
Citation: Caratelli, D.; Sabbadini, R.;

Ricci, P.E. Approximating the

Moments of Generalized Gaussian

Distributions via Bell’s Polynomials.

Axioms 2023, 12, 206. https://

doi.org/10.3390/axioms12020206

Academic Editors: Juan J. Nieto and

Sevtap Sümer Eker

Received: 3 January 2023

Revised: 8 February 2023

Accepted: 13 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Approximating the Moments of Generalized Gaussian
Distributions via Bell’s Polynomials †

Diego Caratelli 1,2 , Ruben Sabbadini 3 and Paolo Emilio Ricci 4,*

1 The Antenna Company, High Tech Campus 41, 5656 AE Eindhoven, The Netherlands
2 Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
3 Liceo Scientifico Statale Farnesina, Via dei Giuochi Istmici, 64, 00135 Roma, Italy
4 Department of Mathematics, International Telematic University UniNettuno, Corso Vittorio Emanuele II, 39,

00186 Roma, Italy
* Correspondence: paoloemilio.ricci@uninettunouniversity.net
† Dedicated to Prof. Hari M. Srivastava on the Occasion of His 82th Birthday.

Abstract: Bell’s polynomials are used in many different fields of mathematics, ranging from number
theory to operator theory. This paper shows a relevant application in probability theory aimed
at computing the moments of generalized Gaussian distributions. To this end, a table containing
the first values of the complete Bell’s polynomials is provided. Furthermore, a dedicated code for
approximating the moments of the general distributions in terms of complete Bell’s polynomials is
detailed. Several test cases concerning different nested functions are discussed.
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1. Introduction

Bell’s polynomials were initially introduced to represent successive derivatives of
composite functions [1]. However, as it has been pointed out in [2], such polynomials,
being related to partitions of integers [3], find immediate applications in combinatorial
mathematics [4]. They also intervene in formulas for representing symmetric functions of
the zeros of analytic functions, thus generalizing the classical Newton–Girard formulas.
Using these results, the reduction formulas of the orthogonal invariants of a strictly positive
compact operator were expressed. In this way, Robert’s formulas [5] and other expressions
related to those can be derived.

Generalized classes of Bell’s polynomials have been proposed in the literature, e.g.,
by Fujiwara [6], Kim [7], and Rai, Singh [8]. Further generalizations, including the multi-
dimensional case, can be found in papers by Bernardini, Natalini, Ricci and Natalini, and
Ricci (see [9], and the references therein).

There are many areas in which the adoption of Bell’s polynomials has allowed useful
approximations to be obtained in applied mathematics, such as those concerning the
Laplace transform of composite analytic functions (see [10], and the references therein).

In this paper, we discuss another application to the probability theory [11] by deriving
some formulas useful to calculate the moments of generalized Gaussian distributions.
To this end, judicious use is made of the extensions of Bell’s polynomials presented in
previous papers.

This article is organized as follows: In Section 2, Bell’s polynomials and their main
properties are briefly recalled. In Section 3, Bell’s polynomials are used to approximate
the primitives of composite exponential functions. Finally, after recalling, in Section 4, the
generalization of Bell’s polynomials to the case of multi-nested functions, the moments
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of generalized Gaussian distributions are approximated in Section 5. Some examples
illustrated using version 13.2 of the computer algebra software Mathematic© are shown in
Section 6.

2. Recalling the Bell’S Polynomials

Consider the composite function Φ(t) := f (g(t)), where x = g(t) and y = f (x) are
differentiable functions (up to a sufficiently large order), defined in suitable intervals of the
real axis so that Φ(t) can be differentiated n times with respect to t by using the chain rule.
Here, and in what follows, we use the following notation:

Φm := Dm
t Φ(t), fh := Dh

x f (x)|x=g(t), gk := Dk
t g(t).

Then, the n-th derivative of Φ(t) is represented by

Φn = Yn( f1, g1; f2, g2; . . . ; fn, gn) =
n

∑
k=1

Bn,k(g1, g2, . . . , gn) fk, (1)

where Yn denotes the general Bell’s polynomial, and the coefficients Bn,k, for all
k = 1, . . . , n, are homogeneous polynomials of the variables g1, g2, . . . , gn, of degree
k and isobaric of weight n (i.e., they are a linear combination of monomials gk1

1 gk2
2 · · · g

kn
n

having the same degree k1 + 2k2 + . . . + nkn = n).
Bell’s polynomials satisfy the recurrence relation

Y0 := f1;
Yn+1( f1, g1; . . . ; fn, gn; fn+1, gn+1) =

=
n

∑
k=0

(
n
k

)
Yn−k( f2, g1; f3, g2; . . . ; fn−k+1, gn−k)gk+1.

(2)

and they can be expressed explicitly using the Faà di Bruno’s formula [12,13]

Yn( f1, g1; f2, g2; . . . ; fn, gn) = ∑
π(n)

n!
r1!r2! . . . rn!

fr

[ g1

1!

]r1
[ g2

2!

]r2
· · ·
[ gn

n!

]rn
, (3)

where the sum runs over all the partitions π(n) of the integer n, ri denotes the number of
parts of size i, and r = r1 + r2 + · · ·+ rn denotes the number of parts of the considered
partition [2].

The coefficients Bn,k in Equation (1) depend only on the values g1, g2, . . . , gn−k+1, and
satisfy the recursion

Bn,k(g1, g2, . . . , gn−k+1) =
n−k

∑
h=0

(
n− 1

h

)
Bn−h−1,k−1(g1, g2, . . . , gn−k−h+1) gh+1 . (4)

In the particular case where f (x) = ex, that is equivalent to considering the composite
function eg(t), and upon assuming that g(0) = 0, we obtain the following simplified
expression for the right-hand side of (1):

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k =

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1) = Bn(

◦
g1,
◦
g2, . . . ,

◦
gn) , (5)

where the Bn are the complete Bell’s polynomials. It results in B0(g0) := f (g(0)), and the first
few values of Bn, for n = 1, 2, . . . , 5 are given by

B1(g1) = g1, B2(g1, g2) = g2
1 + g2, B3(g1, g2, g3) = g3

1 + 3g1g2 + g3 . (6)

Further values are reported in Appendix A.
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The values of the complete Bell’s polynomials for particular choices of the parameter
can be found in [14].

The complete Bell’s polynomials satisfy the identity (see e.g., [15])

Bn+1(g1, . . . , gn+1) =
n

∑
k=0

(
n
k

)
Bn−k(g1, . . . , gn−k) gk+1. (7)

3. Primitives of Exponential Functions

Let f (g(t)) be a composite function that is analytic in a neighborhood of the origin.
The relevant Taylor’s expansion is given by

f (g(t)) =
∞

∑
n=0

an
tn

n!
, an = Dn

t [ f (g(t))]t=0 , (8)

where

a0 = f (
◦
g0) ,

an = Dn
t [ f (g(t))]t=0 =

n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k , (n ≥ 1) ,

(9)

and

◦
f k := Dk

x f (x)|x=g(0),
◦
gh:= Dh

t g(t)|t=0 . (10)

Then, the primitive of the composite function f (g(t)) writes

∫ x

0
f (g(t))dt = x f (g(0)) +

∞

∑
n=1

(
n

∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

)
xn+1

(n + 1)!
, (11)

Remark 1. Note that here and in what follows we avoid adding a constant to indefinite integrals,
based on the assumption that the relevant primitives vanish at the origin.

In the case of exponential functions, Equation (11) becomes

∫ x

0
exp(g(t))dt =

∞

∑
n=0

Bn(
◦
g1,
◦
g2, . . . ,

◦
gn)

xn+1

(n + 1)!
, (12)

where we have assumed, for convenience, B0 := 1.

Then, in particular, it results

∫ x

0
exp(−t2)dt =

√
π

2
erf(x) =

∞

∑
n=0

(−1)nx2n+1

(2n + 1)n!
=

∞

∑
n=0

Bn(0,−2, 0, . . . , 0)
xn+1

(n + 1)!
. (13)

As a consequence, we find

B2k(0,−2, 0, . . . , 0) = (−1)k , B2k+1(0,−2, 0, . . . , 0) = 0 , (k ≥ 0). (14)

4. An Extension of Bell’s Polynomials

We consider the second-order Bell’s polynomials, Y[2]
n ( f1, g1, h1; f1, g1, h1; . . . ; fn, gn, hn),

defined by the n-th derivative of the composite function Φ(t) := f [g(h(t))].
Consider the functions x = h(t), z = g(x), y = f (z), and suppose that h(t), g(x), and

f (z) are n times differentiable with respect to their variables, so that the composite function
Φ(t) := f [g(h(t))] can be differentiated n times with respect to t, by using the chain rule.
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Similarly to the previous section, we use the following notation:

Φj := Dj
tΦ(t), fh := Dh

y f (y)|y=g(x), gk := Dk
xg(x)|x=h(t), hr := Dr

t h(t).

Then, the n-th derivative of Φ(t) can be represented by

Φn = Y[2]
n ( f1, g1, h1; f2, g2, h2; . . . ; fn, gn, hn) = Y[2]

n ([ f , g, h]n) , (15)

where Y[2]
n denotes the general second-order Bell’s polynomial.

The first few polynomials are given by

Y[2]
1 ([ f , g, h]1) = f1g1h1;

Y[2]
2 ([ f , g, h]2) = f1g1h2 + f1g2h2

1 + f2g2
1h2

1;

Y[2]
3 ([ f , g, h]3) = f1g1h3 + f1g3h3

1 + 3 f1g2h1h2 + 3 f2g1g2h3
1 + f3g3

1h3
1 .

(16)

A more extended table can be found in [10].
The connection between Y[2]

n and the ordinary Bell’s polynomials is discussed below.
In [16], the following theorem has been proven.

Theorem 1. For every integer n, the polynomials Y[2]
n are represented in terms of the ordinary

Bell’s polynomials by the following equation:

Y[2]
n ( f1, g1, h1; . . . ; fn, gn, hn) =

= Yn( f1, Y1(g1, h1); f2, Y2(g1, h1; g2, h2); . . . ; fn, Yn(g1, h1; g2, h2; . . . ; gn, hn))
(17)

From here, it has been shown that the second-order Bell’s polynomials can be com-
puted recursively, avoiding the use of computationally cumbersome expressions such as
the Faà di Bruno formula, on the basis of the following theorem.

Theorem 2. The second-order Bell’s polynomials verify the recursion

Y[2]
0 = f1;

Y[2]
n+1( f1, g1, h1; . . . ; fn+1, gn+1, hn+1) =

n

∑
k=0

(
n
k

)
Y[2]

n−k( f2, g1, h1; f3, g2, h2; . . .

. . . ; fn−k+1, gn−k, hn−k)Yk+1(g1, h1; . . . ; gk+1, hk+1).

(18)

The proof of this result is provided in [16].

Primitives of Nested Functions

Considering the second-order nested functions of the type f [g(h(t)], the preceding
Equation (11) writes

∫ x

0
f [g(h(t))]dt = x f [g(h(0))] +

∞

∑
n=1

Y[2]
n (
◦
f 1,
◦
g1,
◦
h1;
◦
f 2,
◦
g2,
◦
h2; . . . ;

◦
f n,
◦
gn,
◦
hn)

xn+1

(n + 1)!
, (19)

and in the case of a nested exponential function, with g(h(0)) = 0,

∫ x

0
exp[g(h(t))]dt = x +

∞

∑
n=1

Y[2]
n (1,

◦
g1,
◦
h1; 1,

◦
g2,
◦
h2; . . . ; 1,

◦
gn,
◦
hn)

xn+1

(n + 1)!
. (20)
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5. Moments of Generalized Gaussian Distributions

Consider the analytic monotonically increasing function h(t) and consider the nested
exponential function exp[−(h(t))2].

The normalization constant of the generalized Gaussian distribution writes

A =
∫ +∞

−∞
exp[−(h(t))2]dt , (21)

the mean value is

µ = µ1 =
1
A

∫ +∞

−∞
t exp[−(h(t))2]dt , (22)

and the second moment

µ2 =
1
A

∫ +∞

−∞
t2 exp[−(h(t))2]dt , (23)

so that we find the variance

σ2 = µ2 − µ2 . (24)

Note that, thanks to the rapid decay of the exponential function, the integrals in (21)–(23)
can be estimated with a pretty negligible numerical error using a suitable Gaussian quadra-
ture rule on a bounded interval of the real axis.

Then, assuming y = f (z) = exp(z); z = g(x) = − x2; x = h(t), the nth moment is
given by

µn =
1
A

∫ +∞

−∞
tn exp[−(h(t))2]dt ' 1

A

∫ µ+3σ

µ−3σ
tn exp[−(h(t))2]dt , (25)

and using the second order Bell’s polynomials (17), and assuming Y[2]
0 := 1, we find

µn '
1
A

∞

∑
k=0

Y[2]
k ((1, 0,

◦
h1; 1,−2,

◦
h2; 1, 0,

◦
h3; . . . ; . . . ; 1, 0,

◦
hk)) ·

· (µ + 3σ)n+k+1 − (µ− 3σ)n+k+1

(n + k + 1) k!
.

(26)

6. Particular Examples
6.1. Example 1

Consider the generalized Gaussian distribution defined by the function

F(t) = exp[−(sinh(t))2] . (27)

We find µ = µ1 = 0 and σ2 = 0.55296.
Its graph is shown in Figure 1.
The percentage deviation between F(t) and the relevant expansion F̃(t) in terms of

Bell’s polynomials is shown in Figure 2. As can be seen, F(t) is nicely approximated by
F̃(t) in the domain where F(t) does not assume negligibly small values.

The table containing the first few moments of the considered function F(t), as com-
puted using the Gauss–Kronrod quadrature rule (G-KQR), µk, and the proposed Bell’s
method, µ̃k, is reported in Figure 3.
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Figure 1. Graph of the function F(t) = exp[−(sinh(t))2].

Figure 2. Relative percentage error of the Bell’s approximation of F(t) in (27).

Figure 3. Moments of F(t) in (27) as computed using the G-KQR (left) and the proposed Bell’s
polynomial approximation (right) methods.

6.2. Example 2

Consider the generalized Gaussian distribution defined by the function

F(t) = exp[−(t + t3/4
√

3 + t5/240)2] . (28)

We find µ = µ1 = 0 and σ2 = 0.566431.
Its graph is shown in Figure 4.
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Figure 4. Graph of the function F(t) = exp[−(t + t3/4
√

3 + t5/240)2].

The percentage deviation between F(t) and the relevant expansion F̃(t) in terms of
Bell’s polynomials is shown in Figure 5. As can be seen, F(t) is nicely approximated by
F̃(t) in the domain where F(t) does not assume negligibly small values.

Figure 5. Relative percentage error of the Bell’s approximation of F(t) in (28).

The table containing the first few moments of the considered function F(t), as com-
puted using the Gauss–Kronrod quadrature rule (G-KQR), µk, and the proposed Bell’s
method, µ̃k, is reported in Figure 6.

Figure 6. Moments of F(t) in (28) as computed using the G-KQR (left) and the proposed Bell’s
polynomial approximation (right) methods.
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6.3. Example 3

Consider the generalized Gaussian distribution defined by the function

ψ(t) := exp
[
−
(

1
2

(
t− cos(π/8)

8

)2
sin(π/8) + cos(π/8)

6!

(
t− sin(π/8)

8

)6
+

t8

4! 8!
√

2

(
t− 1

8
√

2

)4
)2
 .

(29)

We find µ = µ1 = 0.096855 and σ2 = 1.02151.
Its graph is shown in Figure 7.

Figure 7. Graph of the function ψ(t) in (29).

The percentage deviation between ψ(t) and the relevant expansion ψ̃(t) in terms of
Bell’s polynomials is shown in Figure 8. As can be seen, ψ(t) is nicely approximated by
ψ̃(t) in the domain where ψ(t) does not assume negligibly small values.

Figure 8. Relative percentage error of the Bell’s approximation of ψ(t) in (29).

The table containing the first few moments of the considered function ψ(t), as com-
puted using the Gauss–Kronrod quadrature rule (G-KQR), µk, and the proposed Bell’s
method, µ̃k, is reported in Figure 9.
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Figure 9. Moments of ψ(t) in (29) as computed using the G-KQR (left) and the proposed Bell’s
polynomial approximation (right) methods.

6.4. Example 4

Consider the generalized Gaussian distribution defined by the function

F(t) = exp[−(sinh(2t))2] . (30)

We find µ = µ1 = 0 and σ2 = 0.27648.
Its graph is shown in Figure 10.

Figure 10. Graph of the function F(t) = exp[−(sinh(2t))2].

The percentage deviation between F(t) and the relevant expansion F̃(t) in terms of
Bell’s polynomials is shown in Figure 11. As can be seen, F(t) is nicely approximated by
F̃(t) in the domain where F(t) does not assume negligibly small values.

Figure 11. Relative percentage error of the Bell’s approximation of F(t) in (30).
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The table containing the first few moments of the considered function F(t), as com-
puted using the Gauss–Kronrod quadrature rule (G-KQR), µk, and the proposed Bell’s
method, µ̃k, is reported in Figure 12.

Figure 12. Moments of F(t) in (30) as computed using the G-KQR (left) and the proposed Bell’s
polynomial approximation (right) methods.

Different generalized Gaussian distributions can be evaluated using the approach
illustrated in Section 5. The same applies to the multimodal distributions considered
hereafter.

• Assuming exp[−(5x + (x− 1/2)2 + x6)2], we find the graph in Figure 13.

Figure 13. Graph of the function exp[−(5x + (x− 1/2)2 + x6)2].

• Assuming exp[− sinh2(x3 + 3x2 − 2)], we find the graph in Figure 14.

Figure 14. Graph of the function exp[− sinh2(x3 + 3x2 − 2)].
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In the next example, we evaluate the moments of a bi-modal distribution. In this and
other similar cases, one can verify that achieving the desired precision requires a drastic
increase in the number of expansion terms, thus affecting the overall computational times.

6.5. Example 5

Consider the generalized Gaussian distribution defined by the function

F(t) = exp[−(sinh(t4 − 1/2))2] . (31)

We find µ = µ1 = 0 and σ2 = 0.64156.
Its graph is shown in Figure 15.

Figure 15. Graph of the function F(t) = exp[−(sinh(t4 − 1/2))2.

The percentage deviation between F(t) and the relevant expansion F̃(t) in terms of
Bell’s polynomials is shown in Figure 16. As can be seen, F(t) is nicely approximated by
F̃(t) in the domain where F(t) does not assume negligibly small values.

Figure 16. Relative percentage error of the Bell’s approximation of F(t) in (31).

The table containing the first few moments of the considered function F(t), as com-
puted using the Gauss–Kronrod quadrature rule (G-KQR), µk, and the proposed Bell’s
method, µ̃k, is reported in Figure 17.
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Figure 17. Moments of F(t) in (31) as computed using the G-KQR (left) and the proposed Bell’s
polynomial approximation (right) methods

7. Conclusions

We have shown how Bell’s polynomials can be adopted to evaluate the moments of
generalized Gaussian distributions originated by the composition of the classical Gauss
exponential. The possibility of computing integrals of composite and higher-order nested
analytic functions by means of Bell’s polynomials allows for tackling the considered appli-
cation in a very effective way.

By using the generalization of the Gaussian distribution, as proposed in this research
study and illustrated with several examples, one can define a wide variety of curves starting
from arbitrary coefficients of series expansions. Different bell-shaped functions can thus be
obtained that can be adapted to represent the most diverse probabilistic distributions.
Numerical calculations using the computer algebra program Mathematica have shown that
our approach for approximating moments is accurate and efficient.
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the manuscript.
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Appendix A

B1 = g1,

B2 = g2
1 + g2,

B3 = g3
1 + 3g1g2 + g3,

B4 = g4
1 + 6g2

1g2 + 4g1g3 + 3g2
2 + g4,

B5 = g5
1 + 10g3

1g2 + 15g1g2
2 + 10g2

1g3 + 10g2g3 + 5g1g4 + g5,
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B6 = g6
1 + 15g4

1g2 + 45g2
1g2

2 + 15g3
2 + 20g3

1g3 + 60g1g2g3 + 10g2
3 + 15g2

1g4 + 15g2g4 + 6g1g5 + g6,

B7 = g7
1 + 21g5

1g2 + 105g3
1g2

2 + 105g1g3
2 + 35g4

1g3 + 210g2
1g2g3 + 105g2

2g3 + 70g1g2
3 + 35g3

1g4+
105g1g2g4 + 35g3g4 + 21g2

1g5 + 21g2g5 + 7g1g6 + g7,

B8 = g8
1 + 28g6

1g2 + 210g4
1g2

2 + 420g2
1g3

2 + 105g4
2 + 56g5

1g3 + 560g3
1g2g3 + 840g1g2

2g3 + 280g2
1g2

3+
280g2g2

3 + 70g4
1g4 + 420g2

1g2g4 + 210g2
2g4 + 280g1g3g4 + 35g2

4 + 56g3
1g5 + 168g1g2g5+

56g3g5 + 28g2
1g6 + 28g2g6 + 8g1g7 + g8,

B9 = g9
1 + 36g7

1g2 + 378g5
1g2

2 + 1260g3
1g3

2 + 945g1g4
2 + 84g6

1g3 + 1260g4
1g2g3 + 3780g2

1g2
2g3+

1260g3
2g3 + 840g3

1g2
3 + 2520g1g2g2

3 + 280g3
3 + 126g5

1g4 + 1260g3
1g2g4 + 1890g1g2

2g4+
1260g2

1g3g4 + 1260g2g3g4 + 315g1g2
4 + 126g4

1g5 + 756g2
1g2g5 + 378g2

2g5 + 504g1g3g5+
126g4g5 + 84g3

1g6 + 252g1g2g6 + 84g3g6 + 36g2
1g7 + 36g2g7 + 9g1g8 + g9,

B10 = g10
1 + 45g8

1g2 + 630g6
1g2

2 + 3150g4
1g3

2 + 4725g2
1g4

2 + 945g5
2 + 120g7

1g3 + 2520g5
1g2g3+

12600g3
1g2

2g3 + 12600g1g3
2g3 + 2100g4

1g2
3 + 12600g2

1g2g2
3 + 6300g2

2g2
3 + 2800g1g3

3+
210g6

1g4 + 3150g4
1g2g4 + 9450g2

1g2
2g4 + 3150g3

2g4 + 4200g3
1g3g4 + 12600g1g2g3g4+

2100g2
3g4 + 1575g2

1g2
4 + 1575g2g2

4 + 252g5
1g5 + 2520g3

1g2g5 + 3780g1g2
2g5 + 2520g2

1g3g5+
2520g2g3g5 + 1260g1g4g5 + 126g2

5 + 210g4
1g6 + 1260g2

1g2g6 + 630g2
2g6 + 840g1g3g6+

210g4g6 + 120g3
1g7 + 360g1g2g7 + 120g3g7 + 45g2

1g8 + 45g2g8 + 10g1g9 + g10 .
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