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Abstract: A T-spherical fuzzy set is a more powerful mathematical tool to handle uncertain and
vague information than several fuzzy sets, such as fuzzy set, intuitionistic fuzzy set, Pythagorean
fuzzy set, q-rung orthopair fuzzy set, and picture fuzzy set. The Aczel–Alsina t-norm and s-norm are
significant mathematical operations with a high premium on affectability with parameter activity,
which are extremely conducive to handling imprecise and undetermined data. On the other hand,
the Hamy mean operator is able to catch the interconnection among multiple input data and achieve
great results in the fusion process of evaluation information. Based on the above advantages, the
purpose of this study is to propose some novel aggregation operators (AOs) integrated by the Hamy
mean and Aczel–Alsina operations to settle T-spherical fuzzy multi-criteria decision-making (MCDM)
issues. First, a series of T-spherical fuzzy Aczel–Alsina Hamy mean AOs are advanced, including the
T-spherical fuzzy Aczel–Alsina Hamy mean (TSFAAHM) operator, T-spherical fuzzy Aczel–Alsina
dual Hamy mean (TSFAADHM) operator, and their weighted forms, i.e., the T-spherical fuzzy Aczel–
Alsina-weighted Hamy mean (TSFAAWHM) and T-spherical fuzzy Aczel–Alsina-weighted dual
Hamy mean (TSFAAWDHM) operators. Moreover, some related properties are discussed. Then, a
MCDM model based on the proposed AOs is built. Lastly, a numerical example is provided to show
the applicability and feasibility of the developed AOs, and the effectiveness of this study is verified
by the implementation of a parameters influence test and comparison with available methods.

Keywords: MCDM; T-spherical fuzzy set; Aczel-Alsina operations; Hamy mean
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1. Introduction

As one of the principal branches of decision science, the topics related to MCDM have
been extensively focused on in different disciplines, such as engineering, management,
and economics. In general, MCDM is utilized to ascertain the optimum solution based on
criteria and weights, and the evaluation information is often represented as real numbers
and used as decision inputs. However, the complexity of the practical decision system
makes it difficult for decision makers to make optimal and effective choices due to the fact
that the evaluation values are often ambiguous and uncertain during the decision. While
considering the vagueness, uncertainty, and incompleteness of evaluation information,
Atanassov [1] extended an intuitionistic fuzzy set (IFS) with the degree of membership
(MD) (τ) and the degree of non-membership (ND) (ϑ), based on the classical fuzzy set
(FS) [2]. The Pythagorean fuzzy set (PyFS) was proposed by Yager and Abbasov [3] to make
up for the deficiency when τ + ϑ > 1. Subsequently, Yager [4] introduced a more flexible
q-rung orthopair fuzzy set (q-ROFS) concept, namely, flexibly adjusting the decision range
expressed by MD and ND through the parameter q, and meeting the condition: τq +ϑq ≤ 1,
τ, ϑ ∈ [0,1]. However, the evaluation object cannot be fully described by relying only on MD
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and ND in the above various fuzzy sets. Thus, a picture fuzzy set (PFS) was developed by
Cuong [5], containing MD, abstinence degree (AD) (η ∈ [0,1]), and ND, as another form of
generalized FS that can describe more information. Although PFS has the ability to describe
AD information that IFS, PyFS, and q-ROFS cannot, it still has the limitation that it fails if
the total value of 3 degrees is more than 1. In this regard, the concept of the spherical fuzzy
set (SFS) was extended by Mahmood et al. [6], then they promoted it to the generalized
form, i.e., T-spherical fuzzy set (TSFS), to remove the restriction of decision-makers (DMs)
in the allocation of MD, AD, and ND with a larger decision space, enabling them to express
DMs’ preferences and opinions more freely. Obviously, the above extended fuzzy sets are
all special cases of TSFS, which has been widely studied by numerous scholars because of
the generalized form of TSFS with no limitations.

As one of the significant processing tools for fusing evaluation data, the study of AOs
in the TSFS environment has also been actively followed by many scholars. The algorithms
of TSFNs are important bases for AOs, and currently, t-norm and s-norm operations have
emerged, such as Algebraic [7], Hamacher [8], Einstein [9], interaction [10–12], Frank [13],
Dombi [14], Schweizer–Sklar [15], Aczel–Alsina (AA) [16], etc. Among the above opera-
tions, there are no decision-adjustable parameters contained in Algebraic, Hamacher, and
Einstein t-norm operations, and interactive operations emphasize the interaction relation-
ship between MD, AD, and ND in any two TSFNs to avoid counterintuitive phenomena
caused when the value of the membership function is zero. In addition, Frank, Dombi,
Schweizer–Sklar, AA, etc. are the t-norms operations containing decision-tunable parame-
ters, which increase the decision flexibility of the aggregation operator, as well as a limited
extent of generalization. In contrast, the AA t-norm and s-norm are more flexible to make
decisions [16]. Apart from the arithmetic average and geometric operators, there are various
novel AOs developed by integrating them with the Power, Bonferroni mean (BM), Heronian
mean (HeM), Maclaurin symmetric mean (MSM), Muirhead mean (MM), etc. For example,
some weighted algebraic AOs integrated with Power are advanced by Garg et al. [17] in the
TSFS environment, and Wang and Zhang [12] proposed novel T-spherical fuzzy interaction
power Heronian mean (TSFIPHeM)aggregation operators that integrated Power and HeM
operators and considered the interaction of TSFNs. Liu et al. [18] extended the general-
ized Maclaurin symmetric mean (GMSM) operator to TSFS and proposed the T-spherical
fuzzy GMSM operator (TSFGMSM) and the T-spherical fuzzy weighted GMSM operator
(TSFWGMSM). Liu et al. [19] developed some T-spherical fuzzy power Muirhead mean
(TSFPMM) and T-spherical fuzzy power dual Muirhead mean (TSFPDMM)aggregation
operators based on the advantages of Power integrated with the Muirhead mean. Yang
and Pang [20] developed a series of interaction BM (TSFIBM), interaction geometric BM
(TSFIGBM), Dombi BM (TSFDBM), and geometric Dombi BM (TSFGDBM) aggregation
operators in the TSFS context.

Aczel and Alsina [21] proposed two operations, i.e., AA t-norm and s-norm, emphasiz-
ing the significance of adjustable parameters. Currently, some scholars have extended AA
operations to different decision environments, such as hesitant fuzzy set [22], IFS [23–27],
PyFS [28,29], q-ROFS [30], PFS [31,32], SFS [33,34], TSFS [16], Neutrosophic set [35–37],
complex q-ROFS [38], bipolar complex fuzzy set [39], and cubic Fermatean fuzzy set [40].
Therefore, a variety of aggregation operators have been developed to solve decision chal-
lenges indifferent environments. From the above works, we find that some AA operation
laws were extended in different decision-making environments, and in many, the weighted
averaging and geometric AOs were developed according to AA operation rules. For
instance, Senapati et al. [23,25] advanced some weighted average AOs in IFS and interval-
valued IFS successively. Meanwhile, Senapati et al. [24,26] developed some weighted
geometric AOs in IFS and interval-valued IFS. Further, Senapati et al. [29–31] proposed
some weighted average AOs in PyFS, q-ROFS, and PFS. Naeem et al. [32] raised weighted
geometric AOs in PFS. Several weighted average and geometric AOs were developed by
Hussain et al. [16] in the TSFS environment. Senapati et al. [22] designed a hesitant fuzzy
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AA weighted BM (HFAAWBM) operator, in addition to developing weighted average and
geometric AOs.

From the above review, we grasp that various AOs can be utilized to handle practical
MCDM issues. To obtain the optimal option effectively by using the MCDM method, the
evaluation information should be handled more expediently and availably. The TSFS, as a
generalized shape of IFS, PyFS, q-ROFS, PFS, and SFS, is one of the most effective means
to cope with the ambiguity and uncertainty in assessing data. The Hamy mean (HM) is
an aggregation function. Like MSM and MM, HM can reflect the interrelationship among
multiple attributes, but its calculation process is not as complex as MSM and MM. However,
the HM operator has not been extended in the TSFS context. In addition, AA operation
is more generalized and flexible than the existing operations, such as Hamcher, Einstein,
Frank, and Dombi [16]. At present, it can be combined with various aggregation functions,
but unfortunately, the research on the new AOs, based on AA operations with the capacity
to capture the interrelationship among multiple variables, has not yet appeared. In order
to fill the above two research gaps, it is necessary to develop a series of TSFAAHM AOs,
based on the advantages of HM and AA, and to design some aggregation function-based
MCDM methods in the T-spherical fuzzy environment.

The contributions of this paper are outlined below:

(1) We proposed some new AOs for TSFS, which include the TSFAAHM, TSFAADHM,
TSFAAWHM, and TSFAAWDHM operators, and some related properties are discussed.

(2) We designed a novel T-spherical fuzzy MCDM method based on the TSFAAWHM or
TSFAAWDHM operator.

(3) We tested the applicability of our proposed aggregation function-based MCDM
method by solving investment decision issues.

(4) The proposed method is performed by parameter analysis and comparison analysis,
with existing methods to show its reliability and effectiveness.

Therefore, the article is structured as follows. Some ideas of TSFS and AA operations
of T-spherical fuzzy numbers are briefly reviewed in Section 2. We define a series of
TSFAAHM AOs and analyze their relative properties in Section 3. In Section 4, we construct
a MCDM model of applying TSFAAWHM and TSFAAWDHM operators. In Section 5,
the validity of the method is verified by solving the investment firm decision problem
in a numerical example, and the superiorities of the developed model are depicted by
sensitivity and comparative study. Finally, we present the final conclusion in Section 6.

2. Preliminaries

Some basic ideas for TSFSs to make the manuscript self-contained are given in this section.

Definition 1 ([6]). Suppose X is a universe set, then the TSFS can be defined as

= = {〈x, (τ=(x), η=(x), ϑ=(x))〉|x ∈ X} (1)

where τ=(x), η=(x), ϑ=(x) are respectively the MD, AD, and ND of element x ∈ = in X, i.e.,
τ=(x), η=(x), ϑ=(x) ∈ [0, 1], and satisfying 0 ≤ τ

q
=(x) + η

q
=(x) + ϑ

q
=(x) ≤ 1, q ≥ 1 for

∀x ∈ X. π=(x) = q
√

1− τ
q
=(x)− η

q
=(x)− ϑ

q
=(x) is called the degree of refusal. In order to

facilitate, δ = (τ, η, ϑ) denoted the T-spherical fuzzy number (TSFN).

Definition 2 ([11]). Suppose δ = (τ, η, ϑ) is a TSFN, then the score function sc(δ) is defined as

sc(δ) =
1 + τq − ηq − ϑq

2
(2)

and the accuracy function ac(δ) is described as

ac(δ) = τq + ηq + ϑq (3)
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Let δ1 = (τ1, η1, ϑ1) and δ2 = (τ2, η2, ϑ2) be two TSFNs, the laws of comparing the two
TSFNs are as below:

(1) If sc(δ1) is greater than sc(δ2), then δ1 is superior to δ2, i.e., δ1 > δ2;
(2) If sc(δ1) is equal to sc(δ2), then (i) if ac(δ1) is larger than ac(δ2), then δ1 is superior to δ2,

i.e., δ1 > δ2; (ii) if ac(δ1) is the same as ac(δ2), then δ1 is equal to δ2, namely, δ1 = δ2.

Definition 3 ([6]). Suppose δ = (τ, η,ϑ), δ1 = (τ1, η1, ϑ1), and δ2 = (τ2, η2, ϑ2) are three arbitrary
TSFNs, their basic operations are depicted as follows (λ > 0):

(1) δ1 ⊕ δ2 =

(
q
√

τ
q
1 + τ

q
2 − τ

q
1 τ

q
2 , η1η2, ϑ1ϑ2

)
;

(2) δ1 ⊗ δ2 =

(
τ1τ2, q

√
η

q
1 + η

q
2 − η

q
1η

q
2 , q
√

ϑ
q
1 + ϑ

q
2 − ϑ

q
1ϑ

q
2

)
;

(3) λ · δ =

(
q
√

1− (1− τq)λ, ηλ, ϑλ

)
;

(4) δλ =

(
τλ, q
√

1− (1− ηq)λ, q
√

1− (1− ϑq)λ
)

.

Definition 4 ([21]). Suppose x and y are two arbitrary, non-negative real numbers (x, y > 0), then
the t-norm and s-norm of Aczel–Alsina can be described as follows:

Tϕ
A(x, y) = exp

{
−
(
(− ln x)ϕ + (− ln y)ϕ)1/ϕ

}
, ϕ > 0 (4)

Sϕ
A(x, y) = 1− exp

{
−
(
(− ln(1− x))ϕ + (− ln(1− y))ϕ)1/ϕ

}
, ϕ > 0 (5)

Hussain et al. [16] proposed the Aczel–Alsina operation laws for TSFNs based on the
TSFS concept and Definition 4.

Definition 5 ([16]). Let δ1 = (τ1, η1, ϑ1) and δ2 = (τ2, η2, ϑ2) be any two TSFNs, q ≥ 1, λ,
ϕ ≥ 0, and then their AA operation laws are defined as:

(1) δ1 ⊕AA δ2 =


q

√
1− exp

{
−
((
− ln(1− τ

q
1 )
)ϕ

+
(
− ln(1− τ

q
2 )
)ϕ)1/ϕ

}
, q

√
exp

{
−
((
− ln(ηq

1)
)ϕ

+
(
− ln(ηq

2)
)ϕ)1/ϕ

}
,

q

√
exp

{
−
((
− ln(ϑq

1)
)ϕ

+
(
− ln(ϑq

2)
)ϕ)1/ϕ

}
;

(2) δ1 ⊗AA δ2 =


q

√
exp

{
−
((
− ln(τq

1 )
)ϕ

+
(
− ln(τq

2 )
)ϕ)1/ϕ

}
, q

√
1− exp

{
−
((
− ln(1− η

q
1)
)ϕ

+
(
− ln(1− η

q
2)
)ϕ)1/ϕ

}
,

q

√
1− exp

{
−
((
− ln(1− ϑ

q
1)
)ϕ

+
(
− ln(1− ϑ

q
2)
)ϕ)1/ϕ

}
;

(3) λ ·AA δ1 =

(
q

√
1− exp

{
−
(

λ
(
− ln(1− τ

q
1 )
)ϕ)1/ϕ

}
, q

√
exp

{
−
(

λ
(
− ln(ηq

1)
)ϕ)1/ϕ

}
, q

√
exp

{
−
(

λ
(
− ln(ϑq

1)
)ϕ)1/ϕ

})
;

(4) δ∧AAλ
1 =

(
q

√
exp

{
−
(

λ
(
− ln(τq

1 )
)ϕ)1/ϕ

}
, q

√
1− exp

{
−
(

λ
(
− ln(1− η

q
1)
)ϕ)1/ϕ

}
, q

√
1− exp

{
−
(

λ
(
− ln(1− ϑ

q
1)
)ϕ)1/ϕ

})
.

Theorem 1 ([16]). Let δ1 = (τ1, η1, ϑ1) and δ2 = (τ2, η2, ϑ2) be any two TSFNs, λ is a real
number, λ1, λ2 ≥ 0, and then the following operation properties are satisfied:

(1) δ1 ⊕AA δ2 = δ2 ⊕AA δ1;
(2) δ1 ⊗AA δ2 = δ2 ⊗AA δ1;
(3) λ(δ1 ⊕AA δ2) =λδ1 ⊕AA λδ2;
(4) λ1δ1 ⊕AA λ2δ1 = (λ1 + λ2)δ1;
(5) (δ1 ⊗AA δ2)

∧AA λ = δ
∧AAλ
1 ⊗AA δ

∧AAλ
2 ;

(6) δλ1
1 ⊗AA δλ2

1 = δ
∧AA(λ1+λ2)
1 .
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3. Some TSFAAHM Operators

We propose a series of TSFAAHM AOs involving some AA operations of TSFNs,
including the TSFAAHM, TSFAADHM, TSFAAWHM, and TSFAAWDHM operators. Then,
we analyze their properties and discuss their special cases.

3.1. HM and DHM Operators

Hara [41] introduced an AO for non-negative real numbers in 1998, i.e., HM, which
has the capacity to concern the interconnection among multiple input arguments. The
specific definition of HM is described as below.

Definition 6 ([41]). Suppose ai(i = 1, 2, 3, . . . , n) is a set of non-negative real numbers, γ = 1, 2,
. . . , n. If

HM(γ)(a1, a2, . . . , an) =

∑
1≤i1<···<iγ≤n

(
γ

∏
j=1

aij

)1/γ

Cγ
n

(6)

Then, HM(γ) is named as the Hamy mean, where (i1, i2, . . . , iγ) traverses all the γ-tuple combina-
tions of (1, 2, . . . , n), and Cn

γ is the binomial coefficient.

Furthermore, a dual form of HM, i.e., dual Hamy mean (DHM), was developed by
We et al. [42].

Definition 7 ([42]). Suppose ai(i = 1, 2, 3, . . . , n) is a set of non-negative real numbers, γ = 1, 2,
. . . , n. If

DHM(γ)(a1, a2, . . . , an) =

 ∏
1≤i1<···<iγ≤n


γ

∑
j=1

aij

γ




1/Cγ
n

(7)

Then, DHM(γ) is named as the dual Hamy mean.

3.2. TSFAAHM and TSFAAWHM Operators

Definition 8. Let δi = (τi, ηi, ϑi) (i = 1, 2, 3, . . . , n) be a family of TSFNs, the form of the
TSFAAHM operator can be portrayed as:

TSFAAHM(γ)(δ1, δ2, . . . , δn) =

⊕
1≤i1<...<iγ≤n

(
⊗γ

j=1δij

) 1
γ

Cγ
n

(8)

where γ (γ = 1, 2, . . . , n) is the parameter of this operator, and Cγ
n = n!

γ!(n−γ)! is the binomial
coefficient with the constraint of 1 ≤ i1 < i2 < . . . < iγ ≤ n.

According to the AA operation laws of TSFNs, the aggregation results of Equation (8)
are as follows.

Theorem 2. Suppose δi = (τi, ηi, ϑi) (i = 1, 2, . . . , n) is a family of TSFNs, the outcome of the
TSFAAHM operator is still TSFN based on the Definition 5, i.e.,
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TSFAAHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− η

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− ϑ

q
ij
))
)ϕ
]1/ϕ


ϕ1/ϕ

,


(9)

Proof of Theorem 2. On the basis of the AA operation laws of TSFNs, there are:

⊗γ
j=1 δij =

 q

√√√√√exp

−
[

γ

∑
j=1

(
− ln

(
τ

q
ij

))ϕ
]1/ϕ

, q

√√√√√1− exp

−
[

γ

∑
j=1

(
− ln

(
1− η

q
ij

))ϕ
]1/ϕ

, q

√√√√√1− exp

−
[

γ

∑
j=1

(
− ln

(
1− ϑ

q
ij

))ϕ
]1/ϕ




and

(
⊗γ

j=1δij

) 1
γ
=


q

√√√√√exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
τ

q
ij

))ϕ
]1/ϕ

, q

√√√√√1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− η

q
ij

))ϕ
]1/ϕ

,

q

√√√√√1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− ϑ

q
ij

))ϕ
]1/ϕ




Then,

⊕
1≤i1<...<iγ≤n

(
⊗γ

j=1δij

) 1
γ
=



q

√√√√√√1− exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
τ

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− η

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− ϑ

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ

,


Therefore,

TSFAAHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− η

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− ϑ

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ





Therefore, Theorem 2 is proved completely. �

Example 1. Suppose δ1 = (0.6, 0.7, 0.5), δ2 = (0.9, 0.1, 0.4), δ3 = (0.7, 0.6, 0.6), and δ4 = (0.2, 0.8,
0.3) are four TSFNs, then the values of the parameters are shown as: q = 3, γ = 2, ϕ = 3. Then, we
can obtain the following calculation results by utilizing Equation (9):

The MDs of δ1, δ2, δ3, and δ4 are aggregated as:
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3

√√√√√√√√√√1− exp


−

 1
6


− ln

1− exp

−
 1

2

((
− ln

(
0.63

))3
+
(
− ln

(
0.93

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.63

))3
+
(
− ln

(
0.73

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.63

))3
+
(
− ln

(
0.23

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.93

))3
+
(
− ln

(
0.73

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.93

))3
+
(
− ln

(
0.23

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.73

))3
+
(
− ln

(
0.23

))3
) 1

3


3




1
3


= 0.736
The ADs of δ1, δ2, δ3, and δ4 are aggregated as:

3

√√√√√√√√√√exp


−

 1
6


− ln

1− exp

−
 1

2

((
− ln

(
1− 0.73

))3
+
(
− ln

(
1− 0.13

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.73

))3
+
(
− ln

(
1− 0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.73

))3
+
(
− ln

(
1− 0.83

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.13

))3
+
(
− ln

(
1− 0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.13

))3
+
(
− ln

(
1− 0.83

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.63

))3
+
(
− ln

(
1− 0.83

))3
) 1

3


3




1
3


= 0.518

Similarly, the NDs of δ1, δ2, δ3, and δ4 are aggregated as:

3

√√√√√√√√√√exp


−

 1
6


− ln

1− exp

−
 1

2

((
− ln

(
1− 0.53

))3
+
(
− ln

(
1− 0.43

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.53

))3
+
(
− ln

(
1− 0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.53

))3
+
(
− ln

(
1− 0.33

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.43

))3
+
(
− ln

(
1− 0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.43

))3
+
(
− ln

(
1− 0.33

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.63

))3
+
(
− ln

(
1− 0.33

))3
) 1

3


3




1
3


= 0.304

Therefore, TSFAAHM(2)(δ1, δ2, δ3, δ4) = (0.736, 0.518, 0.304).
Further, we should analyze the relative properties of the TSFAAHM operator.

Theorem 3. Suppose δi = (τi, ηi, ϑi) (i = 1, 2, . . . , n) are a group of TSFNs, the TSFAAHM
operator can meet the below properties:

(1) (Idempotency) If the values of all TSFNs are equal, i.e., δi = δ = (τ, η, ϑ), then

TSFAAHM(γ)(δ1, δ2, . . . , δn) = δ (10)

(2) (Boundness) Let δ− = minδi and δ+ = maxδi, then

δ− ≤ TSFAAHM(γ)(δ1, δ2, . . . , δn) ≤ δ+ (11)

(3) (Monotonicity) Let δ′ i = (τ′ i, η′ i, ϑ′ i) (i = 1, 2, . . . , n) be another group of TSFNs, if all
isatisfy δi ≤ δ′ i, i.e., τi ≤ τ′ i, ηi ≤ η′ i and ϑi ≥ ϑ′ i, then

TSFAAHM(γ)(δ1, δ2, . . . , δn) ≤ TSFAAHM(γ)(δ′1, δ′2, . . . , δ′n) (12)

The above properties can be proved as follows.

Proof of Theorem 3. (1) (Idempotency) According to Theorem 2, the following can be
obtained from the TSFAAHM operator, i.e.,:
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q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


= q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(− ln(τq))ϕ

]1/ϕ

ϕ1/ϕ


= q

√√√√√1− exp

−
[

1
Cγ

n
∑

1≤i1<...<iγ≤n

(
− ln

(
1− exp

{
−
[
(− ln(τq))ϕ]1/ϕ

}))ϕ
]1/ϕ


= q

√
1− exp

{
−
[(
− ln

(
1− exp

{
−
[
(− ln(τq))ϕ]1/ϕ

}))ϕ]1/ϕ
}

= τ

Similarly,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− η

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

 = η;

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− ϑ

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

 = ϑ.

Therefore, TSFAAHM(γ)(δ1, δ2, . . . , δn) = (τ, η, ϑ) = δ.
So, the idempotency of the operator is proved.
(2) (Boundness) Due to δ− = minδi, on the basis of the above idempotency of the

TSFAAHM operator, then:

TSFAAHM(γ)(δ1, δ2, . . . , δn) =

⊕
1≤i1<...<iγ≤n

(
⊗γ

j=1δij

) 1
γ

Cγ
n

≥
⊕

1≤i1<...<iγ≤n

(
⊗γ

j=1δ−
) 1

γ

Cγ
n

=
Cγ

n
(
(δ−)γ) 1

γ

Cγ
n

= δ−

Similarly, TSFAAHM(γ)(δ1, δ2, . . . , δn) ≤ δ+.
Therefore, δ− ≤ TSFAAHM(γ)(δ1, δ2, . . . , δn) ≤ δ+, the boundness of this operator is

validated.
(3) (Monotonicity) Due to τi ≤ τ′i , ηi ≥ η′i , ϑi ≥ ϑ′i , τi, τ′i , ηi, η′i , ϑi, ϑ′i ∈ [0, 1], then
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γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
≥

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ

⇒ −
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ

≤ −
[

1
γ

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ
]1/ϕ

⇒ 1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ

 ≥ 1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ
]1/ϕ


⇒ ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ

≤ ∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ
]1/ϕ


ϕ

⇒ −

 1
Cγ

n
∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

≥ −

 1
Cγ

n
∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

⇒ q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


≤⇒ q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(τ

′q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


Similarly,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− η

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


≥ q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− η

′q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− ϑ

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


≥ q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− ϑ

′q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ


On the basis of Theorem 2, TSFAAHM(γ)(δ1, δ2, . . . , δn) ≤ TSFAAHM(γ)(δ′1, δ′2,

. . . , δ′n) is obtained. Thus, the monotonicity of the operator is certified.
Therefore, the proof of the properties of the TSFAAHM operator is completed. �

Although the TSFAAHM operator is able to consider the interrelationship between
various criteria, it neglects the degree of importance of each criterion, for which we develop
the TSFAAWHM operator, as below.

Definition 9. Suppose δi = (τi, ηi, ϑi) (i = 1, 2, . . . , n) is a group of TSFNs, w = (w1, w2, . . . ,
wn)T is denoted the weight vector of δi(i = 1, 2, . . . , n), meeting wi ∈ [0,1] and ∑n

i=1 wi = 1. If

TSFAAWHM(γ)(δ1, δ2, . . . , δn) =

⊕
1≤i1<...<iγ≤n

(
⊗γ

j=1wij δij

) 1
γ

Cγ
n

(13)
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Then, the operator is named as the TSFAAWHM operator.

On the basis of the AA operation laws of TSFNs, the aggregation result of Equation (13)
is as follows.

Theorem 4. Suppose δi = (τi, ηi, ϑi) (i = 1, 2, . . . , n) is a family of TSFNs, the aggregation result
of the TSFAAWHM operator is still TSFN, i.e.,

TSFAAWHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(τq

ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(1− η

q
ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√1− exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(1− ϑ

q
ij
)

)ϕ
]1/ϕ


ϕ1/ϕ




(14)

The aggregation result of the TSFAAWHM operator is still TSFN, and its proof is
identical to Theorem 2. Hence, we ellipsis it here.

The TSFAAWHM operator still satisfies monotonicity and boundness, but not idempo-
tency. So, we omit the proof here.

3.3. TSFAADHM and TSFAAWDHM Operators

Definition 10. Let δi = (τi, ηi, ϑi) (i = 1, 2, . . . , n) be a family of TSFNs, the TSFAADHM
operator is described as

TSFAADHM(γ)(δ1, δ2, . . . , δn) =

(
⊗

1≤i1<...<iγ≤n

(
⊕γ

j=1δij

γ

)) 1
Cγ

n
(15)

According to the AA operation laws of TSFNs, the aggregation result of Equation (15)
is as below.

Theorem 5. Suppose δi (i = 1, 2, 3, . . . , n) is a group of TSFNs. Based on the AA operation laws
for TSFNs of Definition 5, then the result of the TSFAADHM operator is still TSFN, i.e.,

TSFAADHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− τ

q
ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(ηq

ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(ϑq

ij
)

)ϕ
]1/ϕ


ϕ1/ϕ




(16)

Proof of Theorem 5. According to the AA operation rules of TSFNs, we have

⊕γ
j=1 δij =

 q

√√√√√1− exp

−
[

γ

∑
j=1

(
− ln

(
1− τ

q
ij

))ϕ
]1/ϕ

, q

√√√√√exp

−
[

γ

∑
j=1

(
− ln

(
η

q
ij

))ϕ
]1/ϕ

, q

√√√√√exp

−
[

γ

∑
j=1

(
− ln

(
ϑ

q
ij

))ϕ
]1/ϕ




and

⊕γ
j=1δij

γ
=

 q

√√√√√1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− τ

q
ij

))ϕ
]1/ϕ

, q

√√√√√exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
η

q
ij

))ϕ
]1/ϕ

, q

√√√√√exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
ϑ

q
ij

))ϕ
]1/ϕ



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Then,

⊗
1≤i1<...<iγ≤n

(
⊕γ

j=1δij

γ

)
=



q

√√√√√√exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
1− τ

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
η

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ

.

q

√√√√√√exp

−
 ∑

1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln

(
ϑ

q
ij

))ϕ
]1/ϕ


ϕ1/ϕ




Thus,

TSFAADHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(1− τ

q
ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(ηq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

(
− ln(ϑq

ij
)
)ϕ
]1/ϕ


ϕ1/ϕ




Therefore, the proof of theorem 5 is completed. �

Example 2. Suppose δ1 = (0.6, 0.7, 0.5), δ2 = (0.9, 0.1, 0.4), δ3 = (0.7, 0.6, 0.6), and δ4 = (0.2, 0.8,
0.3) are four TSFNs, and the values of the parameters are shown as q = 3, γ = 2, ϕ = 3. Then, we
can obtain the following calculation results by utilizing Equation (16).

The MDs of δ1, δ2, δ3, and δ4 are aggregated as:

3

√√√√√√√√√√exp


−

 1
6


− ln

1− exp

−
 1

2

((
− ln

(
1− 0.63

))3
+
(
− ln

(
1− 0.93

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.63

))3
+
(
− ln

(
1− 0.73

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.63

))3
+
(
− ln

(
1− 0.23

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.93

))3
+
(
− ln

(
1− 0.73

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.93

))3
+
(
− ln

(
1− 0.23

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
1− 0.73

))3
+
(
− ln

(
1− 0.23

))3
) 1

3


3




1
3


= 0.533

The ADs of δ1, δ2, δ3, and δ4 are aggregated as:

3

√√√√√√√√√√1− exp


−

 1
6


− ln

1− exp

−
 1

2

((
− ln

(
0.73

))3
+
(
− ln

(
0.13

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.73

))3
+
(
− ln

(
0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.73

))3
+
(
− ln

(
0.83

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.13

))3
+
(
− ln

(
0.63

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.13

))3
+
(
− ln

(
0.83

))3
) 1

3


3

+

− ln

1− exp

−
 1

2

((
− ln

(
0.63

))3
+
(
− ln

(
0.83

))3
) 1

3


3




1
3


= 0.722

Similarly, The NDs of δ1, δ2, δ3, and δ4 are aggregated as:
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3

√√√√√√√√√√√√√√√√
1− exp


−


1
6



(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.53

))3
+
(
− ln

(
0.43

))3
) 1

3

]}))3

+

(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.53

))3
+
(
− ln

(
0.63

))3
) 1

3

]}))3

+

(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.53

))3
+
(
− ln

(
0.33

))3
) 1

3

]}))3

+

(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.43

))3
+
(
− ln

(
0.63

))3
) 1

3

]}))3

+

(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.43

))3
+
(
− ln

(
0.33

))3
) 1

3

]}))3

+

(
− ln

(
1− exp

{
−
[

1
2

((
− ln

(
0.63

))3
+
(
− ln

(
0.33

))3
) 1

3

]}))3





1
3


= 0.467

Therefore, TSFAADHM(2)(δ1, δ2, δ3, δ4) = (0.533, 0.722, 0.467).

The TSFAADHM operator satisfies monotonicity, boundness, and idempotency. The
proof of these properties resembles Theorem 3.

In order to address the condition that the TSFAADHM operator neglects the impor-
tance degree of each criterion, we can define the TSFAAWDHM operator.

Definition 11. Suppose δi (i = 1, 2, . . . , n) is a group of TSFNs, w = (w1, w2, . . . , wn)T is denoted
as the weight vector of δi (i = 1, 2, . . . , n), meeting wi ∈ [0,1] and ∑n

i=1 wi = 1. If

TSFAAWDHM(γ)(δ1, δ2, . . . , δn) =

(
⊗

1≤i1<...<iγ≤n

(
⊕γ

j=1wij δij

γ

)) 1
Cγ

n
(17)

Then, the operator is named as the TSFAAWDHM operator.

According to the AA operation laws for TSFNs, the aggregation result of Equation (17)
is as below.

Theorem 6. Suppose δi (i = 1, 2, . . . , n) is a group of TSFNs. The integration result of the
TSFAAWDHM operator is still TSFN, i.e.,

TSFAAWDHM(γ)(δ1, δ2, . . . , δn) =



q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(1− τ

q
ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(ηq

ij
)

)ϕ
]1/ϕ


ϕ1/ϕ

,

q

√√√√√√exp

−
 1

Cγ
n

∑
1≤i1<...<iγ≤n

− ln

1− exp

−
[

1
γ

γ

∑
j=1

wij

(
− ln(ϑq

ij
)

)ϕ
]1/ϕ


ϕ1/ϕ




(18)

The TSFAAWDHM operator still satisfies monotonicity and boundness, but not idem-
potency. The proof process is omitted here.

4. MCDM Based on the TSFAAHM Aggregation Operators

The T-spherical fuzzy (TSF) MCDM problems can be described as: H = {h1, h2, . . . , hm}
is denoted as a family of alternatives, C = {c1, c2, . . . , cn} is denoted as a family of criteria,
and its weight vector is named as w = (w1, w2, . . . , wn)T, meeting 0 ≤ wi ≤ 1, ∑n

i=1 wi = 1.
The criteria weight vector is determined by the comprehensive evaluation of the expert
group for assignment. D = [dij]m×n is denoted as the initial TSF evaluation matrix given by
experts, where dij = (τij, ηij, ϑij) is denoted as the expert’s evaluation value of alternative



Axioms 2023, 12, 224 13 of 23

hi with respect to criterion cj and is expressed in terms of TSFN and satisfies 0 ≤ τij, ηij,
ϑij ≤ 1 and 0 ≤ (τij)q + (ηij)q + (ϑij)q ≤ 1 (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; q ≥ 1).

D =

c1 c2 · · · cn
h1
h2
...
hm


d11
d21
...
dm1

d12
d22
...
dm2

· · ·
· · ·
. . .
· · ·

d1n
d2n
...
dmn


Based on the above depiction of the TSFMCDM problem, we should apply the devel-

oped TSFAAWHM and TSFAAWDHM operators to handle the MCDM problem and obtain
the best alternative. The specific steps are depicted as below.

Step 1. The initial T-spherical fuzzy evaluation matrix should be normalized. Generally,
the criteria in the MCDM problem can be classified into cost- and benefit-type criteria.
The former needs to be transformed into a benefit-type criterion, and the transformation
process can be implemented by Equation (19). Therefore, the standardized T-spherical
fuzzy decision-making matrix R = [rij]m×n is obtained.

rij =

{
dij = (τij, ηij, ϑij), j ∈ J1

(dij)
C = (ϑij, ηij, τij), j ∈ J2

(19)

where (dij)C is the complement of dij, J1 and J2 express, respectively, the criteria of the
benefit- and cost-type.

Step 2. The comprehensive value for each alternative with regard to all criteria
evaluation data can be computed by the TSFAAWHM (Equation (20)) or the TSFAAWDHM
operator (Equation (21)).

fi = TSFAAWHM(γ)(ri1, ri2, . . . , rin) =
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(20)

or

fi = TSFAAWDHM(γ)(ri1, ri2, . . . , rin) =


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(21)

Step 3. The results of the score function sc(fi) (Equation (2)) and accuracy function ac(fi)
(Equation (3)) are calculated for each alternative. Then, the best option is determined after
the descending ranking of alternatives, the bigger the better.

Step 4. End.

5. Numerical Example

The applicability and effectiveness of the developed aggregation operator in a TSF
context can be proved by discussing the application of the developed model to evaluate
and select the optimal investment strategy (revised from Ullah et al. [43]) in this section.



Axioms 2023, 12, 224 14 of 23

5.1. Application for Investment

Suppose that an investment company plans to choose the most desirable one to select
and invest among four companies (alternatives): (1) a car company (h1); (2) a food company
(h2); (3) a computer company (h3); and (4) an arms company (h4). Through preliminary
research and study, the experts selected five factors as evaluation criteria: c1 (risk of loss of
investment capital); c2 (probability of return on capital investment); c3 (prospects for market
development); c4 (total capital subject to inflation); and c5 (industry growth potential). All
of the five criteria had a great impact on the success of the investment strategy, and the
experts provided their evaluations with all five criteria in mind. Let w = (0.15, 0.2, 0.3,
0.2, 0.15)T be the weight vector of the criteria. The expert panel expressed the evaluation
information for each alternative with each criterion by using TSFN. Therefore, the initial
TSF evaluation matrix D was given by the expert panel and is shown in Table 1.

Table 1. The initial TSF evaluation matrix D.

D c1 c2 c3 c4 c5

h1 (0.800, 0.400, 0.500) (0.900, 0.300, 0.500) (0.800, 0.200, 0.600) (0.900, 0.200, 0.600) (0.900, 0.400, 0.500)
h2 (0.800, 0.200, 0.600) (0.800, 0.200, 0.500) (0.700, 0.300, 0.400) (0.900, 0.400, 0.500) (0.800, 0.400, 0.400)
h3 (0.700, 0.500, 0.500) (0.700, 0.500, 0.600) (0.900, 0.100, 0.600) (0.800, 0.500, 0.400) (0.900, 0.200, 0.400)
h4 (0.900, 0.100, 0.600) (0.900, 0.600, 0.300) (0.900, 0.400, 0.500) (0.700, 0.700, 0.600) (0.900, 0.200, 0.500)

5.2. Decision Analysis
5.2.1. The Method by the Proposed TSFAAWHM Operator

Step 1. Since c1 is a cost-type criterion and the rest of the criteria are all benefit-type,
then the normalized TSF decision matrix R can be obtained from Equation (19), and the
results can be listed in Table 2.

Table 2. The normalized TSF decision matrix R.

R c1 c2 c3 c4 c5

h1 (0.500, 0.400, 0.800) (0.900, 0.300, 0.500) (0.800, 0.200, 0.600) (0.600, 0.200, 0.900) (0.900, 0.400, 0.500)
h2 (0.600, 0.200, 0.800) (0.800, 0.200, 0.500) (0.700, 0.300, 0.400) (0.500, 0.400, 0.900) (0.800, 0.400, 0.400)
h3 (0.500, 0.500, 0.700) (0.700, 0.500, 0.600) (0.900, 0.100, 0.600) (0.400, 0.500, 0.800) (0.900, 0.200, 0.400)
h4 (0.600, 0.100, 0.900) (0.900, 0.600, 0.300) (0.900, 0.400, 0.500) (0.600, 0.700, 0.700) (0.900, 0.200, 0.500)

Step 2. The comprehensive TSF values fi (i = 1, 2, 3, 4) for each solution with regard
to all criteria are calculated by the TSFAAWHM operator (Equation (20)). Suppose the
parameters q = 3, γ = 2, ϕ = 2.

The DM of aggregation result in the comprehensive value of alternative f 1 is τ1, that is

τ1 = 3

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1− exp



−



1
10



− ln

1− exp

−
 1

2

(
0.15×

(
− ln

(
0.53

))2
+ 0.2×

(
− ln

(
0.93

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.15×

(
− ln

(
0.53

))2
+ 0.3×

(
− ln

(
0.83

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.15×

(
− ln

(
0.53

))2
+ 0.2×

(
− ln

(
0.63

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.15×

(
− ln

(
0.53

))2
+ 0.15×

(
− ln

(
0.93

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.2×

(
− ln

(
0.93

))2
+ 0.3×

(
− ln

(
0.83

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.2×

(
− ln

(
0.93

))2
+ 0.2×

(
− ln

(
0.63

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.2×

(
− ln

(
0.93

))2
+ 0.15×

(
− ln

(
0.93

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.3×

(
− ln

(
0.83

))2
+ 0.2×

(
− ln

(
0.63

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.3×

(
− ln

(
0.83

))2
+ 0.15×

(
− ln

(
0.93

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.2×

(
− ln

(
0.63

))2
+ 0.15×

(
− ln

(
0.93

))2
) 1

2


2




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

= 0.913

The AD of aggregation result in the comprehensive value of alternative f 1 is η1, that is
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η1 = 3
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The ND of aggregation result in the comprehensive value of alternative f 1 is ϑ1, that is
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= 0.497

So, we can get the comprehensive value f 1 of alternative h1, that is f 1 = (0.913, 0.214, 0.497).
Similarly, we can get the comprehensive values of the other three alternatives, namely,

f 2 = (0.885, 0.219, 0.450), f 3 = (0.892, 0.276, 0.464), and f 4 = (0.931, 0.312, 0.455).
Step 3. Equation (2) is applied to compute each alternative (i = 1, 2, 3, 4). Since the

values of the score functions for each alternative can be easily distinguished, it is not
necessary to calculate the accuracy function of each alternative here. Therefore, we obtain

sc( f1) =
1
2

(
1 + (0.913)3 − (0.214)3 − (0.497)3

)
= 0.814

sc( f2) =
1
2

(
1 + (0.885)3 − (0.219)3 − (0.450)3

)
= 0.796

sc( f3) =
1
2

(
1 + (0.892)3 − (0.276)3 − (0.464)3

)
= 0.795

sc( f4) =
1
2

(
1 + (0.931)3 − (0.312)3 − (0.455)3

)
= 0.845

Step 4. Then, the alternatives are ranked as h4 > h1 > h2 > h3. Therefore, the optimal
solution is h4.

5.2.2. The Method by the Proposed TSFAAWDHM Operator

Step 1. Since c1 is a cost-type criterion and the rest of the criteria are all benefit-type,
then the normalized TSF decision-making matrix R can be obtained from Equation (19),
and the calculation results are listed in Table 2.

Step 2. The comprehensive values fi (i = 1, 2, 3, 4) for each solution with regard to
all criteria are calculated by the TSFAAWDHM operator (Equation (21)). Suppose the
parameters q = 3, γ = 2, ϕ = 2.

The DM of aggregation result in the comprehensive value of alternative f 1 is τ1, that is
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τ1 = 3
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The AD of aggregation result in the comprehensive value of alternative f 1 is η1, that is

η1 = 3
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The ND of aggregation result in the comprehensive value of alternative f 1 is ϑ1, that is

ϑ1 = 3
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0.63

))2
+ 0.2×

(
− ln

(
0.93

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.3×

(
− ln

(
0.63

))2
+ 0.15×

(
− ln

(
0.53

))2
) 1

2


2

+

− ln

1− exp

−
 1

2

(
0.2×

(
− ln

(
0.83

))2
+ 0.15×

(
− ln

(
0.53

))2
) 1

2


2





1
2


= 0.875

So, we can get the comprehensive value f 1 of alternative h1, that is f 1 = (0.582, 0.682, 0.875).
Similarly, we can get the comprehensive values of the other three alternatives, namely,

f 2 = (0.505, 0.681, 0.851), f 3 = (0.533, 0.729, 0.859), and f 4 = (0.614, 0.740, 0.832).
Step 3. Equation (2) is applied to calculate each alternative (i = 1, 2, 3, 4). Since the

values of the score functions for each alternative can be easily distinguished, it is not
necessary to calculate the accuracy function of each alternative here. Therefore, we obtain

sc( f1) =
1
2

(
1 + (0.582)3 − (0.2682)3 − (0.875)3

)
= 0.105

sc( f2) =
1
2

(
1 + (0.505)3 − (0.681)3 − (0.851)3

)
= 0.099

sc( f3) =
1
2

(
1 + (0.533)3 − (0.729)3 − (0.859)3

)
= 0.065

sc( f4) =
1
2

(
1 + (0.614)3 − (0.740)3 − (0.832)3

)
= 0.125

Step 4. Then, the alternatives are ranked as h4 > h1 > h2 > h3. Therefore, the optimal
solution is h4.
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5.3. Parameter Analysis

In this sub-section, the sensitivity analysis on the q, γ, and ϕ is performed. Firstly, in
the case of γ = 2 and ϕ = 2, we analyze the variation of the solution ranking results when
the proposed AOs take diverse values of the parameter q in the range [3,21], as shown in
Figure 1, (a) the variation of the TSFAAWHM operator results with q and (b) the variation
of the TSFAAWDHM operator results with q.
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From Figure 1a,b, the results of the TSFAAWHM operator decrease when the q in-
creases, while the results of the TSFAAWDHM operator are the opposite. In terms of
alternative ranking, the ranking of the TSFAAWHM operator is h4 > h1 > h2 > h3 when q = 3,
while the alternatives h2 and h3 are ranked slightly differently when q ≥ 4, i.e., h4 > h1 > h3
> h2, and the ranking result is relatively stable with the variety of q. However, the outcomes
achieved by the TSFAAWDHM operator fluctuate considerably as the value of q changes.
For example, the solution h3 changes from the last rank to the top rank when the change of
parameter q is in [3,21]. When the change of q is in the range of [3,20], the alternative h4 is
the best one, but when q = 21, the alternative h4 is second. In comparison, the TSFAAWHM
operator is more stable and reliable than the TSFAAWDHM operator with respect to the
parameter q.

Then, we check the effect of the variation of γ and ϕ on the ranking condition of the
alternatives. Different values of the parameters γ ∈ [1,4] and ϕ ∈ [2,12] are taken to examine
the effect on the outcomes of the alternatives in the case of q = 3. The results of the TSFAAWHM
operator with respect to the parameters γ, ϕ are shown in Figure 2, and the results of the
TSFAAWDHM operator with respect to the parameters γ, ϕ are shown in Figure 3.

When the parameter γ takes values 1, 2, 3, or 4, the parameter ϕ varies in the range
of [2,12], and the results of the TSFAAWHM operator in Figure 2 also change, especially
the ranking of the alternatives h1, h2, and h3, but h4 is always the optimal solution. From
Figure 3, h4 is the worst one when γ = 1; h4 changes from the first one to the last ranking
when γ = 2; however, 4 is always the optimal alternative when γ = 3 and 4. In addition, the
rankings of the alternatives h1, h2 and h3 change in various ways. From the comparison of
Figures 2 and 3, the results of the TSFAAWDHM operator are more significantly influenced
by the parameters γ and ϕ.
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5.4. Comparison Analysis

The developed AOs are compared with the available AOs and alternative ranking
techniques in this sub-section. Firstly, we use the existing TSF weighted average (TSFWA) [43],
TSF weighted geometric (TSFWG) [43], TSF AA weighted average (TSFAAWA) [16], TSF AA
weighted geometric (TSFAAWG) [16], and TSF weighted generalized MSM (TSFWGMSM) [18]
operators to solve the problem of the investment selection in Section 5.1. It should be noted
that the values of the parameters in these AOs are q = 3, ϕ = 2 in the AA operator, and
γ = 2 in the MSM operator. Thus, we can obtain the calculated results, and they are listed
in Table 3.

Table 3. The comparisons with different AOs.

AOs Score Values Ranking The Best Option

TSFWA [43] sc(f 1) = 0.623, sc(f 2) = 0.585,
sc(f 3) = 0.629, sc(f 4) = 0.708 h4 > h3 > h1 > h2 h4

TSFWG [43] sc(f 1) = 0.490, sc(f 2) = 0.460,
sc(f 3) = 0.468, sc(f 4) = 0.521 h4 > h3 > h1 > h2 h4

TSFAAWA [16] sc(f 1) = 0.673, sc(f 2) = 0.623,
sc(f 3) = 0.690, sc(f 4) = 0.759 h4 > h3 > h1 > h2 h4

TSFAAWG [16] sc(f 1) = 0.399, sc(f 2) = 0.375,
sc(f 3) = 0.393, sc(f 4) = 0.386 h1 > h3 > h4 > h2 h1

TSFWGMSM [18] sc(f 1) = 0.555, sc(f 2) = 0.525,
sc(f 3) = 0.532, sc(f 4) = 0.604 h4 > h1 > h3 > h2 h4

TSFAAWHM sc(f 1) = 0.814, sc(f 2) = 0.796,
sc(f 3) = 0.795, sc(f 4) = 0.845 h4 > h1 > h3 > h2 h4

TSFAAWDHM sc(f 1) = 0.105, sc(f 2) = 0.099,
sc(f 3) = 0.065, sc(f 4) = 0.125 h4 > h1 > h2 > h3 h4

From Table 3, the best solution for all the AOs is h4, except for the TSFAAWG operator,
and the other alternatives are ranked slightly differently. It can be validated that the
developed operator is feasible and effective. The detailed analysis of comparing the new
method to the existing AOs is as follows:

(1) The existing TSFWA and TSFWG operators neither consider the correlation rela-
tionship between the criteria nor include the flexibility parameter, thus these two AOs do
not have the advantages of the proposed TSFAAWHM and TSFAAWDHM operators in the
practical decision process.

(2) The TSFAAWA and TSFAAWG operators also contain AA t-norms with the flexibility
parameter, but they still do not reach the extent of decision flexibility of the proposed operators.
Moreover, these two AOs not only advocate the independence of criterion, but also ignore
the interrelationship among multiple criteria. The results of these two AOs are similar to the
proposed AOs from Table 4 when γ = 1, and the optimal alternative is h4 or h1.

Table 4. The comparisons with different ranking techniques.

Techniques Results Ranking The Best Option

TSF TOPSIS [44] cc1 = 0.571, cc2 = 0447, cc3 = 0.534, cc4 = 0.673 h4 > h1 > h3 > h2 h4

TSF CoCoSo [45] Z1 = 1.851, Z2 = 1.740, Z3 = 1.861, Z4 = 2.118 h4 > h3 > h1 > h2 h4

TSF TODIM [11] ξ1 = 0.811, ξ2 = 0.000, ξ3 = 0.518, ξ4 = 1.000 h4 > h1 > h3 > h2 h4

TSFMULTIMOORA [46]
RS: α1 = 0.880, α2 = 0.826, α3 = 0.888, α4 = 1.000

h4 > h3 > h1 > h2 h4RP: χ1 = 0.966, χ2 = 0.881, χ3 = 0.935, χ4 = 1.000
FMF: β1 = 0.868, β2 = 0.817, β3 = 0.869, β4 = 1.000

TSFAAWHM sc(f 1) = 0.814, sc(f 2) = 0.796, sc(f 3) = 0.795, sc(f 4) = 0.845 h4 > h1 > h3 > h2 h4

TSFAAWDHM sc(f 1) = 0.105, sc(f 2) = 0.099, sc(f 3) = 0.065, sc(f 4) = 0.125 h4 > h1 > h2 > h3 h4

Abbr.: RS-Ratio system; RP-Reference point; FMF-Full multiplicative form.
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(3) In the TSFWGMSM operator, which contains multiple parameters, its extent of
decision flexibility is comparable to that of the proposed AOs, and it also can capture the
correlation relationship between multiple criteria, so the results of the alternatives ranking
are similar to the developed AOs in this article.

Next, it can be seen that the optimum alternative obtained by the methods in this
paper and the existing ranking techniques are all h4, and the other alternatives are ranked
slightly differently from Table 4. Specifically, the distance-based TOPSIS (Technique for
order preference by similarity to an ideal solution) [44] and TODIM (Portuguese acronym
meaning interactive multi-criteria decision making) [11] methods yield alternatives ranked
as h4 > h1 > h3 > h2, which is consistent with the results of the TSFAAWHM operator and
slightly different from the results of the TSFAAWDHM operator in terms of the alternatives
h2 and h3. However, compared to the utility-based CoCoSo (Combined compromise
solution) [45] and MULTIMOORA (multi-objective optimization based on the ratio analysis
with the full multiplicative form) [46] methods, the results of the alternatives ranking
consist of a larger difference, except for the optimal solution is h4. In addition, the steps in
the presented method are more succinct than the existing ranking techniques in selecting
the best solution and can overcome the drawback that these ranking techniques ignore the
correlation relationship between criteria. In summary, the developed method in this paper
has a certain effectiveness and operability in solving the TSF MCDM problem.

6. Conclusions

The MCDM problem with uncertainty and complexity is prevalent in real-life, and
the evaluation information representation and aggregation in solving the decision problem
has been one of the challenging tasks. In this article, the integrating Hamy mean operator
and AA t-norms were investigated to deal with the MCDM issues in the TSF setting. We
developed a series of TSFAAHM AOs, named TSFAAHM, TSFAADHM, TSFAAWHM and
TSFAAWDHM operators, and then analyzed the different properties of these AOs. We also
applied the TSFAAWHM and TSFAAWDHM operators to construct the MCDM method.
We showed the practicability and effectiveness of the raised decision method by means
of numerical example, and then verified the superiority of the developed approach by
parameter tests and contrastive study. The proposed AOs and methods in this paper not
only improve the decision-making theory and method system, but also provide industry
managers with decision analysis tools, and the results can be used as the basis for decisions.

Although the AOs proposed in this article can flexibly adjust the decision parameters
according to the practical decision conditions in the TSF MCDM problems, and it can con-
sider the interrelationship among multiple decision criteria, there are still some limitations
for the decision method based on the developed AOs. (1) The criterion weight information
may be completely or partially unknown in practical MCDM problems, but the criterion
weights are given in the numerical example for the TSFMCDM problem in this paper. (2) If
the MCDM problem has a lot of criteria, then it will cause a more complicated calculation
process in the TSFAAWHM or TSFAAWDHM operator. (3) For the results of utilizing the
proposed AOs, the score function or the accuracy function of TSFN (see Definition 2) are
often used for defuzzification, but they ignore the role of the refusal degree in TSFN during
the defuzzification process, which may lead to partial loss of information and make the
final value imprecise.

In order to eliminate these above-mentioned drawbacks, in the future, we will con-
struct new distance measure-based, criterion weight determination methods, such as Lance
distance in the TSF MCDM problem. We attempt to design a hierarchical aggregation model
for evaluation information to reduce the computational complexity of the AO involving
correlations among multiple criteria, i.e., partitioned BM [47], HeM [48], and MM [19],
while eliminating computational difficulties, with the help of computational software tools.
We will combine the proposed AOs with ranking techniques, such as ARAS (Additive Ratio
ASsessment) [49], MARCOS (Measurement Alternatives and Ranking based on the COm-
promise Solution) [50], EDAS (Evaluation based on Distance from Average Solution) [51],
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DNMA (Double Normalization-based Multi-Aggregation) [52], etc., to achieve precision
by distance measures, thus replacing the use of the score or accuracy function of TSFN.
Further, we will develop these methods to construct group decision models to solve real-
istic decision-making issues, such as green supplier selection, site selection decision, and
technology selection in real enterprises.
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Notations
ac(δ) Accuracy function of TSFN δ

ai The i-th non-negative real number
αi, χi, βi The assessment values of the i-th alternative obtained by TSFMULTIMOORA
C Criteria set
Cn

γ The binomial coefficient
cj The j-th criterion
cci The closeness coefficient of the i-th alternative obtained by TSF TOPSIS
γ The number of combinations in the Hamy mean
D The initial TSF evaluation matrix
dij The initial TSF evaluation value of the alternative hi w.r.t. criterion cj
δ TSFN of =
δ−, δ+ The minimum and maximum values of TSFN
fi The comprehensive value of the i-th alternative
H Alternative set
hi The i-th alternative
i,j Index of number
J1, J2 Benefit and cost criterion type
n,m Number of evaluation objects
q Power of MD, AD, and ND of TSFN
R The standardized TSF evaluation matrix
rij The standardized TSF evaluation value of the alternative hi w.r.t. criterion cj
= T-spherical fuzzy set
SA

ϕ The s-norm of the Aczel–Alsina operator
sc(δ) Score function of TSFN δ

TA
ϕ The t-norm of Aczel–Alsina

τ, η, ϑ MD, AD, ND of TSFN
w The weight vector of criteria
wj Weight of the j-th criterion
ϕ Modulation parameter in the Aczel–Alsina operator
X A universe set
x, y, λ Non-negative real numbers
Zi The assessment value of the i-th alternative obtained by TSF CoCoSo
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