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Abstract: The present paper reports a study on neutron stars in the f (R) gravity framework for the
Hu–Sawicki model, Starobinsky model, Tsujikawa model, and Exponential Gravity model. First,
we have used the TOV equation for the f (R) gravity framework, where we obtained two higher
order differential equations for λ and ψ, with both functions depending on the radial coordinate.
Furthermore, we have considered the BD theory, which is an equivalent theory of f (R) gravity, and
introduced a new scalar field φ2 with the scalar potential V(φ2). We have observed an increase in the
scalar potential with respect to R in each case. Furthermore, our proposed models, namely quadratic
form, exponential form, and linear form and the other viable models show a similar type of evolution
for the scalar potential V(φ2).

Keywords: neutron stars; f (R) gravity; Hu–Sawicki model; Starobinsky model; Tsujikawa model;
Exponential Gravity model
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1. Introduction

Accelerated universe expansion is the most mysterious and controversial research item
in cosmology. The observation of a diminished optic wave represented the first evidence
of the universe’s accelerated expansion received from a Z-1 type 1A-supernova [1–3].
Some other verified data of accelerated expansion are Large-Scale Structure (LSS), Cosmic
Microwave Background Radiation (CMBR), Galaxy Redshift, etc. [4–6]. All these data lead
us to the existence of exotic matter having negative pressure and a non-clustered form in
Large-Scale Structure named Dark Energy (DE) [7–10]. The equation of the state parameter
for DE is ω = p

ρ , which lies between (−1) and (−1/3) and is named quintessence DE.
For ω < −1, one obtains the case of phantom DE. Though the exact nature of DE is still a
different mystery, some models have been proposed to study the dynamic nature of DE.
These are Chaplygin Gas model (CG) [11], Generalised Chaplygin Gas model (GCG) [12],
Holographic Dark Energy Model (HDE) [13], Polytropic Gas Model [14,15], K-essence
model [16], etc. Now, Einstein’s General Relativity (GR) cannot clarify the present state
of the universe, which is greatly influenced by the existence of DE, dark matter (DM),
and singularity. Astrophysicists must develop models for Modified GR [17–20], each with
unique features to explain the present scenario and modified universe dynamics, but the
matter part remains the same. Modified GR with high-density and large scalar curvature
accurately defines the strong gravitational background. Modified GR, such as the f (R)
theory of gravity, contains a higher order differential function of the Ricci scalar R, which
is a contraction of the Ricci tensor/the Riemann tensor. Furthermore, the Lagrangian in
f (R) contains a non-linear function of R [21]. Another important form of the Modified
GR is f (T) gravity, which can be derived by replacing the Ricci scalar R with the torsion
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scalar T in f (R) and obtain a comparatively less ordered differential function. This is
the Teleparallel Equivalent of General Relativity (TEGR) [22]. The Modified GR helps to
develop the idea of energy density in the form of a modified function of underlying gravity.
Now, DE can be widely described using the Polytropic Gas model [14,15]. The Polytropic
gas is obtained when the volume density relation remains constant for the gas in the
case of expansion or contraction. The Polytropic Gas model greatly impacts the study
of the holographic DE models, the Chaplygin gas models, the scalar field models of GR,
and the modified theory of gravity [23–26]. This paper uses the polytropic gas model to
explain the EOS degenerated Neuton Star (NS). Among all other astronomical objects,
NS has a major impact on the cosmological study. Although it has a smaller surface
area and radius, its massive baryonic density and immense gravitational force capture a
huge amount of DM [27]. DM causes natural space to interact and eventually loses some
energy. NS is an ideal cosmological laboratory for studying DM. There are different realistic
models in the background of f (R) gravity to investigate NS, such as (a) simple exponential
model: f (R)= R + βR(e(−R/R0) − 1) [where R0 is constant] [28,29], (b) quadratic gravity
model with logarithmic correlation with curvature: f (R) = R + αR2(1 + β log(R/µ2))
[with | α |<1 and the dimensionless parameter | β |<1], and (c) cubic correlation model:
f (R) = R + αR2(1 + γR2). A good choice of a viable model EOS is crucial for the existence
of a stable star configuration. The stable star configuration exists with a high-density core
(stability means dm/dρc > 0 [30]). The minimum radius of such stars is close to 9 km for
the maximal mass ∼1.9 M� (SLy Equation [31]) or to the radius, 8.5 km for mass ∼1.7 M�
(FPS Equation [31]) [30]. The DM annihilation process occurs inside NS and sometimes,
due to excess DM, NS crosses the Chandrasekhar limit [which is mass ∼1.44 M� [32] for
non-rotating compact object]. With higher temperatures, their outward radiation pressure
cannot resist the interior gravitational pull and collapse under their weight and thus form a
Black Hole (BH).

In Section 2, we have used the Tolmann–Oppenhaimer–Volkoff (TOV) Equation, which
is used to find equilibrium in a spherically symmetric body for isotropic material. TOV has
established the upper limit of the gravitational mass of an NS using the EOS of degenerate
cold Fermi gas [33]. Other than adopting any viable model in Section 2, we have considered
the Ricci scalar R being expressed similar to some arbitrary functions of the radius. In this
section, we have considered the equation of the state of the polytropic gas model. We
observed the evolution of f (R) with the radius in a spherically symmetric body. In Section 3,
we have used the Brans–Dicke theory, which is an equivalent form of f (R) gravity with
the scalar potential of gravitational origin [34,35]. The BD theory replaces the gravitational
constant and establishes a new scalar field φ2 in GR, which determines the distribution of
mass–energy in the universe [36]. Here, the scalar φ2 influences the universal matter that
posses nonminimal coupling [37,38] [coupling constant Q=−1/

√
6 [39]]. Study of the scalar

potential V(φ2) plays an important role in the NS and stability of a star. For the Starobinsky

model, the potential can be defined as VE(φ2) = (3/4)m2Mpl(1− e−
√

6/(3Mpl))2, where
VE(φ2) is the potential for Einstein frame and φ2 = (

√
6Mpl/2) log(1 + R/3M2) and Mpl

reduced the Planck mass [39]. We also have adopted the arbitrary form of R and tried to
observe the growth of the scalar potential with the change of radius. In Section 4, we study
the important viable models of f (R) gravity influenced by the work of K. Bamba [40]. These
models preserve the stability conditions and the peculiar characteristics of the modified
GR. As an exception, in this Section, we evaluated the evolution of the scalar potential in
these special models for R (Ricci scalar).

2. The Tolman–Oppenheimer–Volkoff Equation for f (R) Gravity

The Tolman–Oppenheimer–Volkoff equation is designed for a spherically symmetric
body in the isotropic material that is in a gravitational equilibrium. We start this Section
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with the f (R) gravity framework for a spherically symmetric compact object and the
corresponding TOV equation. The f (R) actions is provided by

A =
c4

16πG

∫
d4x
√
−g( f (R) + Lmatter), (1)

where g is the determinant of the metric gµν and Lmatter is the standard perfect fluid matter
term in Lagrangian. The variation of Equation (1) with respect to gµν provides the field
Equation [41–43]

d f (R)
dR

Rµν −
1
2

f (R)gµν −
(
∇µ∇ν − gµν�

)
d f (R)

dR
=

8πG
c4 Tµν, (2)

where

Tµν =
−2√−g

δ(
√−gLm)

δgµν , (3)

is the energy momentum tensor of the matter. The metric for systems with spherical
symmetry has the usual form

ds2 = e2ψc2dt2 − e2λdr2 − r2
(

dθ2 + sin2θdφ2
)

, (4)

where ψ and λ are functions of radial coordinate r [44]. The energy–momentum tensor of a
matter that is described as a perfect fluid within a star is

Tµν = diag(e2ψρc2, e2λ p, r2 p, r2 psin2θ). (5)

Here, p and ρ are the matter pressure and density, respectively, [45]. The Euler
Conservation Energy is

dp
dr

=
−(ρ + p)dψ

dr
. (6)

From the metric provided by Equation (4) and the field Equation (2), one obtains ψ
and λ derived with respect to r of the form [46]

dλ

dr
=

e2λ
(
r2(16πρ + f (R))− f ′(R)

(
r2R + 2

))
+ 2Rr

2 f ′′′(R)r2 + 2r f ′′(R)(rRr,r + 2Rr) + 2 f ′(R)
2r(2 f ′(R) + rRr f ′′(R))

, (7)

and

dψ

dr
=

e2λ
(
r2(16πρ− f (R)) + f ′(R)

(
r2R + 2

))
− 2(2r f ′′(R)Rr + f ′(R))

2r(2 f ′(R) + rRr f ′′(R))
. (8)

Here, f ′(R), f ′′(R), and f ′′′(R) denote the first-order, second-order, and third-order
derivatives of f (R), respectively, concerning Ricci scalar R(r). The above equations are
modified TOV equations, and, as the Ricci scalar, R is a dynamical variable in f (R) gravity,
so we need further equations to solve Equations (6)–(8). Using the trace of Equation (2) and
inserting it in metric Equation (4) we derive an equation of the form

d2R
dr2 = Rr

(
λr +

1
r

)
+

f ′(R)
f ′′(R)

(
1
r

(
3ψr − λr +

2
r

)
− e2λ

(
R
2
+

2
r2

))
− Rr

2 f ′′′(R)
f ′′(R)

. (9)

We use the polytropic gas model to explain the EOS of degenerated Neutron Star [47]

pΛ = KρΛ
1+ 1

η1 , (10)
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where η1 is the polytropic index and K is a positive constant. To solve the equations, we
use λ and ψ in power law form as follows

ψ = ψ0rη2 , (11)

λ = λ0rη3 . (12)

At this point, it is worth mentioning that the power law form is a well-discussed
assumption in various astrophysical modeling. For example, in [48,49], where power law
forms have been adopted for a modified gravity and GW energy spectrum, respectively.
Motivated by these works, we adopted power law forms of functions of radial coordinates
in our modeling. A similar approach has been adopted in our subsequent choice of f (R),
where R would be adopted as a polynomial with r raised to different powers. In this
context, let us mention that the power law form of f (R) gravity with R raised to higher
powers has been demonstrated in [48], and, in our work, we would express R as a function
of r and the polynomial would be on r. Furthermore, a choice of R in the exponential
form [50] would also be experimented with for its viability in the given framework of
neutron star under the purview of the modified theory of gravity.

From Equations (10)–(12), we obtain the derivatives of pΛ, ψ, and λ with respect to r

dpΛ
dr

= K
(

1 +
1
η1

)
ρΛ

1
η1

dρΛ
dr

, (13)

dψ

dr
= ψ0η2rη2−1, (14)

dλ

dr
= λ0η3rη3−1. (15)

From Equations (6), (13), and (14), the value of ρλ can be found as

ρΛ =

−1 + e
−rη2 η1Ψ0+KC1+Kη1C1

η1+η1
2

K


η1

. (16)

To study the pattern of f (R), we use different expressions of R as a function of r
(radius).

2.1. R as a Quadratic Function of Radius

Now, we consider R(r) being in the quadratic form, to find the other values of f (R)

R = a0 + a1r + a2r2. (17)

Here, a0, a1, and a2 are arbitrary constants. Thus, f (R) is converted as f (R(r)).
Equations (7)–(9) can be rewritten as

dλ

dr
=

e2λ
(
r2(16πρ + f (r))− f ′(r)

(
r2(a0 + a1r + a2r2) + 2

))
+ 2(a1 + 2a2r)2 f ′′′(r)r2 + 2r f ′′(r)(2ra2 + 2(a1 + 2a2r)) + 2 f ′(r)

2r(2 f ′(r) + r(a1 + 2a2r) f ′′(r))
, (18)

dψ

dr
=

e2λ
(
r2(16πρ− f (r)) + f ′(r)

(
r2(a0 + a1r + a2r2) + 2

))
− 2[2r f ′′(r)(a1 + 2a2r) + f ′(r)]

2r(2 f ′(r) + (a1 + 2a2r)r f ′′(r))
, (19)

d2R
dr2 = (a1 + 2a2r)

(
λr +

1
r

)
+

f ′(r)
f ′′(r)

(
1
r

(
3ψr − λr +

2
r

)
− e2λ

(
(a0 + a1r + a2r2)

2
+

2
r2

))
− (a1 + 2a2r)2 f ′′′(r)

f ′′(r)
. (20)
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Now, we find the solution set of f (R(r)) by solving Equations (18), (12), (15), and (16)
and the corresponding graphs for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1
are displayed in Figure 1.

2 4 6 8 10

0

2

4

6

8

r

f λ

Figure 1. Solution of f (R(r)) for R adopted as a quadratic function of radius. The evolution of
Equation (7) under f (R(r)) gravity is presented. We have fixed the values of η2, η3, a0, a1, a2, K, and
C1. The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, and η1, respectively.

Solving Equations (19), (11), (14), and (16), we found a solution set of f (R(r)) and the
corresponding plot for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 2.

0.0 0.5 1.0 1.5

0.6

0.8

1.0

1.2

1.4

r

f Ψ

Figure 2. Solution of f (R(r)) for R adopted as a quadratic function of radius. The evolution of
Equation (8) under f (R(r)) gravity is shown. We have fixed the values of a0, a1, a2, K, and C1.
The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, η1, η2, and η3, respectively.
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2.2. R as an Exponential Function of Radius

Now, we express R(r) in an exponential form to find further derivatives of f (R) as

R = αer + βe−r, (21)

where α , β are arbitrary constants. In this case, Equations (7)–(9) can be rewritten as

dλ

dr
=

e2λ
(
r2(16πρ + f (r))− f ′(r)

(
r2(αer + βe−r) + 2

))
+ 2(αer − βe−r)2 f ′′′(r)r2 + 2r f ′′(r)(r(αer + βe−r) + 2(αer − βe−r)) + 2 f ′(r)

2r(2 f ′(r) + r(αer − βe−r) f ′′(r))
, (22)

dψ

dr
=

e2λ
[
r2(16πρ− f (r)) + f ′(r)

(
r2(αer + βe−r) + 2

)]
− 2[2r f ′′(r)(αer − βe−r) + f ′(r)]

2r[2 f ′(r) + (αer − βe−r)r f ′′(r)]
, (23)

d2R
dr2 = (αer − βe−r)

(
λr +

1
r

)
+

f ′(r)
f ′′(r)

[
1
r

(
3ψr − λr +

2
r

)
− e2λ

(
(αer + βe−r)

2
+

2
r2

)]
− (αer − βe−r)2 f ′′′(r)

f ′′(r)
. (24)

Solving Equations (22), (12), (15), and (16), we found a solution set of f (R(r)) and
the corresponding graph for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in
Figure 3.

1 2 3 4 5 6 7

0

2

4

6

8

10

12

r

f λ

Figure 3. Solution of f (R(r)) for R adopted as an exponential function of radius. The evolution of
Equation (7) under f (R(r)) gravity is provided. We have fixed the values of η2, η3, a0, a1, a2, K, and
C1. The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, and η1, respectively.

Solving Equations (23), (11), (14), and (16), we obtained a solution set of f (R(r)) and
the corresponding graph for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in
Figure 4.
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0.0
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r

f Ψ

Figure 4. Solution of f (R(r)) for R is expressed as an exponential function of radius. The evolution
of Equation (8) under f (R(r)) gravity is provided. We have fixed the values of a0, a1, a2, K, and C1.
The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, η1, η2, and η3, respectively.

2.3. R as a Linear Function of Radius

Now, we consider R(r) being of the linear form, to find the other values of f (R).

R = b0 + b1r. (25)

Here b0 , b1 are arbitrary constants. Thus, f (R) converted as f (R(r)) and further
Equations (7)–(9) can be rewritten as

dλ

dr
=

e2λ
(
r2(16πρ + f (r))− f ′(r)

(
r2(b0 + b1r) + 2

))
+ 2(b1)

2 f ′′′(r)r2 + 2r f ′′(r)(2(b1)) + 2 f ′(r)
2r(2 f ′(r) + r(b1) f ′′(r))

, (26)

dψ

dr
=

e2λ
(
r2(16πρ− f (r)) + f ′(r)

(
r2(b0 + b1r) + 2

))
− 2(2r f ′′(r)(b1) + f ′(r))

2r(2 f ′(r) + (b1)r f ′′(r))
, (27)

d2R
dr2 = (b1)

(
λr +

1
r

)
+

f ′(r)
f ′′(r)

(
1
r

(
3ψr − λr +

2
r

)
− e2λ

(
(b0 + b1r)

2
+

2
r2

))
− (b1)

2 f ′′′(r)
f ′′(r)

. (28)

Solving Equations (26), (12), (15), and (16), we obtained a solution set of f (R(r)) and
the corresponding graph for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in
Figure 5.

Solving Equations (27), (11), (14), and (16), we obtain a solution set of f (R(r)) and
the corresponding graph for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in
Figure 6.

In Figures 1, 3 and 5, we observe that the f (R) gravity for Equation (7) presents an
ascending pattern with respect to r. The considered functions become significantly different
shapes of figures. In each case, there is an ascending pattern observed. Thus, f (R) gravity
will show an increasing pattern with r. Figures 1 and 5 show that, after a certain value of r,
f (R) has a sharply increasing pattern.
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0.000

0.005
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0.020
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r

f λ

Figure 5. Solution of f (R(r)) for R adopted as a linear function of radius. The evolution of Equation (7)
under f (R(r)) gravity is provided. We have fixed the values of η2, η3, a0, a1, a2, K, and C1. The red,
green, and blue lines correspond to small perturbations of λ0, Ψ0, and η1, respectively.
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0.6

0.8
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1.4

r

f Ψ

Figure 6. Solution of f (R(r)) for R adopted as a linear function of radius. The evolution of Equation (8)
under f (R(r)) gravity is provided. We have fixed the values of a0, a1, a2, K, and C1. The red, green,
and blue lines correspond to small perturbations of λ0, Ψ0, η1, η2, and η3, respectively.

In Figures 2, 4 and 6 note that the f (R) gravity for Equation (8) has an ascending
pattern with respect to r. We obtain different ascending patterns for R being quadratic,
exponential, and linear functions of radius. Though, for the quadratic function and linear
function, the pattern of the graph is similar. This shows that f (R) gravity keeps increasing
for larger values of the radius.
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3. The Brans–Dicke Theory for f (R) Gravity

Let us start with the action of scalar–tensor theories accommodating BD theories with
a scalar potential V(φ2) [51]

S =
∫

d4x
√
−g

(
M2

pl

2
F(φ2)R +

(
1− 6Q2

)
F(Q)X−V(φ2)

)
+
∫

d4xLm
(

gµν, ψm
)
, (29)

where g is the determinant of the metric gµν, F(φ2) is the function of the scalar field φ2, R is
the Ricci scalar, Q is the constant characterizes the coupling between φ2 and the gravity,
and X = −gµν∂µφ∂νφ/2 and Lm are the action of matter field ψm [52]. The potential that
corresponds to the nonminimal coupling according to the BD theories is

F(φ2) = e−2Qφ2

/
Mpl . (30)

The f (R) gravity provided by the action belongs to the gravitational scalar action of
Equation (29) [53]

S f (R) =
∫

d4x
√
−g

M2
pl

2
F(R). (31)

Here, f (R) contains nonlinear function of R and φ2 is the scalar degree of freedom.
The field potential V(φ2) does not vanish, so the field φ2 has an effect on the mass. We have
Q = −1/

√
6

V(φ2) =
M2

pl

2
(FR− f ), (32)

where
F =

∂ f
∂R

. (33)

For different expressions of the Ricci scalar R as a function of radius, we obtain
different values of F and scalar potential V(φ2).

3.1. The Scalar Potential for R as a Quadratic Function of Radius

Now, we are adopting R(r) of the quadratic form to find the other values of F and
V(φ2). For the form of R in Equation (17) F can be transformed as

F =
∂ f
∂r

(
1

a1 + 2a2r
) (34)

and V(φ2) can be transformed to

V(φ2) =
1
2
(

∂ f
∂r

(
a0 + a1r + a2r2

a1 + 2a2r
)− f ). (35)

From the solutions set of f (r) and Equation (33), we deduce the solutions set of F(R).
Comparing Equation (7) with Equation (36), Equation (38), and Equation (46), we obtain
one set of graphical representations of F(R) for different values of λ0, Ψ0, η1, η2, η3, a0, a1,
a2, K, and C1 in Figure 7 .

Again, comparing Equation (8) with Equation (36), Equation (38), and Equation (46),
we obtain one set of graphical representations of F(R) for different values of λ0, Ψ0, η1, η2,
η3, a0, a1, a2, K, and C1 in Figure 8.
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r
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λ

Figure 7. Solution of F(R(r)) for R adopted as quadratic function of radius. The evolution of the partial
derivative of f (R) is obtained by Equations (7) and (33). We have fixed the values of η2, η3, a0, a1, a2, K,
and C1. The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, η1, respectively.
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F
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Figure 8. Solution of F(R(r)) for R adopted as a quadratic function of radius. The evolution of the partial
derivative of f (R) is obtained by Equations (8) and (33). We have fixed the values of a0, a1, a2, K, and C1.
The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, η1, η2, and η3, respectively.

The graphical representation of the scalar potential is shown by comparing Equation (7)
and Equation (32). For three different expressions of the Ricci scalar (R), the solutions set of
f provides different forms. Comparing Equation (7) with Equation (35), Equation (37), and
Equation (39), we obtain the plot for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and
C1 in Figure 9.
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Figure 9. Solution of the scalar potential for R adopted as a quadratic function of radius. The evolution
of the scalar potential V(φ2) is obtained by Equations (7) and (32). We have fixed the values of η2, η3,
a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, and
η1, respectively.

Now, comparing Equation (8) and Equation (32), the corresponding set of the scalar
potentials has been represented graphically. Here, three different forms of the Ricci scalar
have also been used to draw the conclusion. By comparing Equation (8) with Equation (35),
Equation (37), and Equation (39) and using the solution sets of f (R), we obtain the graphical
representation for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 10.
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Figure 10. Solution of the scalar potential for R adopted as a quadratic function of radius. The evolu-
tion of the scalar potential V(φ2) is presented by Equations (8) and (32). We have fixed the values of
a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of λ0, Ψ0, η1,
η2, and η3, respectively.
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3.2. The Scalar Potential for R as an Exponential Function of Radius

We consider R(r) being of the exponential form, to find further derivations of F(R)
and V(φ2). The Ricci scalar R provided in Equation (21) F can be transformed as

F =
∂ f
∂r

(
1

αer − βe−r ) (36)

and V(φ2) can be transformed to

V(φ2) =
1
2
(

∂ f
∂r

αer + βe−r

(αer − βe−r)
− f ). (37)

From the solution set of f (r) and Equation (33) we deduce the solution set of F(R).
By comparing Equation (7) with Equation (36), Equation (38), and Equation (46), we present
the plot of F(R) for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 11.

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

r

F
λ

Figure 11. Solution of F(R(r)) for R adopted as an exponential function of radius. The evolution
of partial derivative of f (R) is presented by comparing Equation (7) and Equation (33). We have
fixed the values of η2, η3, a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small
perturbations of λ0, Ψ0, and η1, respectively.

Once again, from the comparison of Equation (8) with Equation (36), Equation (38),
and Equation (46), we plot the graph of F(R) for different values of λ0, Ψ0, η1, η2, η3, a0, a1,
a2, K, and C1 in Figure 12.
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Figure 12. Solution of F(R(r)) for R adopted as an exponential function of radius. The evolution of
partial derivative of f (R) is obtained by comparing Equation (8) and Equation (33). We have fixed
the values of a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of
λ0, Ψ0, η1, η2, and η3, respectively.

We show the graph of the scalar potential by comparing Equation (7) and Equation (32).
For three different forms of the Ricci scalar (R), the solution set of f provides different
forms. By comparing Equation (7) with Equation (35), Equation (37), and Equation (39),
we obtain the graphical representation for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K,
and C1 in Figure 13.
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Figure 13. Solution of the scalar potential for R adopted as an exponential function of radius.
The evolution of the scalar potential V(φ2) is obtained by comparing Equation (7) and Equation (32).
We have fixed the values of η2, η3, a0, a1, a2, K, and C1. The red, green, and blue lines correspond to
small perturbations of λ0, Ψ0, and η1, respectively.
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From the comparison of Equation (8) and Equation (32) another set of the scalar
potential has been represented graphically. Here, three different forms of the Ricci scalar
have also been used to draw the conclusion. Comparing Equation (8) with Equation (35),
Equation (37), and Equation (39) and with the solution set of f (R), we obtain the graphical
representation for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 14.
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Figure 14. Solution of the scalar potential for R is adopted as an exponential function of radius.
The evolution of scalar potential V(φ2) comparing Equation (8) and Equation (32). We have fixed the
values of a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of λ0,
Ψ0, η1, η2, and η3, respectively.

3.3. The Scalar Potential for R as a Linear Function of Radius

Considering R(r) as the linear form, we found other values of F(R) and V(φ2). For
the form of R from Equation (25) F can be transformed as

F =
∂ f
∂r

(
1
b1
) (38)

and V(φ2) can be transformed to

V(φ2) =
1
2
(

∂ f
∂r

(
b0 + b1r

b1
)− f ). (39)

From the set of solutions of f (r) and Equation (33), we deduce the set of solutions of
F(R). By comparing Equation (7) with Equation (36), Equation (38), and Equation (46), we
obtain the graphical representation of F(R) for different values of λ0, Ψ0, η1, η2, η3, a0, a1,
a2, K, and C1 in Figure 15.

From the comparison of Equation (8) with Equation (36), Equation (38), and Equa-
tion (46) we obtained one set of graphical representations of F(R) for different values of λ0,
Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 16.
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Figure 15. Solution of F(R(r)) for R adopted as a linear function of radius. The evolution of partial
derivative of f (R) is obtained by comparing Equation (7) and Equation (33). We have fixed the values
of η2, η3, a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of λ0,
Ψ0, and η1, respectively.

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

r

F
Ψ

Figure 16. Solution of F(R(r)) for R adopted as a linear function of radius. The evolution of partial
derivative of f (R) is provided by comparing Equation (8) and Equation (33). We have fixed the
values of a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of λ0,
Ψ0, η1, η2, and η3, respectively.
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Now, the graphical representation of the scalar potential can be shown by comparing
Equation (7) and Equation (32). For three different forms of the Ricci scalar (R), the solution
set of f provides different forms. Comparing Equation (7) with Equation (35), Equation (37),
and Equation (39), we obtain the following graphical representation for different values of
λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 17.
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Figure 17. Solution of the scalar potential for R adopted as a linear function radius. The evolution
of the scalar potential V(φ2) is obtained by comparing Equation (7) and Equation (32). We have
fixed the values of η2, η3, a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small
perturbations of λ0, Ψ0, and η1, respectively.

Comparing Equation (8) and Equation (32), another set of scalar potential has been
represented graphically. Here, three different forms of the Ricci scalar have also been used
to draw the conclusion. By comparing Equation (8) with Equation (35), Equation (37),
and Equation (39) and with the solution set of f (R), we obtain the following graphical
representation for different values of λ0, Ψ0, η1, η2, η3, a0, a1, a2, K, and C1 in Figure 18.

Note that the plots from Figures 7, 11 and 15 present an increasing pattern, and they
tend toward zero. In Figure 11, the plot appears only tending toward zero, but, in Figures 7
and 15, a clear tendency toward zero behavior is observed. Furthermore, the graph for
R as a quadratic function, i.e., Figure 7, and R as a linear function, i.e., Figure 15, show a
similar pattern; however, R as an exponential pattern, i.e., Figure 11, shows a significantly
different form. Note that, in all three graphs, F increases with an increase in the radius after
a certain value of the radius.

In Figures 8 and 16, we represent F for R as a function of quadratic form and linear
form of radius, respectively. Though F eventually started with a decreasing pattern, it kept
increasing for the increasing radius. Furthermore, these two graphs show a similar pattern.
Figure 12 represents F for R as an exponential function of radius. This graph shows a clear
ascending shape and a significantly different pattern from the other two.
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Figure 18. Solution of the scalar potential for R adopted as a linear function of radius. The evolution
of the scalar potential V(φ2) is obtained by comparing Equation (8) and Equation (32). We have fixed
the values of a0, a1, a2, K, and C1. The red, green, and blue lines correspond to small perturbations of
λ0, Ψ0, η1, η2, and η3, respectively.

Figures 9, 13 and 17 represent the scalar potential V(φ2) for three different form of
functions of R. Figures 9 and 17 demonstrate R as a quadratic and linear function of
the radius, and these two graphical representations show a similar pattern. These two
graphs converge to zero. Figure 13 represents the exponential function of radius, and this
graph tends to zero. All three graphs present an ascending pattern, i.e., the scalar potential
converges to zero near the center, and, in due course, it keeps increasing with the increasing
rate of the radius.

For Figures 10, 14 and 18, an ascending pattern has been observed as well. Figure 10
represents R as a quadratic function of the radius. Figure 14 shows R as an exponential
function of the radius, and Figure 18 represents R as a linear function of the radius. All
three graphical representation show a progressive pattern that implies the potential will
keep increasing for the particle going away from the core. Here, the three graphs have an
apparent convergence to zero for a small value of the radial coordinate. So, the potential
will tend to zero whenever a particle is very near to the core.

4. Viable f (R) Gravity Models

Several viable f (R) gravity models are adopted based on the following conditions [40]:
(a) positive effect for gravitational coupling, (b) stable effect on cosmological perturba-
tion [54], (c) in a large curvature regime, asymptotic behavior should be preserved to
standard ∧ Cold Dark Matter (∧ CDM), (d) late-time de-Sitter point should be stable [55],
and (e) solar system constraints [56] should be satisfied as well. After several literature
studies, some popular viable models have been adopted for the evolution of the scalar
potential. Such models are: (a) Hu–Sawicki [57], (b) Starobinsky [58], (c) Tsujikawa [59],
and (d) the exponential gravity [60–62]. All these models are explicitly described as follows.
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4.1. Hu–Sawicki Model

This f (R) gravity model, in particular, is not designed with a cosmological constant
even though it satisfies cosmological and solar system constraints until a certain parametric
space limit. The minimization of the potential for the scalar degree of freedom fR =
d f (R)/dR is possible in this model for a high curvature value for the Ricci scalar R. The
cosmological and Local Gravity Constraints are preserved in this model as well:

f (R) = R−
c1RHS(

R
RHS

)p

c2(
R

RHS
)p + 1

, (40)

where c1, c2, RHS, and p are positive and RHS denote the order of present the Ricci Scalar.
For the scalar potential, we need to compare Equation (32) and Equation (40). We have

F =
∂ f
∂R

= 1−
c1 p
(

R
RHS

)−1+p

1 + c2

(
R

RHS

)p +
c1c2 p

(
R

RHS

)−1+2p

(
1 + c2

(
R

RHS

)p)2 , (41)

V(φ2) =
1
2

−R + R

1−
c1 p
(

R
RHS

)−1+p

1 + c2

(
R

RHS

)p +
c1c2 p

(
R

RHS

)−1+2p

(
1 + c2

(
R

RHS

)p)2

+
c1

(
R

RHS

)p
RHS

1 + c2

(
R

RHS

)p

. (42)

Using c1 = 2, c2 = 3 of the graphical representation of F is provided in Figure 19,
Figure 20, Figure 21, and V(φ2) in Figure 22, Figure 23, and Figure 24, respectively.

Figure 19. Solution of F(R) for p = 2. The evolution of the partial derivative of f (R) is obtained
using Equations (33) and (41).
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Figure 20. Solution of F(R) for p = 3. The evolution of the partial derivative of f (R) is obtained
using Equations (33) and (41).

Figure 21. Solution of F(R) for p = 4. The evolution of the partial derivative of f (R) is obtained
using Equations (33) and (41).
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Figure 22. Solution of V(φ2) for p = 2. The evolution of V(φ2) is obtained using Equations (32)
and (42).

Figure 23. Solution of V(φ2) for p = 3. The evolution of V(φ2) is obtained using Equations (32)
and (42).
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Figure 24. Solution of V(φ2) for p = 4. The evolution of V(φ2) is obtained using Equations (32)
and (42).

Here, the scalar potential shows a clear convergence to zero with the increase in the
Ricci scalar (R).

4.2. Starobinsky Model

The Starobinsky Model is a three-parametric form f (R) model provided by

f (R) = R + λRS((1 +
R2

R2
S
)−n − 1), (43)

where n, λ >0, and RS is the order of the presently observed effective cosmological constant.
Here, f (0) = 0 implies the ’cosmological constant’ vanishes in flat space–time. For a
sufficiently large value of the parameter n, this model passes the laboratory and solar system
tests of gravity. Though new restrictions may be added due to the analysis of radiation from
double pulser. We can easily evaluate the scalar potential V(φ2) by comparing Equation (32)
with Equation (43):

F =
∂ f
∂R

= 1−
2nR

(
1 + R2

RS
2

)−1−n
λ

RS
, (44)

V(φ2) =
1
2

−R−
(
−1 +

(
1 +

R2

RS
2

)−n)
RSλ + R

1−
2nR

(
1 + R2

x12

)−1−n
.λ

RS


. (45)

Adopting the cosmological constant equal to 20, the graphical representation of F is
provided in Figures 25–27 and of V(φ2) in Figures 28–30.
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Figure 25. Solution of F(R(r)) for n = 1. The evolution of partial derivative of f (R) is obtained using
Equations (33) and (44).

Figure 26. Solution of F(R(r)) for n = 2. The evolution of partial derivative of f (R) is obtained using
Equations (33) and (44).
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Figure 27. Solution of F(R(r)) for n = 3. The evolution of partial derivative of f (R) is obtained using
Equations (33) and (44).

The scalar potential for this model is:

Figure 28. Solution of V(φ2) for n = 1. The evolution of V(φ2) is obtained using Equations (32) and (45).
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Figure 29. Solution of V(φ2) for n = 2. The evolution of V(φ2) is obtained using Equations (32)
and (45).

Figure 30. Solution of V(φ2) for n = 3. The evolution of V(φ2) is obtained using Equations (32)
and (45).

The scalar potential converges to zero as the Ricci scalar (R) increases.
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4.3. Tsujikawa Model

Another important viable f (R) gravity model that satisfies the required condition is

f (R) = R− µRTtanh(
R

RT
), (46)

where µ (>0) and RT (>0) are constant parameters. Now, to find the scalar potential V(φ2)
in Equation (32) we need to compare with Equation (46). Thus,

F =
∂ f
∂R

= 1− µSech2
(

R
RT

)
, (47)

V(φ2) =
1
2

(
−R + R

(
1− µSech2

(
R

RT

))
+ RTµTanh

(
R

RT

))
. (48)

Figure 31 represents the partial derivative of F(R) and shows a decaying pattern, and
Figure 32 represents the scalar potential and shows a convergence to zero. Thus, it can be
concluded that, for small values of the Ricci scalar (R), the scalar potential tends to be zero.
When R is increasing, the scalar potential also increases with definite steps.
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Figure 31. The evolution of F is obtained using Equations (33) and (46). The red, green, and blue
lines correspond to small perturbations of RT and µ, respectively.
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Figure 32. The evolution of V(φ2) is obtained using Equations (32) and (46). The red, green, and blue
lines correspond to small perturbations of RT and µ, respectively.

4.4. The Exponential Gravity Model

We have

f (R) = R− βRE

(
1− e

−R
RE

)
, (49)

where β and RE are parameters. To find the scalar potential V(φ2), we compare Equation (49)
with Equation (32) and we obtain

F =
∂ f
∂R

= 1− e−
R

RE β, (50)

V(φ2) =
1
2

(
−R +

(
1− e−

R
RE

)
REβ + R

(
1− e−

R
RE β

))
. (51)

For different values of RE, the graphical forms of representations F and V(φ2) are
presented in Figure 33 and Figure 34, respectively.

Figure 33 represents the partial derivative of F(R), and this shows a decaying pattern.
Figure 34 represents the scalar potential V(φ2) and shows a clear convergence to zero. We
concluded that, for small values of the Ricci scalar (R), the scalar potential tends to zero.
When R increases, the scalar potential will also increase with definite steps.
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Figure 33. The evolution of F is obtained by Equations (33) and (49). The red, green, and blue lines
correspond to small perturbations of RE and β, respectively.
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Figure 34. The evolution of V(φ2) is obtained by Equations (32) and (49). The red, green, and blue
lines correspond to small perturbations of RE and β, respectively.
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5. Conclusions

In this work, we have discussed Neutron Stars in the f (R) gravity framework for
different models. Firstly, we have considered the TOV equation for the f (R) gravity
framework [41], and we obtained two higher order differential equations concerning λ
(function of radial coordinate) and ψ (function of radial coordinate). The differential
equations are presented in Equations (7) and (8), which involve two non-linear functions of
the radial coordinate r as the dependent variables and r as the independent variable. Here,
we have also used the Polytropic Gas model [47] in the form of Equation (10) to compare
with the TOV form and observed the evolution of f (R). Without assuming any specific
form of the f (R) gravity models, we have expressed the Ricci scalar R as a function of the
radial coordinate r, in some arbitrary form such as the quadratic form, exponential form,
and linear form. In Section 2, for three different radial forms, we obtained a set of three
different solutions for f (R(r)) for λ (function of the radial coordinate r) [compared with
Equation (7)] and with respect to ψ (function of the radial coordinate r) [compared with
Equation (8)] as well. We have presented the graphs of the solution of f (R) in Figures 1, 3,
5, 2, 4 and 6, which show an ascending pattern with an increase in the rate of the radius.
Furthermore, all the sets of solutions tend to converge to zero. In Section 3, we have applied
the BD-theory [51], which is an equivalent theory of f (R) gravity. Still, the BD-theory
introduced a new scalar field φ2 with the scalar potential V(φ2). In this section, three
arbitrary functions of the radius have expressed the Ricci scalar (R) and, with the aid of that,
the partial derivative of f (R(r)) and the scalar potential V have been derived for λ and ψ.
Figures 7, 11 and 15 represent the graphical representation of F(R) [partial derivative of
f (R)] with respect to λ and Figures 8, 12 and 16 represent F(R) [partial derivative of f (R)]
considering ψ for R as quadratic, exponential, and linear form, respectively. All the partial
derivatives show an increasing pattern for the radius. Although, Figures 8 and 16 show
a decrease in the early stage, they also show an increasing pattern. In the next phase, we
observed the evolution of the scalar potential V(φ2) with respect to λ and ψ for different
forms proposed earlier. Figures 9, 13, and 17 represent V for R as quadratic, exponential,
and linear forms with respect to λ. Figures 9 and 17 have a clear indication of convergence
to zero, whereas Figure 13 tends to zero for smaller values of the radius, i.e., for R being
a function of a quadratic and linear function of the radius, the potential will tend to zero
near the core of the NS. Figures 10, 14 and 18 show V with respect to ψ. Here, all three
representations converge to zero near the star’s core. In Section 4, we have compared
four important viable models: (a) Hu–Sawicki model [57], (b) Starobinsky model [58],
(c) Tsujikawa model [59], and (d) Exponential Gravity model [60–62]. The (a) Hu–Sawicki
model and (b) Starobinsky model contain the power form of the Ricci scalar R in f (R).
For three different power values, the partial derivative of f (R) and the scalar potential V
have been demonstrated. In both models, the scalar potential shows a convergence pattern
to zero. At the same time, the (c) Tsujikawa model and (d) Exponential Gravity model have
different parameters of the Ricci scalar R in f (R). In these two models, the convergence to
zero for different parametric values dominates the graphs. For the (a) Hu–Sawicki model,
Figures 33, 34 and 25 show the scalar potential. For the (b) Starobinsky model, Figures 28, 29
and 30 present the evolution of V(φ2). For the (c) Tsujikawa model, Figure 21 demonstrates
the evolution of the scalar potential, and, for the (d) Exponential Gravity model, Figure 23
shows the development of the scalar potential for R. Our proposed models (a) quadratic
form, (b) exponential form, (c) linear form, and the viable models of the f (R) gravity show
similar a type of evolution for the scalar potential V(φ2).

While concluding, let us mention the outcomes of our work in connection with some
relevant studies [44,51] where the authors studiedM-R diagram of NS for f (R) gravity for
some viable models. Nevertheless, we have demonstrated the scalar potential under BD-
theory of NS for some viable models from the influence of K. Bamba’s work [40]. Moreover,
we have demonstrated the consequences of the (a) quadratic form, (b) exponential form,
and (c) linear form of the Ricci scalar R in the current astrophysical setting.
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In the context of this extensive study, it must be mentioned that Einstein gravity is
a very powerful theory because there does not seem to be much that is not described in
it. As a consequence, one would expect to find its possible corrections to be very small.
Then, the corrections for stellar systems such as neutron stars might be significantly small.
Here, the question about the applicability of f (R) gravity to neutron stars arises. In [50],
it was demonstrated that, under the purview of f (R) gravity, it is possible to have an
increase in the upper limit of neutron star mass and, therefore, realistic star configurations
can be realized through the appropriate equation of state. Another noteworthy work in
this context is [63], which investigated the causal limit of the maximum mass of stars in
cosmological settings of f (R) gravity and concluded with the secondary component of
the compact binary GW190814, possibly a neutron star. In the light of these works, we
proposed to extend our study in future to rapidly rotating neutron stars with the other
forms of modified gravity, and to demonstrate the causal limit of the maximum mass of
the stars. While concluding, let us comment on the outcomes of the present study with
respect to some noteworthy works. In [64], the authors obtained the interior solutions
of exotic stars constituted of dark energy, considering the presence of anisotropies and
adopting the extended Chaplygin gas equation of state. The study [65] reported properties
of strange stars under the purview of an extreme SQSB40 MIT bag model, and assuming,
for quark matter, a linear EoS. In [66], the authors have examined an EOS of a strange
matter phase for non-rotating quark stars and the pressure of anisotropy present in that
context. From [67], we observe that the authors have studied the gravitational decoupling
under the purview of anisotropic domains extended by four anisotropic models. Another
relevant work in the context of the current study is [68], where f (R, T) gravity was adopted
to demonstrate the analytic relativistic anisotropic spherical solutions; in it, the relationship
between the effective pressure and effective density was established. Given the studies
mentioned above, the aim of the authors of the current work was to extend their study to
other forms of modified gravity including f (R, T) gravity and to provide a deeper look
inside into the strange quark stars under the purview of an MIT Bag model.
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