µN

)
. (53)

The approximation was derived from (32) for m0 = 1, N0 = 2 and (47).
For a large number of resistant cells m in the population, we have the following

approximation (Figure 4b):

PN(m) ∼ 1
N

FLandau

(
N −m

λN
− ln λN

)
. (54)

The approximation was derived from (40) for m0 = 1, N0 = 2 and (47).
Lastly, just like in the case of a sensitive initial population, in the case of a mixed initial

population, one can find a composite approximation that works very well for all possible
m. In this case, it is given by (Figure 4c):

PN(m) ∼ 1
N

FLandau

(
m

µN
− ln µN

)
FLandau

(
N −m

λN
− ln λN

)
. (55)

The approximation was derived from (44) for m0 = 1, N0 = 2 and (47).
In the unidirectional case (λ = 0), the Landau CDF approximation (50) applied

uniformly to all resistant subpopulation sizes 0 ≤ m < N (Figure 4d–f). Again, a sharp
cut-off was observed at m = N in the unidirectional case (Figure 4e), whereas a Landau
CDF in the right boundary layer appeared in the reversible case (Figure 4b).
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(b) Bidirectional case; large m. Right-boundary
Landau CDF approximation (54) was used.
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(c) Bidirectional case; all m. Composite Landau
CDF approximation (55) was used.

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−6

m

P
N
(m

)

 

 

numerical results

approximation

(d) Unidirectional case; small m. Landau CDF
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(e) Unidirectional case; large m. Landau CDF
approximation (53) was used.
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Figure 4. The probability PN(m) of having m resistant cells in a total population of N cells as
calculated numerically (blue dashed lines) and its asymptotic approximations (53), (54) and (55) (red
solid lines). The population started from two cells, one sensitive and one resistant, and was left to
grow until it had consisted of N = 2× 105 cells. (a–c) Bidirectional case: the probabilities of resistance
acquisition and loss are µ = λ = 10−3. (d–f) Unidirectional case: µ = 10−3, λ = 0.

4.3. More than One Sensitive or Resistant Cells at the Beginning

The cumulative distribution function is a partial integration (up to a given level) of
the probability density function. The second, third, etc. partial integrations are defined
recursively. The higher-order integrations of Landau density appear in the boundary
behaviour of the Luria–Delbrück distribution if the initial condition contains more than
one cell of either type (resistant/sensitive).
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For the sake of brevity, we only give the composite approximations. If we initially
have m0 = 0 resistant and N0 > 0 sensitive cells, then (52) generalises to

PN(m) ∼ Γ(N0)λ
N0−1

µN
fLandau

(
m

µN
− ln µN

)(
1 +

(N0 − 1)m
N

)
F(N0)

Landau

(
N −m

λN
− ln λN

)
, (56)

If we initially have m0 > 0 resistant and N0 −m0 > 0 sensitive cells, on the other hand,
then (55) generalises to

PN(m) ∼ Γ(N0)µ
m0−1λN0−m0−1

N
F(m0)

Landau

(
m

µN
− ln µN

)
F(N0−m0)

Landau

(
N −m

λN
− ln λN

)
. (57)

Equations (56)–(57) were derived by combining (44)–(45) with (47); Γ stands for the gamma
function, and F(k)

Landau gives the k-th partial integration (49) of the Landau probability density
function.

4.4. Stochastic Initial Conditions

Our analysis so far concerned deterministic initial Condition (3). A previous study of
a bidirectional model (based on different assumptions) [8] considered a stochastic initial
condition in which the population was derived from a single initial cell, which could be
with a certain probability ρ sensitive; with the complementary probability, it is resistant.
Via the superposition principle, the solution that is subject to the stochastic initial condition
is equal to the weighted sum of the solution starting deterministically with one sensitive
parent and the solution starting deterministically with one resistant parent. The Landau
cumulative distribution functions in the tails of the two solutions are then negligible. For
low-to-moderate values m, the probability of seeing m resistant cells among N total cells is
approximated as follows:

PN(m) ∼ ρ

µN
fLandau

(
m

µN
− ln µN

)
. (58)

For a large number of resistant cells m in the population, we have the following approxima-
tion:

PN(m) ∼ 1− ρ

λN
fLandau

(
N −m

λN
− ln λN

)
. (59)

A uniformly valid solution is obtained by adding up (58) and (59):

PN(m) ∼ ρ

µN
fLandau

(
m

µN
− ln µN

)
+

1− ρ

λN
fLandau

(
N −m

λN
− ln λN

)
. (60)

This is a composite rather than log-composite approximation.
A special type of initial condition is if the switching between resistance and sensitivity

is in balance: ρ = λ/(µ + λ), 1− ρ = µ/(µ + λ). Then, the mean resistant fraction satisfies
∑N

m=0 mPN(m)/N = µ/(µ + λ), i.e., it does not change as the population grows [8].

4.5. Limitations of the Approximations

The left boundary solution has the form of the Landau PDF/CDF located at m =
µN ln µN; see Equations (50), (53) and (58). For self-consistency, we required that the
boundary layer location be much lower than the size of the entire definition domain,
meaning that µN ln µN � N. This is equivalent to requiring ln N � 1/µ, where µ � 1.
Thus, N should be large but not exponentially large for the asymptotic approximations
to apply.

5. Discussion

The paper focused on a stochastic Luria–Delbrück fluctuation test model with re-
versible switching between two cellular states (for example, single cells being drug-resistant
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or drug-sensitive). We considered a fixed-population ensemble formulation in which the
population was expanded until it had reached a given size. The main contribution of the
paper is the characterisation of the Luria–Delbrück distribution of resistant cells in the final
population. We focused on the parametric regime of low switching probabilities and large
populations; we used singular perturbation methods to obtain asymptotic approximations
to the desired distribution. The novelty of the work lies in the systematic use of asymptotic
matching between the alternate approximations. The approach is applicable to other known
approximations, e.g., Fréchet distribution [42].

While our analysis focused on a fixed-population ensemble, the results also have
implications in the case of a fixed-time ensemble. In the latter formulation, the population
is grown until a fixed end time point, as explained in Section 2. The total population
grows exponentially as per the Yule growth process with a reciprocal growth rate to the
mean generation time. If one conditions on the Yule process reaching a given value N,
one recovers the fixed-ensemble model for the number of resistant cells as studied in this
paper.Conversely, drawing N from the state of a Yule growth process at a given time t, the
fixed-population ensemble is turned into a fixed-time ensemble formulation. Conditioning
a fixed population thus eliminates proliferation noise. Another approach to this consists of
calculating the relative fractions of sensitive/resistant cells [8].

Our model assumes that switching between sensitivity and resistance occurs at cell
division events. A previous study [8] of a reversible switching case was based on different
assumptions that warrant a brief discussion. Like in the fixed time ensemble version of our
model, the cell cycle was assumed to be exponentially distributed, and the mean generation
time was the same for the two cell types. However, switching was uncoupled from the cell
cycle in [8]: a daughter cell is always of the same type as the mother cell, and any cell has a
constant propensity to transition at any time to the opposite state.

Importantly, unlike in our model, there could be more than one switching event per
cell cycle in the model of [8]. Therefore, although this needs to be supported by further
analysis, the difference between the two formulations is expected to be pronounced in the
fast switching regime in which multiple switching events per cell cycle are probable. In
the model of [8], proliferation events increased the population by one, but the switching
events did not; this renders the relationship between the fixed-time and fixed-population
ensemble formulations subtler. Further complications in the dynamics arise if the switching
rates depend on the presence of drugs [43,44].

The reversible model studied in this paper is a direct extension of the irreversible
switching model studied in [10]; indeed, setting probability λ that a resistant mother bears
a sensitive daughter cell to zero, one recovers the earlier model. The earlier study provides
methods that are specifically applicable to the important regime of a large population
subject to low-rate switching. We extended these methods to the current reversible case.
The generalisation required nontrivial modifications in the methodology, notably in the
systematic use of asymptotic matching between the small and large population solutions.

The new approximation differs from that given in [10] only regarding the low-probability
distribution tail, as evidenced in Figure 3. Nevertheless, the appearance of the Landau cu-
mulative distribution function in the tail is widely interesting. Additionally, we established
that it also appeared for mixed initial conditions, as illustrated in Figure 4.

6. Conclusions

In this paper, we theoretically showed that reversible switching in a fluctuation test ex-
periment affects the tail of Luria–Delbrück distribution. Methodologically, our results were
based on the matched asymptotic framework that allows for alternate approximations to
the distribution under different parameter scaling regimes, combining them into a uniform
composite approximation. We expect that the approach could be extended, particularly
to more complicated (and realistic) descriptions of the fluctuation test experiment, and
provide valuable insights into the underlying dynamics.
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Appendix A. Polya urn Models

Suppose that we have an urn that first consists of w white balls and b black balls. Then,
we withdraw a ball from the urn one at a time, look at its colour, return the ball to the urn,
and add c balls of the same colour. The probability that x white balls are drawn in a sample
of n withdrawals is

P[X = x] =

(w
c + x− 1

x

) ( b
c + n− x− 1

n− x

)
(w+b

c + n− 1
n

) .

The number of balls of a specific colour in the Polya urn model follows negative hypergeo-
metric distribution [37].

We can adapt the Polya urn model to our situation in the following way. First, c = 1
in our case, as in every birth event, and only one new cell is born. Furthermore, w and
b are the number of resistant and sensitive cells in the initial population, respectively; n
denotes the number of birth events, and x denotes the number of resistant cells among
these n births. The following relations with the notation used in the main text hold:

m0 = w,

N0 = b + w,

m = w + x,

N = w + b + n.

Therefore, we can write that, as µ (and λ) tends to zero,

PN(m) ∼

(
m− 1

m−m0

) (
N −m− 1

N −m− (N0 −m0)

)
(

N − 1
N − N0

) , where m0 ≤ m ≤ N − N0, (A1)
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where the tilde sign is understood in the usual sense of asymptotic expansions. The
rearrangement of combinatorial numbers yields (4).

Appendix B. Computations

The symbolic computation of Sum (9) was performed using MATLAB’s Symbolic
Math Toolbox [45]:

syms L N m N_0
A = factorial(N-L-1);
B = factorial(N-L-m);
s = symsum(L*A/B, L, N_0 , N-m);
assume(m>0);
simplify(s)
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