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Abstract: The mechanical behaviour of materials can be described by a phenomenological relationship
that binds strain to stress, by the complex modulus function: M(ω), which represents the frequency
response of the medium in which a transverse mechanical wave is propagated. From the experimental
measurements of the internal friction obtained when varying the frequency of a transverse mechanical
wave, the parameters that characterize the complex module are determined. The internal friction
or loss tangent is bound to the dissipation of the specific mechanical energy. The non-equilibrium
thermodynamics theory leads to a general description of irreversible phenomena such as relaxation
and viscosity that can coexist in a material. Through the state variables introduced by Ciancio and
Kluitenberg, and applying the fractional calculation due to a particular memory mechanism, a model
of a viscoanelastic medium is obtained in good agreement with the experimental results.

Keywords: viscoanelastic media; derivative fractional; state variables; reologic coefficients; internal
friction; differential evolution

1. Introduction

In the second half of the 20th century, a theory was proposed for the study of me-
chanical [1–16] and electromagnetic [17–21] phenomena in continuous media which is
based on the general methods of non-equilibrium thermodynamics. In the hypothesis that
different microscopic phenomena produce inelastic strains (instance slip, dislocation) and
effects similar to the flow of ordinary viscous fluids, the entropy is characterized by internal
energy and inelastic strain tensors; then the expression of entropy production obtained
characterizes the state of non-equilibrium. Zener conducted experimental investigations
on the mechanical behaviour of solids subject to the action of given stress [22]. In par-
ticular, by carrying out measurements of internal friction they were able to describe the
process of relaxation due to the anelasticity media. The proposed anelastic media were
only valid for some frequency values. Many years later, Caputo and Mainardi proposed
a model of viscoanelastic media using Caputo’s fractional derivative [23,24]. This is an
integral operator whose kernel represents the memory effect. Viscoelastic media have
been studied in the field of finite strains by Coleman and Noll [25,26]. An extension of the
many viscoelastic models to the fractional calculation have been resumed as in [27]. In the
case of elastic and viscoelastic means this effect is evanescent [28]. The Caputo–Mainardi
model is very different at low frequencies from the experimental values. Concurrently
with the study of systems with memory, fractional calculus theory has been developed and
has been used in several applications, allowing a greater physical understanding of the
problems. In particular, the use of local fractional derivatives [29–34] has made it possible
to obtain models in good agreement with the experimental data highlighting, in relation
to the physical problem studied, the dependence of the order of local fractional deriva-
tion from the processes of relaxation in the media with memory. To obtain a mechanical
representation consistent with the description of the relaxation processes valid for many
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solid viscoanelastic materials and over a wide range of frequencies, in Section 2, from
thermodynamic considerations of non-reversible processes synthesized in the definition
of specific entropy and total strain tensor for small field displacements, the rheological
equation is derived. The rheological equation allows the stress tensor to be determined
by means of internal variables and phenomenological coefficients, when the strain tensor
resulting from the displacement field and the rheological coefficients are known, the latter
obtained by experimental measurements. In Section 3, from the rheological equation re-
lating to viscoanelastic media, passing into the Laplace transform domain, a mechanical
representation with four parameters is obtained, where the components of the model,
responsible for the relaxation process, are characterized through two relaxation times, one
due to the viscosity understood in solids as slipping of crystalline planes and the other due
to the inelasticity. To evaluate the memory effect, we consider relaxation times expressible
by means of real exponentials. For this purpose, in Section 4, in the rheological equation
we use the Caputo fractional derivative to obtain a four-parameter fractional model. As
pointed out by Berry, impurities and defects in the crystal lattice cause more relaxation
processes independent of each other. In Section 5, the fractional model is extended to two
relaxation processes, resulting in an eight-parameter model. Using the Zener experimental
curves in tabular form, in Section 6, we show the results obtained for aluminium, brass and
steel in relation to the eight-parameter model by applying the differential evolution (DE)
algorithm. Unlike other works on viscoelastic media [35], we have taken into consideration
the DE algorithm to determine the parameters of the fractional model of viscoanelastic
media, the latter consistent with the principles of thermodynamics.

2. The Rheological Equation

If both elastic and inelastic deformations occur, for index α, β ∈ {1, 2, 3}, we have:

εαβ = ε
(0)
αβ + ε

(1)
αβ (1)

where εαβ is the tensor of total strain and ε
(0)
αβ and ε

(1)
αβ are tensors describing the elastic and

inelastic strain, respectively. Therefore the entropy will depend on the internal energy u,
on the εαβ. Hence [5–7]:

s = s
(

u, εαβ, ε
(1)
αβ

)
(2)

where s is specific entropy and u is internal energy. The temperature is:

T−1 =
∂

∂u
s
(

u, εαβ, ε
(1)
αβ

)
(3)

and we define the equilibrium-stress tensor:

τ
(eq)
αβ = −ρT

∂

∂εαβ
s
(

u, εαβ, ε
(1)
αβ

)
(4)

and
τ
(1)
αβ = ρT

∂

∂ε
(1)
αβ

s
(

u, εαβ, ε
(1)
αβ

)
(5)

where ρ is the mass density and we will call τ
(1)
αβ the affinity stress tensor conjugate to ε

(1)
αβ .

By using Equations (3)–(5) from (1) we obtain the differential ds of s:

Tds = du− ντ
(eq)
αβ dεαβ + ντ

(1)
αβ dε

(1)
αβ (6)
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where ν = ρ−1 is the specific volume (volume for unit of mass). Relation (6) is called the
Gibbs relation in which the usual summation convention for the dummy index is used. In
the following we will use the deviator Ãαβ of an arbitrary tensor field Aαβ, ie:

Ãαβ = Aαβ − A (7)

where
A =

1
3

Aαα =
1
3
(A11 + A22 + A33) (8)

and the specific free energy f :
f = u− Ts (9)

From (3) and (6) we have:

d f = −sdT + ντ
(eq)
αβ dεαβ − ντ

(1)
αβ dε

(1)
αβ (10)

and, hence:

τ
(eq)
αβ = ρ

∂

∂εαβ
f
(

u, εαβ, ε
(1)
αβ

)
(11)

τ
(1)
αβ = −ρ

∂

∂ε
(1)
αβ

f
(

u, εαβ, ε
(1)
αβ

)
(12)

Assuming that the strains are small from a geometrical point of view:

εαβ =
1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
(13)

where uα are the components of the displacement field and the stress tensors τ
(eq)
αβ and τ

(1)
αβ

are linear functions of the strain tensors and of temperature; we suppose that f has the
form [6,7]:

f = ν0 ·
{

f (a)
(

ε̃αβ, εαβ, ε
(1)
αβ

)
+ f (b)

(
ε̃αβ, εαβ, ε

(1)
αβ

)
+ 3(T − T0)

(
c(0)εαβ − c(1)ε(1)αβ

)}
− ψ(T) (14)

where
f (a)
(

ε̃αβ, εαβ, ε
(1)
αβ

)
=

1
2

a(0,0) ε̃αβ

(
ε̃αβ − 2ε

(1)
αβ

)
+

1
2

a(1,1)
(

ε̃
(1)
αβ

)2
(15)

f (b)
(

ε̃αβ, εαβ, ε
(1)
αβ

)
=

1
2

b(0,0)εαβ

(
εαβ − 2ε

(1)
αβ

)
+

3
2

b(1,1)
(

ε
(1)
αβ

)2
(16)

In (14) the strain is measured with respect to a reference state, ν0 is specific volume,
T0 is the temperature of the media in the reference state and a(0,0), a(1,1), b(0,0), b(1,1),
c(0), c(1) are scalar constants [6–9]. Finally, ψ(T) is same function of the temperature.
Using (11) and (12) from (14) one obtains the following expression for the deviators of
tensors τ̃

(eq)
αβ and τ̃

(1)
αβ :

τ̃
(eq)
αβ = a(0,0) ε̃

(0)
αβ (17)

τ̃
(eq)
αβ = a(0,0) ε̃αβ − a(1,1) ε̃

(1)
αβ (18)

Making τ̃αβ the mechanical stress tensor which occurs in the equation of motion and

in the first law of thermodynamics, the viscous stress tensor τ̃
(vi)
αβ is defined by:

τ
(vi)
αβ = ταβ − τ

(eq)
αβ (19)
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Furthermore, we introduce [9] the following flow laws for slicer phenomena in
isotropic media:

d
dt

ε̃
(1)
αβ = η

(1,1)
s τ̃

(1)
αβ + η

(1,0)
s

d
dt

ε̃αβ (20)

τ
(vi)
αβ = η

(0,1)
s τ̃

(1)
αβ + η

(0,0)
s

d
dt

ε̃αβ (21)

The scalar η
(i,j)
s (i, j = 0, 1) are called phenomenological coefficients.

Using (2) and (19) one may eliminate ε̃
(0)
αβ , ε̃

(1)
αβ , τ̃

(eq)
αβ , τ̃

(1)
αβ , and τ̃

(vi)
αβ , from the Equations

of state (17) and (18) and the phenomenological Equations (20) and (21) one has:

R(τ)
(d)0τ̃αβ +

d
dt

τ̃αβ = R(ε)
(d)0ε̃αβ + R(ε)

(d)1
d
dt

ε̃αβ + R(ε)
(d)2

d2

dt2 ε̃αβ (22)

where
R(ε)
(d)0 = a(1,1)η

(1,1)
s (23)

R(ε)
(d)0 = a(0,0)

(
a(1,1) − a(0,0)

)
η
(1,1)
s (24)

R(ε)
(d)1 = a(0,0)

(
1 + 2η

(0,1)
s

)
+ a(1,1)

{
η
(0,0)
s η

(1,1)
s +

(
η
(0,1)
s

)2
}

(25)

R(ε)
(d)2 = η

(0,0)
s (26)

3. Mechanical Representation of the Viscoanelastic Media According to the
Ciancio–Kluitenberg Model

Several mechanical representations of the media have been given regarding the binding
between stress and deformation [29]. In this section, we apply the Ciancio–Kluitenberg
theory to the problem of determining the deformation to which a viscoanelastic medium is
subject under the action of a stress. Subsequently we provide a mechanical representation
of the viscoanelastic medium in a Laplace domain. For elastic materials, the binding
between the strain deviator tensor ε̃αβ and the stress one τ̃αβ is of the type:

ε̃αβ(k, ω) = −M0τ̃αβ(k, ω) (27)

where Equation (27) represents the equivalent Hooke’s law and M−1
0 = cost.te is the elastic

constant that depends on the material and is a real number. In the case of anelastic, vis-
coelastic, and viscoanelastic material, the constitutive binding between the strain deviator
tensor ε̃αβ and the stress tensor τ̃αβ is of the type:

ε̃αβ(k, ω) = (M(ω)−M0)τ̃αβ(k, ω) (28)

where M(ω) is the complex modulus, while M̃(ω) = M(ω)−M0 is the non-elastic com-
ponent of the complex modulus at the ω angular frequency produced by the displacement
field uα with α = 1, 2, 3:

εαβ = ε̃αβ =
1
2

(
∂xβ

uα + ∂xα uβ

)
(29)

Considering small displacements, the substantial derivative coincides with the
local one:

d
dt

= ∂t

The rheological equation of a viscoanelastic medium for Equation (22) becomes:

R(τ)
(d)0τ̃αβ + ∂tτ̃αβ = R(ε)

(d)0ε̃αβ + R(ε)
(d)1∂t ε̃αβ + R(ε)

(d)2∂2
tt ε̃αβ (30)
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where the parameters R(τ)
(d)0, R(ε)

(d)0, R(ε)
(d)1, and R(ε)

(d)2 are the reological coefficients. There-
fore the Ciancio–Kluitenberg model characterizes a single relaxation process with four
parameters, i.e., the four rheological coefficients.

Transforming both members of Equation (30) according to Laplace we obtain:

R(τ)
(d)0τ̃∗αβ + sτ̃∗αβ = R(ε)

(d)0ε̃∗αβ + sR(ε)
(d)1ε̃∗αβ + s2R(ε)

(d)2ε̃∗αβ (31)

where
τ̃∗αβ =

∫ ∞

0
τ̃αβe−st dt (32)

ε̃∗αβ =
∫ ∞

0
ε̃αβe−st dt (33)

rearranging the terms present in the Equation (31), we obtain

ε̃∗αβ(s) =

 R(τ)
(d)0 + s

R(ε)
(d)0 + sR(ε)

(d)1 + s2R(ε)
(d)2

τ̃∗αβ(s) (34)

that we rewrite as:

ε̃∗αβ(s) =

R(τ)
(d)0

R(ε)
(d)0




1 + s

 1

R(τ)
(d)0


1 + s

R(ε)
(d)1

R(ε)
(d)0

+ s2

R(ε)
(d)2

R(ε)
(d)0




τ̃∗αβ(s) (35)

It is observed that by placing:

t1 =

 1

R(τ)
(d)0

 (36)

t2 =

 M0

R(ε)
(d)0

 (37)

M0 =
[

R(ε)
(d)1

]−1
(38)

ω2
0 =

M0

t2R(ε)
(d)2

(39)

Equation (35) becomes:

ε̃∗αβ(s) = M0

(
t2

t1

) 1 + t1s

1 + t2s +
(

s
ω0

)2

τ̃∗αβ(s) (40)

From the comparison with Equation (28), we obtain:

M(ω) = M0

1 +
(

t2

t1

) 1 + t1s

1 + t2s +
(

s
ω0

)2


 (41)
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Figure 1 shows the mechanical representation of viscoanelastic media in the Laplace
domain. Here, we observe how the spring, compliance, and resistance have the electrical
equivalent of resistance, capacitance, and inductance, respectively. R

′
and R

′′
represent

the parameters that characterize the elastic component of the medium, indicated with the
spring symbol, C represents the compliance denoted by means of the vibration damper,
and L represents the resistance that opposes the medium to deformation. All parameters

are constant: t1 =
L
R′

, t2 = R′C , ω0 =
1√
LC

, M0 = R
′′

and M0

(
t2

t1

)
= R

′

where ε̃∗αβ(s) = ε = ε
′
+ ε

′′
and τ̃∗αβ(s) = τ̃∗ = τ̃∗

′
+ τ̃∗

′′
. If L = 0 and R

′′
= 0 then the

mechanical representation coincides with that of a viscoelastic medium, where the viscosity
part is given by compliance C and the elastic part is given by R

′
. Hence the anelastic part is

characterized by branch R
′
+ Ls, whereas the viscosity part is characterized by branch 1/Cs.

Figure 1. Mechanical representation of the viscoanelastic medium. Ciancio–Kluitenberg model.

4. Fractional Rheological Model with Four Parameters of a Viscoanelastic Medium for
a Single Relaxation Process

It is experimentally verifiable that, with the passage of time, the elastic or viscoelastic
material tends to forget its more remote history; that is the deformations to which it has been
subjected in the past tend to have less and less influence on the current deformation [28].
In viscoanelastic media the memory effect is permanent. From a mathematical point of
view, this implies that relaxation time is a power of fractional order. It is preferred not to
proceed with the dimensionless method, as in [36], to highlight that relaxation time is a real
power of fractional order. From Ciancio–Kluitenberg’s theory and fractional calculation,
we obtain the following rheological equation:

R(τ)
(d)0τ̃αβ + ∂

γ
t τ̃αβ = R(ε)

(d)0ε̃αβ + R(ε)
(d)1∂

γ
t ε̃αβ + R(ε)

(d)2∂
2γ
tt ε̃αβ (42)

where ∂
γ
t (·) is fractional derivative of order γ with respect to time and 0 < γ ≤ 1. From a

physical point of view it is natural to apply the fractional derivative of Caputo [23] that
characterizes the means with memory in which the relaxation process is observed:

C∂
γ
t f (x, t) =

1
Γ(1− γ)

∫ t

0

∂w f (x, w)

(t− w)γ
dw (43)

Applying the Fourier transform to the rheological Equation (42), we obtain:

ε̃αβ(k, ω) = M0

(
t2

t1

)(
1 + t1(−iω)γ

1 + t2(−iω)γ + (−iω/ω0)2γ

)
τ̃αβ(k, ω) (44)



Axioms 2023, 12, 243 7 of 13

From comparison with the constitutive Equation (28), the complex module is obtained:

M(ω) = M0

(
1 +

(
t2

t1

)(
1 + t1(−iω)γ

1 + t2(−iω)γ + (−iω/ω0)2γ

))
(45)

Identification of rheological parameters:

• R(τ)
(d)0 =

1
t1

, depends on the stress time constant t
′
1 , with:

t
′
1 = (t1/2π)γ

• R(ε)
(d)0 =

M0

t2
, depends on the stress relaxation time t

′
2 , with:

t
′
2 = (t2/2π)γ

•
[

R(ε)
(d)1

]−1
= M0, coincides with the complex module due to the impulsive stress

applied at the initial instant.

• R(ε)
(d)2 =

M0

t2ω
2γ
0

, depends on natural angular frequency ω0

We observe how the rheological coefficients depend on the characteristic parameters,
i.e., by relaxation time due to the stress and deformation, respectively, and natural angular
frequency. Determining the parameters experimentally it will therefore be possible to
obtain the values of state variables.

5. Fractional Rheological Model with Eight Parameters of a Viscoanelastic Medium for
Two Single Relaxation Processes

Although the behaviour of viscoanelastic media can be described using models de-
veloped by Zener [37] and other authors such as Caputo and Mainardi [24], they present
a significant discrepancy with experimental values of internal friction (IF) [38–40]. This
discrepancy can be reduced by considering the presence of several independent relaxation
processes that also take into account the impurity of materials at the microscopic level due
to the presence of defects in the crystalline lattice or different atomic configuration charac-
teristics of other materials. It is natural to think of an extension of the theory by applying
the principle of superposition to n relaxation processes [40]. Applying the principle of
superposition in the case of n relaxation processes, we obtain:

M(ω)

M0
= 1 +

m

∑
q=1

(
t2,q

t1,q

)(
1 + t1,q(−iω)γq

1 + t2,q(−iω)γq + (−iω/ω0,q)
2γq

)
(46)

a model with 4m parameters. For m = 2, i.e., with two relaxation processes, we obtain a
rheological model with eight parameters (Figure 2):

p = [t1,1, t2,1, γ1, ω0,1, t1,2, t2,2, γ2, ω0,2]

where t11 =
L1

R′1
, t21 = R

′
1C1 , ω01 =

1√
L1C1

, M0

(
t21

t11

)
= R

′
1 , t12 =

L2

R′2
, t22 =

R
′
2C2 , ω02 =

1√
L2C2

, M0

(
t22

t12

)
= R

′
2 , M0 = R

′′

with ε̃∗αβ(s) = ε = ε
′
1 + ε

′
2 + ε

′′
and τ̃∗αβ(s) = τ̃∗ = τ̃∗

′
1 + τ̃∗

′′
1 = τ̃∗

′
2 + τ̃∗

′′
2 . The eight

parameters, four for each of the two relaxation processes, bound to the corresponding
rheological coefficients, are obtained by applying the differential evolution (DE) algorithm
from experimental measurements of the so-called internal friction, IF(ω), or loss tangent:

IF(ω) =
Imag(M(ω))

Real(M(ω))
, relating to the dissipation of mechanical energy due to internal
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friction as the frequency changes. This function is given by the relationship between the
imaginary and the real part of the complex module, which for small losses of the medium
coincides with the specific dissipation function.

Figure 2. Mechanical representation of the viscoanelastic medium. Fractional model at two
relaxation processes.

6. Numerical Results

In this section, we simulate the eight-parameter fractional model considering the
experimental data [38]. The IF experimental data are given in the figure on page 55 of [37]
and from this are appropriately extracted and shown in Table 1, corresponding to certain
frequency values and relative to the metals: steel, brass, and aluminium.

Table 1. Internal friction for steel, brass, and aluminium with respect to frequency.

i fi IFSteel IFBrass IFAluminium

1 1 0.440 0.205 0.910
2 2 0.570 0.325 0.780
3 3 0.650 0.435 0.735
4 4 0.725 0.520 0.725
5 5 0.770 0.620 0.720
6 10 0.975 0.975 0.770
7 20 1.200 1.530 1.070
8 25 1.213 1.650 1.150
9 30 1.180 1.880 1.380
10 40 1.065 2.090 1.691
11 46 1.025 2.100 1.775
12 50 0.975 2.080 1.965
13 60 0.900 1.965 2.180
14 70 0.840 1.840 2.360
15 80 0.790 1.740 2.450
16 93 0.750 1.605 2.510
17 100 0.730 1.575 2.505
18 200 0.590 1.090 2.040
19 300 0.540 0.860 1.675
20 400 0.495 0.690 1.375
21 500 0.480 0.565 1.140
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To this end we use the differential evolution (DE) algorithm [41] that minimizes the ob-
jective function J(p) for determining the parameters p = [t1,1, t2,1, γ1, ω0,1, t1,2, t2,2, γ2, ω0,2]
of the model. The DE algorithm [42] is an iterative method of a stochastic nature for the
search for the possible optimal solutions on a large space of the parameters. In this work,
it has been used in the Python language with the use of the scipy library [43,44]. The
DE was chosen for its ability to provide optimal possible solutions without resorting to
classical methods of finding solutions such as the gradient method or Newton’s method
with which it is easy to fall into local minimums, where use requires differentiation of
functions. The objective function J(p) taken into account is the mean square relative error
between the experimental values of the internal friction ÎF( fi) and the values related to the
eight-parameter fractional model IF( fi) at frequencies fi, i = 1, 2, . . . , m:

J(p) =
1

m + 1

m

∑
i=1

(
ÎF( fi)− IF( fi; p)

ÎF( fi)

)2

(47)

In Tables 2 and 3, we obtain the model parameters and the rheological coefficients of the
aluminium, respectively. In Figure 3, to the variation of the frequency, it is brought back
in the panel of left the shape of the internal friction while in the one of right the relative
percentage error for aluminium. In Figure 4, it is brought back in the panel of left the real
part while in the one right the imaginary part of the modulus complex for aluminium. In
Tables 4 and 5, we obtain the model parameters and the rheological coefficients of the brass,
respectively. In Figure 5, to the variation of the frequency, it is brought back in the panel
of left the shape of the internal friction while in the one of right the relative percentage
error for brass. In Figure 6, it is brought back in the panel of left the real part while in the
one right the imaginary part of the modulus complex for brass. Finally, in Tables 6 and 7
we obtain the model parameters and the rheological coefficients of the steel, respectively.
In Figure 7, to the variation of the frequency, it is brought back in the panel of left the
shape of the internal friction while in the one of right the relative percentage error for steel.
In Figure 8, it is brought back in the panel of left the real part while in the one right the
imaginary part of the modulus complex for steel.

Table 2. Parameters of the model—aluminium.

i γq t1,i t2,i ω0,i

1 0.575515 0.001006 0.022103 172.96
2 0.360071 0.000229 0.077811 0.57

Table 3. Rheological coefficients—aluminium.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 994.035785 45.242727 1.000000 0.120119
2 4366.812227 12.851653 1.000000 19.272905

Table 4. Parameters of the model—brass.

i γi t1,i t2,i ω0,i

1 0.561151 0.001453 0.072381 64.97
2 0.158946 0.005930 0.077555 0.99

Table 5. Rheological coefficients—brass.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 688.231246 13.815780 1.000000 0.127644
2 168.634064 12.894075 1.000000 12.952460
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Table 6. Parameters of the model—steel.

i γi t1,i t2,i ω0,i

1 0.806110 0.003680 0.069378 73.54
2 0.206638 0.000088 0.017235 0.03

Table 7. Rheological coefficients—steel.

i R(τ)
(d)0,i R(ε)

(d)0,i R(ε)
(d)1,i R(ε)

(d)2,i

1 271.739130 14.413791 1.000000 0.014111
2 11,363.636364 58.021468 1.000000 257.802147

Figure 3. Left panel: internal friction of aluminium—the experimental values for aluminium are
represented with the diamond marker in red. The continuous blue line represents the model. Right
panel: percentage error between the experimental values of the internal friction of the aluminium
and the rheological model.

Figure 4. Left panel: mod complex modulus of aluminium. Right panel: phase complex modulus of
Aluminium.

Figure 5. Left panel: internal friction of brass—the experimental values for brass are represented with
the diamond marker in red. The continuous blue line represents the model. Right panel: percentage
error between the experimental values of the internal friction of the brass and the rheological model.
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Figure 6. Left panel: mod complex modulus of brass. Right panel: phase complex modulus of brass.

Figure 7. Left panel: internal friction of steel—the experimental values for steel are represented with
the diamond marker in red. The continuous blue line represents the model. Right panel: percentage
error between the experimental values of the internal friction of the steel and the rheological model.

Figure 8. Left panel: mod complex modulus of steel. Right panel: phase complex modulus of steel.

7. Conclusions

Applying the Ciancio–Kluitenberg theory, in this work a mechanical representation of
a viscoanelastic medium has been found that allows the problem to be solved of determin-
ing the state of the system solicited by a stress. Unlike previous models, the mechanical
representation found is consistent with the relaxation processes observed in relation to the
type of material considered. Moreover, it is very general in that the case of viscoelastic me-
dia is obtained as a limit case of inelastic media. Using the DE algorithm, which minimizes
the relative quadratic error in the calculation of internal friction (IF), the values of the eight
parameters or eight rheological coefficients have been determined. The results obtained
confirm the validity of the eight-parameter model whose relative percentage error does not
exceed 5% over almost the entire frequency range. In addition, it was possible to obtain the
trend of the complex module M (module and phase). In all metals it is observed that the
fractional order is less than 1; this characteristic is typical in the propagation of mechanical
waves at low frequency from 0 to 500 Hz. Finally, the values obtained of the rheological
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coefficients, for all the metals considered here, are positive in accordance with the second
principle of thermodynamics.
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