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Abstract: The stereographic projection is constructed in topological modules. Let A be an additively
symmetric closed subset of a topological R-module M such that 0 ∈ int(A). If there exists a continuous
functional m∗ : M → R in the dual module M∗, an invertible s ∈ U(R) and an element a in the
topological boundary bd(A) of A in such a way that (m∗)−1({s}) ∩ int(A) = ∅, a ∈ (m∗)−1({s}) ∩
bd(A), and s + m∗(bd(A) \ {−a}) ⊆ U(R), then the following function b 7→ −a + 2s(m∗(b) +
s)−1(b + a), from bd(A) \ {−a} to (m∗)−1({s}), is a well-defined stereographic projection (also
continuous if multiplicative inversion is continuous on R). Finally, we provide sufficient conditions
for the previous stereographic projection to become a homeomorphism.
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1. Introduction

The stereographic projection [1,2] is an important tool in Algebraic Topology. Since
Rn (with the Euclidean topology) is Hausdorff and locally compact, it is Hausdorff-
compactifiable by one point, and its one-point compactification turns out to be Sn. The
inverse problem to this is to remove one point from Sn (usually the north pole) to obtain
again Rn. This is known as the stereographic projection, that is, Sn minus the north pole is
homeomorphic to Rn.

Infinite-dimensional real or complex Banach spaces are Hausdorff but not locally
compact, therefore it does not make sense to talk about their Hausdorff one-point com-
pactification (there exists their one-point compactification but it will not be Hausdorff).
However, the stereographic projection can still be constructed in infinite-dimensional real
or complex Banach spaces, and it turns out that the unit sphere minus any one point is
homeomorphic to a closed hyperplane. This is accomplished in [3], where the stereographic
projection is transported to infinite-dimensional real Banach spaces to prove that the unit
sphere of any infinite-dimensional real Banach space minus any one point is homeomorphic
to a closed hyperplane. Many geometric techniques from the Geometry of the real Banach
spaces are employed to accomplish the results of [3]. It is worth mentioning that neither
the unit sphere nor the unit ball of an infinite dimensional real or complex Banach space
is compact.

The purpose of this manuscript is to construct the stereographic projection in topo-
logical modules in order to find sufficient conditions for such stereographic projection to
become a homeomorphism. This way, we will have nontrivial examples of bodies in a
topological module such that, after removing one point from their boundary, this boundary
minus the point becomes homeomorphic to a hyperplane (Theorem 4).

2. Methodology

The topological interior of a subset A of a topological space will be denoted by int(A).
The closure and the boundary of A are respectively denoted by cl(A) and bd(A). If B is
a subset of A, then the interior of B relative to A is denoted as intA(B), the closure of B
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relative to A is denoted as clA(B), and the boundary of B relative to A is denoted as bdA(B).
It is clear that int(B) ∩ A ⊆ intA(B), cl(B) ∩ A = clA(B), and bd(B) ∩ A ⊇ bdA(B). Recall
that a body in a topological space is simply a closed subset with nonempty interior. We will
be working with bodies in topological modules. Since translations are homeomorphisms in
topological modules, which mostly preserve the geometrical structure, we will focus on
bodies of topological modules which are neighborhoods of zero. Only nonzero left-modules
over nonzero associative and unitary rings are considered throughout this manuscript.
Refer to [4–10] for a wide perspective on topological rings, modules, and algebras.

An affine manifold in a module M over a ring R is a translation of a submodule
of M, that is, m + N where m ∈ M and N is a submodule of M. Observe that an affine
manifold m+ N contains 0 if and only if m+ N = N. Alongside this manuscript, we will be
working with the following affine manifolds: st(m, n) := m + R(n−m) for m, n ∈ M and
(m∗)−1({s}) for m∗ ∈ M∗ and s ∈ R in the range of m∗. Notice that st(m, n) = st(n, m) for
all m, n ∈ M because m + r(n−m) = n + (1− r)(m− n) for all r ∈ R, and it geometrically
represents a straight line passing through m, n. We will pay special attention to a notable
subset of st(m, n) given by stU(m, n) := m + (U(R) ∪ {0})(n−m). Note that if u ∈ U(R)
and m 6= n, then m 6= m + u(n − m). Another trivial observation is the fact that n ∈
stU(m, p) for all p ∈ stU(m, n) \ {m} in view of the fact that if p = m + u(n−m) for some
u ∈ U(R), then n = m + u−1(p − m) ∈ stU(m, p). On the other hand, (m∗)−1({s}) =
m + ker(m∗) for all m ∈ (m∗)−1({s}) and it geometrically represents a hyperplane, which
will be closed if R is Hausdorff.

A topological ring R is said to be practical provided that 0 ∈ cl(U(R)), that is, 0
belongs to the closure of the invertibles U(R) of R. Practical rings serve to extend the
classical Operator Theory to the topological module setting. An extensive study on practical
topological rings can be found in [11]. Let M be a topological module over a topological
ring R. Let A ⊆ M. We say that A is bounded if for each 0-neighborhood U in M there
is an invertible u ∈ U(R) such that A ⊆ uU. On the other hand, a point a ∈ A is said to
be an internal point of A provided for every m ∈ M there exists a 0-neighborhood V ⊆ R
satisfying that a + V(m− a) ⊆ A. The set of internal points of A is denoted by inter(A). In
this sense, A is called absorbing provided that 0 ∈ inter(A).

An ordered ring is a ring endowed with a partial order that is compatible with the
addition and the multiplication. In other words, a partial order ≤ in a ring R is a ring order
provided that r1 ≤ r2 ⇒ r1 + s ≤ r2 + s for all s ∈ R, and r1, r2 ≥ 0⇒ r1r2 ≥ 0. The set of
positive elements is denoted by R+ := {r ∈ R : r ≥ 0}. It is not hard to check that if 0, 1 are
comparable, then 0 < 1 and the ring has null characteristic, that is, char(R) = 0, because
1+

n· · · +1 > 0 for all n ∈ N. Whenever we talk about an ordered topological ring we mean
a ring that is endowed with a ring topology and a ring order, but there does not have to
be any relation between the ring order and the ring topology. However, if we talk about
topological ordered rings, then we mean a ring endowed with a ring order in such a way
that the order topology is well-defined and turns out to be a ring topology.

Finally, we will make use of the Axiom of Choice, which states that for every nonempty
set X there exists a choice function φ : P(X) \ {∅} → X, that is, φ(Y) ∈ Y for every
Y ∈ P(X) \ {∅}.

3. Results

We will construct the stereographic projection in topological modules by relying on [3].
One of the geometrical principles upon which this construction is based is the fact that,
in Euclidean spaces, straight lines passing through zero must intersect the boundary of
bounded bodies whose interior contains zero. This is itself based upon the following
topological fact: if X is a topological space and L is a connected subset of X such that
L ∩ int(A) 6= ∅ and L ∩ int(X \ A) 6= ∅ for a subset A ⊆ X, then L ∩ bd(A) 6= ∅.
Nevertheless, we will first study certain types of bodies in topological modules, fit bodies
and Minkowski bodies, that will provide the necessary insight to properly construct the
stereographic projection.
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3.1. Fit Bodies

Let us begin by bearing in mind the trivial fact that if M is a module over a ring R,
then Ra = st(0, a) for every a ∈ M.

Definition 1 (Fit body). Let M be a topological module over a topological ring R. A subset
A ⊆ M is said to be a fit body if A is closed, 0 ∈ int(A), and every a ∈ bd(A) satisfies that
Ra ∩ bd(A) ⊆ {−a, a}.

Under the settings of the previous definition, it is immediate to realize that if a fit
body A is additively symmetric, then Ra ∩ bd(A) = {−a, a} for every a ∈ bd(A). Before
stating and proving the main result of this subsection, we will provide nontrivial examples
of fit bodies.

Proposition 1. Let R be a topological totally ordered ring with no holes. Then A := [−1, 1] is a
fit body.

Proof. By assumption, the ring topology of R is the order topology, thus (−1, 1) is open. Let
us show next that bd(A) = {−1, 1}. Indeed, fix an arbitrary open interval (a, b) containing
1. Notice that 1 + 1 > 1, so we may assume that b ≤ 1 + 1. By hypothesis, A has no
holes, therefore (1, b) is not empty, meaning that (a, b) ∩ (R \ A) 6= ∅. As a consequence,
1 ∈ bd(A). In a similar way, −1 ∈ bd(A). On the other hand, [−1, 1] is closed in the order
topology, which assures that bd(A) = {−1, 1}. Then A is an additively symmetric body
whose interior contains 0. Finally, R1∩ bd(A) = {−1, 1} = R(−1) ∩ bd(A), meaning that
A is a fit body.

A nontrivial example of a ring satisfying the properties of Proposition 1 is provided
next.

Example 1. R := Q[π], endowed with the inherited topology from R, is a topological totally
ordered ring with no holes.

We are now in the right position to state and prove the main theorem of this subsection.

Theorem 1. Let M be a torsionfree topological module over a Hausdorff topological-inversion
integral domain ring R of char(R) 6= 2 such that U(R) is open. Let m∗ ∈ M∗, A ⊆ M a fit body,
and s ∈ U(R) such that (m∗)−1({s}) ∩ int(A) = ∅ but (m∗)−1({s}) ∩ bd(A) 6= ∅. Then

int(m∗)−1({s})

(
(m∗)−1({s}) ∩ bd(A)

)
⊆ intbd(A)

(
(m∗)−1({s}) ∩ bd(A)

)
.

Proof. Fix an arbitrary a ∈ int(m∗)−1({s})
(
(m∗)−1({s}) ∩ bd(A)

)
. A 0-neighborhood V0 ⊆

M exists such that (a + V0) ∩ (m∗)−1({s}) ⊆ bd(A). Another 0-neighborhood V1 ⊆ M can
be found in such a way that V1 + V1 + V1 ⊆ V0. Next, there are 0-neighborhoods W1 ⊆ R
and V2 ⊆ M satisfying that W1V2 ⊆ V1. Take W2 a 0-neighborhood in R so that W2a ⊆ V1.
Let W3 be a 0-neighborhood in R such that s + W3 ⊆ U(R). Since char(R) 6= 2 and s is
invertible, we have that s + s 6= 0, thus, since R is Hausdorff, there exists a 0-neighborhood
W4 ⊆ R such that −s − s /∈ W4. Consider the continuous function (recall that R is a
topological-inversion ring):

V3 → R
m 7→ s(s + m∗(m))−1,

(1)

where V3 is a 0-neighborhood in M such that V3 ⊆ (m∗)−1(W3 ∩W4). Note that (1) maps
0 to 1. Thus, we can find V4 ⊆ M a 0-neighborhood verifying that s(s + m∗(m))−1 ∈
1 + (W1 ∩W2) for all m ∈ V4 ∩V3. Finally, let V5 := V4 ∩V3 ∩V2 ∩V1. We will show that
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(a + V5) ∩ bd(A) ⊆ (m∗)−1({s}). Indeed, fix an arbitrary m ∈ V5 with a + m ∈ bd(A).
Denote t := s(s + m∗(m))−1 and v := (t − 1)a + (t − 1)m + m. Notice that v ∈ W2a +
W1V2 + V1 ⊆ V1 + V1 + V1 ⊆ V0. Therefore, t(a + m) = a + v ∈ a + V0. Additionally,
t(a + m) ∈ (m∗)−1({s}). As a consequence, t(a + m) ∈ bd(A). Since A is a fit body, either
t(a + m) = a + m or t(a + m) = −(a + m). Next, a + m 6= 0 because a + m ∈ bd(A) and
0 ∈ int(A). Additionally, M is torsionfree and R is an integral domain, hence either t = 1
or t = −1. In the latter case, m∗(m) = −s − s which is impossible by bearing in mind
that m∗(m) ∈ W4 but −s− s /∈ W4. As a consequence, t = 1 meaning that m∗(m) = 0, so
a + m ∈ (m∗)−1({s}).

3.2. Minkowski Bodies

Let M be a topological module over a topological ring R. Let A ⊆ M be an absorbing
subset [12–14]. Notice that if m ∈ M, then there exists a 0-neighborhood W ⊆ R such that
Wm ⊆ A. If R is practical, then we can find an invertible u ∈W ∩U(R). This fact motivates
the following definition, based also upon the classical Minkowski functional [15] in real or
complex topological vector spaces.

Definition 2 (Minkowski functional). Let M be a topological module over a practical topological-
inversion ring R. Let A ⊆ M be an absorbing subset. A Minkowski functional is a function

jA : M → U(R) ∪ {0}
m 7→ jA(m)

(2)

satisfying that jA(0) = 0 and, for every m ∈ M \ {0}, jA(m) ∈ U(R) and jA(m)−1m ∈ A.

Under the settings of the previous definition, observe that if u ∈ U(R), then gA(m) :=
ujA
(
u−1m

)
for every m ∈ M also defines a Minkowski functional.

Proposition 2. Let M be a topological module over a practical topological-inversion ring R. Let
A ⊆ M be an absorbing subset. There exists a Minkowski functional jA for A.

Proof. According to the Axiom of Choice, there exist choice functions φ : P(P(R)) \ {∅} →
P(R) and χ : P(U(R)) \ {∅} → U(R). They satisfy that φ(D) ∈ D for all D ∈ P(P(R)) \
{∅} and χ(Z) ∈ Z for all Z ∈ P(U(R)) \ {∅}. Let us then construct the Minkowski
functional for A by relying on the choice functions φ and χ. Indeed, fix an arbitrary
m ∈ M \ {0}. There exists a 0-neighborhood W ⊆ R such that Wm ⊆ A. Therefore, the
set Bm := {W ∈ P(R) : W is a 0-neighborhood such that Wm ⊆ A} is not empty, hence
Bm ∈ P(P(R)) \ {∅}. Observe that φ(Bm) ∈ Bm for all m ∈ M \ {0}. On the other hand,
since R is practical, for every m ∈ M \ {0} and every W ∈ Bm, we have that W ∩U(R) 6= ∅,
meaning that W ∩ U(R) ∈ P(U(R)) \ {∅}. Note that χ(W ∩ U(R)) ∈ W ∩ U(R). Then it
suffices to define jA(m) := χ(φ(Bm) ∩U(R))−1 for m ∈ M \ {0} and jA(0) = 0.

For the next definition, bear in mind that every body of a topological module which is
also a neighborhood of zero is absorbing.

Definition 3 (Minkowski body). Let M be a topological module over a practical topological-
inversion ring R. A subset A ⊆ M is said to be a Minkowski body if A is closed, 0 ∈ int(A), and
there exists a continuous Minkowski functional jA satisfying that jA(m)−1m ∈ bd(A) for every
m ∈ M \ {0} and jA(a) = 1 for all a ∈ bd(A).

The simplest example of a Minkowski body is the unit ball of a real or complex normed
space. The following is a nontrivial example of a Minkowski body.

Example 2. Let R := Q
[√

2
]

be endowed with the inherited topology from R. Notice that R is

a division ring because
√

2 is algebraic over Q. In fact, R is a non-discrete topological division



Axioms 2023, 12, 225 5 of 11

ring, so in particular it is a practical topological-inversion ring. Take A := [−1, 1] ∩ R. Then
A is a Minkowski body. Indeed, A is closed and 0 ∈ int(A), and jA(x) := |x| is a continuous
Minkowski functional satisfying that jA(x)−1x ∈ bd(A) for every x ∈ R \ {0} and jA(a) = 1 for
all a ∈ bd(A).

It is time now to state and prove the main result of this subsection.

Theorem 2. Let M be a topological module over a practical topological-inversion ring R. Let
m∗ ∈ M∗, A ⊆ M a Minkowski body, and s ∈ R \ rd(0) such that (m∗)−1({s}) ∩ int(A) = ∅
but (m∗)−1({s}) ∩ bd(A) 6= ∅. Then

int(m∗)−1({s})

(
(m∗)−1({s}) ∩ bd(A)

)
⊇ intbd(A)

(
(m∗)−1({s}) ∩ bd(A)

)
.

Proof. Fix an arbitrary a ∈ intbd(A)

(
(m∗)−1({s}) ∩ bd(A)

)
. There exists a 0-neighborhood

V0 ⊆ M such that (a + V0) ∩ bd(A) ⊆ (m∗)−1({s}). Another 0-neighborhood V1 ⊆ M can
be found in such a way that V1 + V1 + V1 ⊆ V0. Next, there are 0-neighborhoods W1 ⊆ R
and V2 ⊆ M satisfying that W1V2 ⊆ V1. Take W2 a 0-neighborhood in R so that W2a ⊆ V1.
Notice that the map

M \ {0} → U(R)
m 7→ jA(m)−1 (3)

is continuous and maps a to 1 (keep in mind that a 6= 0 because a ∈ bd(A) and 0 ∈ int(A)).
Let V3 be a 0-neighborhood in M such that jA((a + V3) ∩ (M \ {0}))−1 ⊆ 1 + (W1 ∩W2).
Finally, let V4 := V3 ∩V2 ∩V1. We will show that (a + V4)∩ (m∗)−1({s}) ⊆ bd(A). Indeed,
fix an arbitrary m ∈ V4 with a + m ∈ (m∗)−1({s}). Observe that a + m 6= 0 because s 6= 0,
hence jA(a + m) is invertible. Denote t := jA(a + m)−1 and v := (t− 1)a + (t− 1)m + m.
Notice that v ∈ W2a + W1V2 + V1 ⊆ V1 + V1 + V1 ⊆ V0. Therefore, t(a + m) = a + v ∈
a + V0. Additionally, t(a + m) ∈ bd(A). As a consequence, t(a + m) ∈ (m∗)−1({s}). Then
we obtain that ts = s. Since s is not a right 0-divisor, we conclude that t = 1 meaning that
a + m ∈ bd(A).

3.3. Exposed Faces

This section is devoted to construct nontrivial examples of topological modules and
bodies for which there exists a hyperplane intersecting the boundary of the body but not
the interior. We will rely on ordered topological rings and on the notion of exposed face [16],
taken from the Geometry of (real) Banach Spaces.

Lemma 1. Let M be a topological module over a topological ring R. If m∗ ∈ M∗ is so that
m∗(M) ∩U(R) 6= ∅, then m∗ is an open map.

Proof. Let m ∈ M such that m∗(m) ∈ U(R). We will show that m∗(V) is a 0-neighborhood
in R for every 0-neighborhood V ⊆ M. Indeed, there exists a 0-neighborhood W ⊆ R such
that Wm ⊆ V. Then Wm∗(m) = m∗(Wm) ⊆ m∗(V). Finally, Wm∗(m) is a 0-neighborhood
in R because m∗(m) is invertible. As a consequence, m∗(V) is a 0-neighborhood in R.

Definition 4 (Exposed face). Let M be a topological module over an ordered topological ring R.
Let m∗ ∈ M∗ and A ⊆ M such that sup m∗(A) exists in R. The set F(m∗, A) := {m ∈ A :
m∗(m) = sup m∗(A)} is called an exposed face.

Under the settings of the previous definition, F(m∗, A) = (m∗)−1({sup m∗(A)}) ∩ A.

Theorem 3. Let M be a topological module over an ordered topological ring R. Let m∗ ∈ M∗

and A ⊆ M such that sup m∗(A) exists in R. If m∗ is an open map, 0 ∈ cl(R+ \ {0}), and
(R+ \ {0})(R+ \ {0}) ⊆ R+ \ {0} , then F(m∗, A) ∩ inter(A) = ∅.
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Proof. Suppose on the contrary that there exists a ∈ F(m∗, A) ∩ inter(A). Since m∗ is open
and 0 ∈ cl(R+ \ {0}), we can find m ∈ M such that m∗(m) ∈ R+ \ {0}. Since a is an
internal point of A, there exists a 0-neighborhood V ⊆ R such that a + Vm ⊆ A. Take any
v ∈ V ∩ (R+ \ {0}). Notice that vm∗(m) > 0, hence m∗(a + vm) = m∗(a) + vm∗(m) >
m∗(a) reaching a contradiction with the fact that m∗(a) = sup m∗(A).

Under the settings of Theorem 3, observe that F(m∗, A)∩ int(A) = ∅ because int(A) ⊆
inter(A). Therefore, F(m∗, A) ⊆ bd(A). As a corollary of Theorem 3, we obtain the follow-
ing final result.

Corollary 1. Let R be a nondiscrete, integral domain, totally ordered topological ring R. Let M be a
topological R-module. Let A be a subset of M. If m∗ ∈ M∗ \ {0}, then F(m∗, A) ∩ inter(A) = ∅.

Proof. In the first place, since R is an integral domain, (R+ \ {0})(R+ \ {0}) ⊆ R+ \ {0}.
Next, let us show that 0 ∈ cl(R+ \ {0}). Indeed, let V be any additively symmetric
neighborhood of 0 in R. Since R is not discrete, V 6= {0}, so we can find v ∈ V \ {0}. Since
V is additively symmetric, by choosing −v if necessary, we may assume that v > 0. As
a consequence, 0 ∈ cl(R+ \ {0}). Nevertheless, with the hypotheses we have, we cannot
guarantee that m∗ will be an open map. Nonetheless, we can achieve the desired result.
Indeed, fix an arbitrary a ∈ inter(A) such that m∗(a) = max m∗(A). Since m∗ 6= 0, we
can fix m ∈ M such that m∗(m) 6= 0. By choosing −m if necessary, we may assume that
m∗(m) > 0. By hypothesis, there exists an additively symmetric neighborhood V ⊆ R of 0
such that a + Vm ⊆ A. We have just shown the existence of v ∈ V ∩ (R+ \ {0}). We have
also seen that vm∗(m) > 0. Next, a + vm ∈ a + Vm ⊆ A, thus

m∗(a) ≥ m∗(a + vm) = m∗(a) + vm∗(m) > m∗(a),

which is a contradiction.

3.4. The Stereographic Projection

This final section is aimed at constructing the stereographic projection. For this, we
will strongly rely on the affine manifolds given by the straight lines and the hyperplanes.

Definition 5 (Stereographic projection). Let M be a topological module over a topological-
inversion ring R. Let A ⊆ M be an additively symmetric body with 0 ∈ int(A). Let m∗ ∈ M∗

and s ∈ U(R) such that (m∗)−1({s}) ∩ int(A) = ∅ but (m∗)−1({s}) ∩ bd(A) 6= ∅. Let
a ∈ (m∗)−1({s}) ∩ bd(A) such that s + m∗(bd(A) \ {−a}) ⊆ U(R). The following map is
known as a stereographic projection:

bd(A) \ {−a} → (m∗)−1({s})
b 7→ −a + 2s(m∗(b) + s)−1(b + a).

(4)

Observe that the stereographic projection (4) is well-defined and continuous (note that
multiplicative inversion on R is continuous). In fact, notice also that φ(b) ∈ stU(−a, b) for
all b ∈ bd(A) \ {−a}.

Remark 1. Let M be a topological module over a topological division ring R. Let A ⊆ M be
an additively symmetric body with 0 ∈ int(A). If m∗ ∈ M∗ and s ∈ U(R) are such that
(m∗)−1({s}) ∩ int(A) = ∅ but (m∗)−1({s}) ∩ bd(A) is a singleton, then the only element
a ∈ (m∗)−1({s}) ∩ bd(A) satisfies that s + m∗(bd(A) \ {−a}) ⊆ U(R). Indeed, if b ∈
bd(A) \ {−a} satisfies that s + m∗(b) = 0, then −b ∈ (m∗)−1({s}) ∩ bd(A) = {a}, meaning
the contradiction that b = −a. As a consequence, the stereographic projection (4) is well-defined
and continuous.



Axioms 2023, 12, 225 7 of 11

The point is to determine under what circumstances the stereographic projection (4) is
a homeomorphism. For this, the following definition, based upon the classical notion of
strongly rotund point [17–22] from the Geometry of Banach Spaces, will be employed.

Definition 6 (Strongly rotund point). Let M be a topological module over a topological-inversion
ring R. Let A ⊆ M be an additively symmetric body with 0 ∈ int(A). An element a ∈ bd(A) is
said to be a strongly rotund point of A provided that there exist m∗ ∈ M∗ and s ∈ U(R), called the
supporting functional and support value, respectively, satisfying the following conditions:

• m∗(A) is relatively compact in R.
• (m∗)−1({s}) ∩ int(A) = ∅.
• (m∗)−1({s}) ∩ bd(A) = {a}.
• s + cl(m∗(bd(A) \ {−a})) \ {−s} ⊆ U(R).
• stU(−a, b) ∩ bd(A) = {−a, b} for all b ∈ bd(A).
• stU(−a, c) ∩ (bd(A) \ {−a}) 6= ∅ for all c ∈ (m∗)−1({s}).
• If (cj)j∈J ⊆ bd(A) \ {−a} is a net converging to −a, then

(
(m∗(cj) + s)−1(cj + a)

)
j∈J is

not convergent.

Notice that strongly rotund points are trivially preserved by isomorphisms of topo-
logical modules. The following remark gathers several considerations about strongly
rotund points.

Remark 2. Let M be a topological module over a topological ring R. Let A ⊆ M be an additively
symmetric body with 0 ∈ int(A). Let a ∈ bd(A) be a strongly rotund point of A with supporting
functional m∗ ∈ M∗ and support value s ∈ U(R). Observe the following:

• s 6= 0 because 0 ∈ int(A) and (m∗)−1({s}) ∩ int(A) = ∅. Additionally, if b ∈ bd(A) \
{−a}, then m∗(b) 6= −s because otherwise we conclude that b = −a in view of the fact that
(m∗)−1({s}) ∩ bd(A) = {a}. As a consequence, s + m∗(bd(A) \ {−a}) ⊆ U(R). For
these reasons, the condition s + cl(m∗(bd(A) \ {−a})) \ {−s} ⊆ U(R) is well-imposed in
Definition 6.

• If char(R) 6= 2, then −a /∈ (m∗)−1({s}) or equivalently −a 6= a. Indeed, if −a ∈
(m∗)−1({s}), then −s = s, hence (1 + 1)s = 0, so 1 + 1 = 0 because s is invertible,
contradicting that char(R) 6= 2.

Recall that, given a real or complex Banach space X with unit sphere SX and unit
ball BX, a closed subspace Y ⊆ X is said to be an L2-summand subspace of X if M is
L2-complemented in X, that is, there exists a closed subspace Z ⊆ X such that X = Y⊕2 Z,
in the sense that ‖y + z‖2 = ‖y‖2 + ‖z‖2 for all y ∈ Y and all z ∈ Z. A point x ∈ X is
said to be an L2-summand vector of X provided that Kx is an L2-summand subspace of
X, where K := R or C. By bearing in mind ([3], Lemma 2.1), if x ∈ SX is an L2-summand
vector of a real Banach space X, then x is a strongly rotund point of the unit ball BX of X in
the sense of Definition 6. A couple of technical lemmas will be needed before constructing
the stereographic projection.

Lemma 2. Let X, Y be topological spaces. Let f : X → Y be bijective. Let x ∈ X. Suppose that
for every net (xi)i∈I ⊆ X such that ( f (xi))i∈I converges to f (x), there exists a subnet (zj)j∈J of
(xi)i∈I convergent to x. Then f−1 is continuous at f (x).

Proof. Assume to the contrary that f−1 is not continuous at f (x). Then there exists a net
(xi)i∈I ⊆ X such that ( f (xi))i∈I converges to f (x) but (xi)i∈I does not converge to x. There
exists a neighborhood U of x and a subnet (zj)j∈J of (xi)i∈I such that zj /∈ U for all j ∈ J.
Note that ( f (zj))j∈J converges to f (x). Thus, by hypothesis, there exists a subnet (pk)k∈K
of (zj)j∈J convergent to x, which is a contradiction in view of the fact that zj /∈ U for all
j ∈ J.
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Lemma 3. Let M be a topological module over a topological ring R. Let (ri)i∈I ⊆ R and (mi)i∈I ⊆
M be nets such that (ri)i∈I is convergent to some r ∈ R and (rimi)i∈I is convergent to some m ∈ M.
If (mi)i∈I is bounded, then (rmi)i∈I converges to m.

Proof. It suffices to show that (rmi− rimi)i∈I converges to 0. Fix an arbitrary 0-neighborhood
U ⊆ M. There are 0-neighborhoods V ⊆ R and U1 ⊆ M such that VU1 ⊆ U. By hypothesis,
there exists an invertible u ∈ U(R) such that mi ∈ uU1 for all i ∈ I. There exists i0 ∈ I such
that r− ri ∈ Vu−1 for all i ≥ i0. Then, for all i ≥ i0, rmi − rimi = (r− ri)mi ∈ Vu−1uU1 =
VU1 ⊆ U.

At this stage, we are finally in the right position to construct the stereographic projection.

Theorem 4. Let M be a topological module over a topological-inversion ring R satisfying that
2 := 1 + 1 ∈ U(R). Let A ⊆ M be an additively symmetric body with 0 ∈ int(A). If there
exists a strongly rotund point a ∈ bd(A) with supporting functional m∗ ∈ M∗ and support value
s ∈ U(R), then the stereographic projection (4) is a homeomorphism.

Proof. First off, let us denote by φ to the stereographic projection (4). We already know
that φ is well-defined, φ(b) ∈ stU(−a, b) for all b ∈ bd(A) \ {−a}, and φ is trivially
continuous due to the fact that R is a topological-inversion ring. Let us check now that
φ is surjective. Fix an arbitrary c ∈ (m∗)−1({s}). If c = a, then φ(a) = a. Thus let
us assume that c 6= a. Since a is a strongly rotund point of A, by definition we have
that stU(−a, c) ∩ (bd(A) \ {−a}) 6= ∅. Let u ∈ U(R) such that b := −a + u(c + a) ∈
bd(A) \ {−a}. We will show that φ(b) = c. Indeed,

φ(b) = −a + 2s(m∗(b) + s)−1(b + a)

= −a + 2s(m∗(−a + u(c + a)) + s)−1(−a + u(c + a) + a)

= −a + 2s(−s + u2s + s)−1u(c + a)

= −a + (2s)(2s)−1u−1u(c + a)

= −a + c + a

= c.

Next step is to prove that φ is one-to-one. Indeed, take b1, b2 ∈ bd(A) \ {−a} with
φ(b1) = φ(b2). Then b2 = −a + (m∗(b2) + s)(m∗(b1) + s)−1(b1 + a) ∈ stU(−a, b1) ∩
bd(A) = {−a, b1}, meaning that b1 = b2. Let us finally prove that φ−1 is continuous. We
will rely on Lemma 2. Fix an arbitrary b ∈ bd(A) \ {−a}. Take a net (bi)i∈I ⊆ bd(A) \ {−a}
such that (φ(bi))i∈I converges to φ(b). We will show the existence of a subnet (cj)j∈J of
(bi)i∈I convergent to b. Indeed, m∗(A) is relatively compact in R, therefore there exists a
subnet (cj)j∈J of (bi)i∈I such that (m∗(cj))j∈J is convergent to some r ∈ R. Then (φ(cj))j∈J

converges to φ(b). This is equivalent to saying that
(
(m∗(cj) + s)−1(cj + a)

)
j∈J converges

to (m∗(b) + s)−1(b + a). Since (m∗(cj) + s)j∈J is convergent to r + s, we conclude that(
(m∗(cj) + s)(m∗(cj) + s)−1(cj + a)

)
j∈J converges to (r + s)(m∗(b) + s)−1(b + a), in other

words,
(
cj + a

)
j∈J converges to (r + s)(m∗(b) + s)−1(b + a), which is equivalent to stating

that
(
cj
)

j∈J converges to −a + (r + s)(m∗(b) + s)−1(b + a). At this point, observe that

r 6= −s since otherwise we obtain that (cj)j∈J converges to −a, reaching the contradiction
that

(
(m∗(cj) + s)−1(cj + a)

)
j∈J is not convergent by bearing in mind Definition 6. As a

consequence, r + s ∈ s + cl(m∗(bd(A) \ {−a})) \ {−s} ⊆ U(R), meaning that −a + (r +
s)(m∗(b) + s)−1(b + a) ∈ stU(−a, b). On the other hand, bd(A) is closed, hence −a + (r +
s)(m∗(b) + s)−1(b + a) ∈ bd(A). Since a is a strongly rotund point of A, stU(−a, b) ∩
bd(A) = {−a, b}. As a consequence, either −a + (r + s)(m∗(b) + s)−1(b + a) = −a or
−a + (r + s)(m∗(b) + s)−1(b + a) = b. If −a + (r + s)(m∗(b) + s)−1(b + a) = −a, then
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b = −a, which is impossible. Thus, −a + (r + s)(m∗(b) + s)−1(b + a) = b. By relying on
Lemma 2, we conclude that φ−1 is continuous at b.

4. Discussion

We will discuss a nontrivial example of a stereographic projection in a topological
module other than a real topological vector space. Observe that if M is a module over a
ring R, S ⊆ R is a subring of R, and m∗ ∈ M∗, then (m∗)−1(S) is an S-submodule of M.

Theorem 5. Let M be a topological module over a topological division ring R. Let A ⊆ M
be an additively symmetric body with 0 ∈ int(A). Let m∗ ∈ M∗ and s ∈ U(R) such that
(m∗)−1({s}) ∩ int(A) = ∅ but (m∗)−1({s}) ∩ bd(A) 6= ∅. Let a ∈ (m∗)−1({s}) ∩ bd(A)
such that s + m∗(bd(A) \ {−a}) ⊆ U(R). Consider the stereographic projection (4). If S ⊆ R is
a dense subring of R such that U(R) ∩ S = U(S) and s ∈ U(S), then B := A ∩ (m∗)−1(S) is an
additively symmetric body of the S-module (m∗)−1(S) with 0 ∈ int

(m∗)−1(S)(B) and the following
stereographic projection is well-defined and continuous:

bd
(m∗)−1(S)(B) \ {−a} → (m∗)−1({s})

b 7→ −a + 2s(m∗(b) + s)−1(b + a).
(5)

Proof. Note that B is trivially closed in (m∗)−1(S) since A is closed in M. In fact, 0 ∈
int(A) ∩ (m∗)−1(S) ⊆ int

(m∗)−1(S)(B). As a consequence, B is an additively symmetric

body of the S-module (m∗)−1(S) with 0 ∈ int
(m∗)−1(S)(B). It only remains to show that

s + m∗
(

bd
(m∗)−1(S)(B) \ {−a}

)
⊆ U(S).

Indeed, bd
(m∗)−1(S)(B) ⊆ bd(A) ∩ (m∗)−1(S), hence

s + m∗
(

bd
(m∗)−1(S)(B) \ {−a}

)
⊆ (s + m∗(bd(A) \ {−a})) ∩ S ⊆ U(R) ∩ S = U(S).

Finally, notice that, since S is dense in R and R is a topological division ring, then
(m∗)−1(S) is dense in M which implies, together with the fact that A is closed in M, that
int(A) ∩ (m∗)−1(S) = int

(m∗)−1(S)(B) and bd(A) ∩ (m∗)−1(S) = bd
(m∗)−1(S)(B).

Under the settings of Theorem 5, observe that if S is a proper subring of R, then
(m∗)−1(S) is a proper submodule of M, hence the stereographic projection (5) might not
be necessarily surjective. Theorem 5 allows plenty of examples of nontrivial stereographic
projections.

Example 3. Let X be a real Banach space of dimension strictly greater than 1. Let x ∈ SX and
x∗ ∈ SX∗ such that {x} = (x∗)−1({1})∩ SX . According to Remark 1, the stereographic projection

SX \ {−x} → (x∗)−1({1})
y 7→ −x + 2(x∗(y) + 1)−1(y + x)

(6)

is well-defined and continuous. Here, R := R, M := X, s = 1, m∗ = x∗, and A := BX . Now, take
S := Q

[√
2
]

and let N denote (x∗)−1(S) as S-module. Additionally, let B := BX ∩ N. In view of
Theorem 5, the stereograpahic projection

bdN(B) \ {−x} → (x∗)−1({1})
y 7→ −x + 2(x∗(y) + 1)−1(y + x)

(7)

is well-defined and continuous.
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5. Conclusions

The stereographic projection is possible in Rn with the Euclidean topology. Addi-
tionally, the setereographic projection is possible too in infinite-dimensional real Banach
spaces. This work transports the stereographic projection to the very abstract setting of
topological modules. Nontrivial examples have been discussed and provided. The category
of topological modules is probably the most general category where the stereographic
projection can be constructed. This is one step further in the study and comprehension of
the Geometry of Topological Modules. Applications to Quantum Topology will be studied
in a future work.
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