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Abstract: In nonlinear time series analysis, the mixture autoregressive model (MAR) is an effective
statistical tool to capture the multimodality of data. However, the traditional methods usually need
to assume that the error follows a specific distribution that is not adaptive to the dataset. This paper
proposes a mixture autoregressive model via an asymmetric exponential power distribution, which
includes normal distribution, skew-normal distribution, generalized error distribution, Laplace
distribution, asymmetric Laplace distribution, and uniform distribution as special cases. Therefore,
the proposed method can be seen as a generalization of some existing model, which can adapt to
unknown error structures to improve prediction accuracy, even in the case of fat tail and asymmetry. In
addition, an expectation-maximization algorithm is applied to implement the proposed optimization
problem. The finite sample performance of the proposed approach is illustrated via some numerical
simulations. Finally, we apply the proposed methodology to analyze the daily return series of the
Hong Kong Hang Seng Index. The results indicate that the proposed method is more robust and
adaptive to the error distributions than other existing methods.
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1. Introduction

In the study of time series, autoregressive (AR) models are a fundamental and im-
portant statistical tool. The classical AR models only allow for unimodal marginal and
conditional densities, which cannot capture conditional heteroscedasticity. To solve this
problem, Wong & Li (2000) introduced the k-component Gaussian mixture AR (GMAR)
model that is presented as follows [1].

Let Xt be a random variable observed at time t, and let Ft be the information set up to
time t. Xt arises from a k-component GMAR model of order p if Xt|Ft−1 has a density of
the form

g(xt|Ft−1; γ) =
k

∑
i=1

πiφ

(
xt; βi0 +

p

∑
j=1

βijxt−j, σ2
i

)
, (1)

where πi > 0, ∑k
i=1 πi = 1, βi = (βi0, · · · , βip)

>, σ2
i > 0 for all i = 1, · · · , k, γ =

(π1, β>1, σ2
1 , · · · , πk, β>k , σ2

k )
> is an unknown parameter vector, and φ(x; µ, σ2) is a normal

density function with mean µ and variance σ2.
The GMAR model (1) is very useful for modeling nonlinear time series, and it can capture

serial correlations, time-varying means, and volatilities [2]. Furthermore, Wong & Li (2001)
and Fong et al. (2007) extended the GMAR model to the AR conditional heteroscedastic
(ARCH) model and the vector AR model, respectively [3,4]. Since the GMAR model needs
the Gaussian assumption, its estimator is not robust to heavy-tailed data or outliers. In
order to estimate the occurrence of extreme financial events accurately, Wong et al. (2009)
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proposed a Student t-mixture AR model [2]. Nguyen et al. (2016) introduced the Laplace
mixture AR model [5]. Meitz et al. (2021) considered a mixture of autoregressive models
based on the scale mixture of skew-normal distributions [6]. Meitz et al. (2021) proposed a
new mixture autoregressive model based on Student’s t-distribution [7]. Virolainen (2021)
introduced a new mixture autoregressive model that combines Gaussian and Student’s t
mixture components [8]. Solikhah et al. (2021) studied Fisher’s z distribution-based mixture
autoregressive model [9]. Since the above proposed methods need to assume a specific
error distribution, they are not adaptive to the error distributions. A wrong distributional
assumption may lead to a decrease in the precision of the model estimate.

In order to develop a robust mixture autoregressive, in this paper, we proposed a robust
estimation procedure for mixture AR models by replacing a normal density function in (1)
with an asymmetric exponential power (AEP) density function [10]. The AEP distribution
includes many important statistical distributions as special cases, e.g., normal distribution,
skew-normal distribution, generalized error distribution, Laplace distribution, asymmetric
Laplace distribution, and uniform distribution. This indicates that the proposed method
provides a more general approach, which can adapt to much more different error structures
and automatically chooses the parameters to achieve both efficiency and robustness of
estimators. Meanwhile, we apply an expectation-maximization (EM) algorithm [11] to
implement the proposed optimization problem. In addition, the finite-sample performance
of the proposed method is evaluated via some numerical studies and a real-data analysis.

The remainder of the paper is organized as follows. In Section 2, we introduce an
estimation procedure for mixture AR models via an AEP density function and introduce
an EM algorithm to solve the proposed methodology. In Section 3, simulation studies are
conducted to evaluate the finite sample performance of the proposed method. In Section 4,
a real data set is analyzed to compare the proposed method with some existing methods.
We conclude with some remarks in Section 5.

2. Methodology

According to Fernandez et al. (1995), an AEP density f (x; µ, τ, α, σ) is defined as
follows [10].

f (x; µ, σ, α, τ) =
ατ(1− τ)

Γ(1/α)σ
exp

{
−|x− µ|α

σα

}
[I(x ≥ µ)τα + I(x < µ)(1− τ)α], (2)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter, 0 < τ < 1 controls
the skewness, α > 0 is the shape parameter, and I(·) is an indicator function. The AEP
density function is a flexible and general density function class that can even capture the
fat tail and asymmetry of the error term. It also includes some important statistical density
functions as its special cases, e.g.,

1. Normal density function: f (x; µ, σ, α = 2, τ = 0.5).
2. Skew-normal density function: f (x; µ, σ, α = 2, τ).
3. Generalized error density function: f (x; µ, σ, α, τ = 0.5).
4. Laplace density function: f (x; µ, σ, α = 1, τ = 0.5).
5. Asymmetric Laplace density function: f (x; µ, σ, α = 1, τ).
6. Uniform density function: f (x; µ, σ, α→ ∞, τ).

Based on the AEP density function, we propose the k-component AEP-MAR model,
which is defined as follows:

h(xt|Ft−1;θ) =
k

∑
i=1

πi fi

(
xt; βi0 +

p

∑
j=1

βijxt−j, σi, αi, τi

)
,

where θ = (π1, β>1, σ1, α1, τ1, · · · , πk, β>k , σk, αk, τk)
> is an unknown parameter vector, and fi

is an AEP density function given in (2). For the k-component AEP-MAR model, we obtain
the conditional expectation and conditional variance as follows:
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E(xt|Ft−1;θ) =
k

∑
i=1

πi

(
βi0 +

p

∑
j=1

βijxt−j

)
=

k

∑
i=1

πiµi,

Var(xt|Ft−1;θ) =
k

∑
i=1

πiσ
2
i +

k

∑
i=1

πiµ
2
i −

(
k

∑
i=1

πiµi

)2

.

where µi = βi0 + ∑
p
j=1 βijxt−j.

Let x1, x2, · · · , xn be a random sample from the k-component AEP-MAR model. Then,
the sample conditional log-likelihood function can be written as

Pn(θ) =
n

∑
t=p+1

log

{
k

∑
i=1

πi
αiτi(1− τi)

Γ(1/αi)σi
exp

(
−
|xt − βi0 −∑

p
j=1 βijxt−j|αi

σ
αi
i

)
[

I(xt ≥ βi0 +
p

∑
j=1

βijxt−j)τ
αi
i + I(xt < βi0 +

p

∑
j=1

βijxt−j)(1− τi)
αi

]}

Therefore, an estimator θ̂n for θ is defined as

θ̂n = arg max
θ

Pn(θ). (3)

Theoretically, by selecting the proper parameters of location, skewness, shape, and
scale, the AEP-MAR model can select the best likelihood function via the data-driven
technique. Under some special conditions, the likelihood function of the AEP-MAR model
can also be equivalent to the existing statistical methods, e.g., GMAR [1] and LMAR [5].
This implies that the AEP-MAR model can provide a more general approach that does not
need to assume the error distribution in advance. In addition, the proposed method can
adapt to the unknown error structures to improve prediction accuracy.

Algorithm

The EM algorithm is a commonly used algorithm for maximum likelihood estimation
in incomplete data proposed by Dempster et al. (1977). Under proper regularity conditions,
the EM algorithm has ascent property and global convergence [11]. In this subsection, we
will apply the EM algorithm to solve (3).

Firstly, we define the unobserved random variables

ztj =

{
1, if sample xt is in the j-th component,

0, otherwise.

where t = 1, · · · , n and j = 1, · · · , k. Let zi = (zi1, · · · , zik)
>. Then, the complete data

are {(xt, zt), t = 1, · · · , n}. Thus, the log-likelihood function of the complete data can be
obtained as follows:

Rn(θ) =
n

∑
t=p+1

k

∑
i=1

zti log

{
πi

αiτi(1− τi)

Γ(1/αi)σi
exp

(
−
|xt − βi0 −∑

p
j=1 βijxt−j|αi

σ
αi
i

)
[

I(xt ≥ βi0 +
p

∑
j=1

βijxt−j)τ
αi
i + I(xt < βi0 +

p

∑
j=1

βijxt−j)(1− τi)
αi

]}
.

(4)

In the following, we apply an EM algorithm to implement (4).

E-step: Given the m-th approximation θ̂
(m)
n of θ, the expectation of the latent variable

zti is given by
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p(m)
ti = E(zti|Ft−1; θ̂

(m)
n ) =

π̂
(m)
ni fi

(
xt; β̂

(m)
ni0 + ∑

p
j=1 β̂

(m)
nij xt−j, σ̂

(m)
ni , α̂

(m)
ni , τ̂

(m)
ni

)
∑k

i=1 π̂
(m)
ni fi

(
xt; β̂

(m)
ni0 + ∑

p
j=1 β̂

(m)
nij xt−j, σ̂

(m)
ni , α̂

(m)
ni , τ̂

(m)
ni

) .

M-step: By replacing zti with p(m)
ti in (4), we obtain the following objective function:

R1
n(θ) =

n

∑
t=p+1

k

∑
i=1

p(m)
ti log

{
πi

αiτi(1− τi)

Γ(1/αi)σi
exp

(
−
|xt − βi0 −∑

p
j=1 βijxt−j|αi

σ
αi
i

)
[

I(xt ≥ βi0 +
p

∑
j=1

βijxt−j)τ
αi
i + I(xt < βi0 +

p

∑
j=1

βijxt−j)(1− τi)
αi

]}
.

(5)

By maximizing R1
n(θ) about πi, we can yield

π̂
(m+1)
ni =

1
n− p

n

∑
t=p+1

p(k)ti .

For fixed values of βi and αi, the values of σi, τi can be expressed by maximizing R1
n(θ):

σ
(m+1)
i = σi(βi, αi) =

αi[e+(βi, αi)(τi)
αi + e−(βi, αi)(1− τi)

αi ]

∑n
t=p+1 p(k)ti


1/αi

,

τ
(m+1)
i = τi(βi, αi) =

{
1 +

[
e+(βi, αi)

e−(βi, αi)

]1/(αi+1)
}−1

.

where

e+(βi, αi) =
n

∑
t=p+1

pti|xt − βi0 −
p

∑
j=1

βijxt−j|τ
αi
i I(xt ≥ βi0 +

p

∑
j=1

βijxt−j),

e−(βi, αi) =
n

∑
t=p+1

pti|xt − βi0 −
p

∑
j=1

βijxt−j|τ
αi
i I(xt < βi0 +

p

∑
j=1

βijxt−j).

By replacing σi and τi with σ
(m+1)
i and τ

(m+1)
i in (5), the objective function about

{βi, αi} can be written as

R2
n(βi, αi) =

n

∑
t=p+1

p(k)ti

{
log
(

αi
Γ(1/αi)

)
− 1

αi
log

 αi

∑n
t=p+1 p(k)ti

− 1
αi

−1 + αi
αi

log
[
e+(βi, αi)

1/(1+αi) + e−(βi, αi)
1/(1+αi)

]}
.

(6)

Therefore, the (m + 1)-th approximation θ̂
(m+1)
n of θ can be obtained by:

β̂
(m+1)
ni = arg max

βi

R2
n(βi, α̂

(m)
ni ), i = 1, · · · , k,

α̂
(m+1)
ni = arg max

αi
R2

n(β̂
(m)
ni , αi), i = 1, · · · , k,

σ̂
(m+1)
ni = σi(β̂

(m+1)
ni , α̂

(m+1)
ni ), i = 1, · · · , k,

τ̂
(m+1)
ni = τi(β̂

(m+1)
ni , α̂

(m+1)
ni ), i = 1, · · · , k.
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Remark 1. In order to implement the above EM algorithm, we need an initial value θ̂
(0)
ni =

{β̂(0)
ni , α̂

(0)
ni , σ̂

(0)
ni , τ̂

(0)
ni , π̂

(0)
ni }, i = 1, · · · , k. First, we apply the k-means clustering method to the

dataset. According to [12], we obtain θ̂
(0)
ni as follows:

α̂
(0)
ni = 1,

β̂
(0)
ni = βi(τ̂

(0)
ni ),

τ̂
(0)
ni = arg min

τi
∑

t∈Oi

ρτi

(
xt − βi0(τi)−

p

∑
j=1

βij(τi)xt−j

)/
[τi(1− τi)],

σ̂
(0)
ni =

1
|Oi| ∑

t∈Oi

ρ
τ̂
(0)
ni

(
xt − β̂

(0)
ni0 −

p

∑
j=1

β̂
(0)
nij xt−j

)
,

where Oi is the random sample in the i-th category, ρτ(·) is the quantile check loss function,
and βi(τ) = arg minβi ∑t∈Oi

ρτ(xt − βi0 −∑
p
j=1 βijxt−j). We can use some standard numerical

software to obtain β̂
(m+1)
ni and α̂

(m+1)
ni , e.g., quantreg, optim, and optimize in R software.

3. Simulation Studies

Example 1. In this example, some numerical simulations are carried out to illustrate the finite-
sample performance of the proposed method. We compare the proposed method (AEP-MAR) with
the following three methods: the method based on the Gaussian mixture autoregressive model
(GMAR) [1], the method based on the Student t-mixture autoregressive models (TMAR) [2], and
the method based on the Laplace mixture autoregressive model (LMAR) [5]. In this simulation, we
consider a following two-component time series model (7).{

yt = 0.6yt−1 − 0.9yt−2 + ε1, with π1 = 0.5,

yt = 0.1yt−1 + 0.7yt−2 + ε2, with π2 = 0.5.
(7)

We generate 200 random samples from model (7) with sample sizes of n = 250, 500. For the
error terms ε1 and ε2, in order to demonstrate that the proposed method is robust to unknown error
distributions, we consider the following five scenarios:

Scenario 1: The standard normal distribution (N(0, 1)).
Scenario 2: The standard Laplace distribution (La(0, 1)).
Scenario 3: The t-distribution with degrees of freedom 3 (t(3)).
Scenario 4: A mixture of standard normal distribution N(0, 1) and standard Laplace distribution
La(0, 1) (0.5N(0, 1) + 0.5La(0, 1)).
Scenario 5: The chi-square distribution (χ2(3)). When the error assumption is correct, the cor-
responding mixture AR model should have the best performance. Meanwhile, when the error
assumption is wrong, the estimation accuracy of this method will also decrease. Therefore, the
Scenarios 1–3 are used to compare the performance with the existing methods under correct error
assumption, and the performance of the proposed method should be similar to the correct model. The
Scenarios 4 and 5 are used to demonstrate that our method is robust to unknown err structures, and
the performance of the proposed method should rank first among the four methods.

To assess the finite-sample performance, we calculate the bias and the mean squared
error (MSE) of estimators based on 200 simulations. The simulations results are reported in
Tables 1–7, respectively. In Tables 2 and 4, we also report the estimators of other parameters
for the two-component AEP-MAR model. From Table 1, we find that the GMAR has smaller
bias and MSE than other three methods in the case of normal distribution, while the finite-
sample performance of the AEP-MAR is better than the other two methods. In Table 3,
the LMAR has the best performance in the case of laplace distribution. Meanwhile, the
performance of the AEP-MAR is also similar to that of the LMAR. We can observe from
Table 5 that the TMAR has the smallest bias and MSE in all four methods, while the AEP-
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MAR and the TMAR have similar performance. In Tables 6 and 7, the AEP-MAR has the
smallest bias and MSE in all four methods, and the effectiveness of the other three methods
decreases significantly. The estimators of AEP-MAR are also precise as the sample size
increases. This illustrates that AEP-MAR is robust and effective to an unknown error
structure. In conclusion, the proposed method is more adaptive to the error distribution
than the other three methods. If the error structure is unknown, the proposed method
should be considered first.

Table 1. Simulation results for Scenario 1.

GMAR TMAR LMAR AEP-MAR

β11 0.0036 (0.0026) 0.0064 (0.0031) −0.0054 (0.0037) 0.0034 (0.0026)
β12 0.0023 (0.0023) 0.0054 (0.0030) 0.0151 (0.0037) 0.0030 (0.0023)
β21 0.0010 (0.0022) 0.0008 (0.0027) 0.0061 (0.0032) 0.0008 (0.0024)

n = 250 β22 0.0004 (0.0016) 0.0019 (0.0018) 0.0075 (0.0024) 0.0015 (0.0017)
π1 0.0022 (0.0014) 0.0025 (0.0016) 0.0024 (0.0023) 0.0024 (0.0014)
π2 −0.0022 (0.0014) −0.0025 (0.0016) −0.0024 (0.0023) −0.0024 (0.0014)

β11 0.0007 (0.0009) 0.0018 (0.0012) −0.0056 (0.0017) 0.0008 (0.0009)
β12 0.0031 (0.0011) 0.0058 (0.0013) 0.0078 (0.0017) 0.0031 (0.0012)

n = 500 β21 0.0029 (0.0013) 0.0040 (0.0015) 0.0099 (0.0022) 0.0035 (0.0014)
β22 0.0031 (0.0012) 0.0104 (0.0014) 0.0129 (0.0022) 0.0039 (0.0013)
π1 0.0022 (0.0013) 0.0029 (0.0016) 0.0038 (0.0015) 0.0023 (0.0014)
π2 −0.0022 (0.0013) −0.0029 (0.0016) −0.0038 (0.0015) −0.0023 (0.0014)

Table 2. Simulation results of AEP-MAR for Scenario 1.

AEP-MAR σ1 σ2 τ1 τ2 α1 α2

n = 250 0.6833 (0.0108) 0.6886 (0.0092) 0.5031 (0.0012) 0.4984 (0.0010) 2.1746 (0.3438) 2.1036 (0.3445)
n = 500 0.7038 (0.0056) 0.6990 (0.0057) 0.5003 (0.0007) 0.5016 (0.0006) 2.0986 (0.1625) 2.1009 (0.1638)

Table 3. Simulation results for Scenario 2.

GMAR TMAR LMAR AEP-MAR

β11 0.0061 (0.0018) 0.0060 (0.0012) 0.0040 (0.0011) 0.0046 (0.0011)
β12 0.0013 (0.0019) −0.0012 (0.0012) 0.0004 (0.0010) 0.0012 (0.0010)

n = 250 β21 0.0022 (0.0019) −0.0029 (0.0016) 0.0009 (0.0014) −0.0006 (0.0015)
β22 0.0088 (0.0019) 0.0039 (0.0015) 0.0025 (0.0013) 0.0026 (0.0013)
π1 0.0014 (0.0023) 0.0019 (0.0022) 0.0014 (0.0021) 0.0013 (0.0022)
π2 −0.0014 (0.0023) −0.0019 (0.0022) −0.0014 (0.0021) −0.0013 (0.0022)

β11 −0.0008 (0.0008) 0.0011 (0.0006) 0.0006 (0.0005) 0.0006 (0.0005)
β12 0.0012 (0.0006) 0.0010 (0.0005) 0.0007 (0.0004) 0.0010 (0.0004)

n = 500 β21 0.0054 (0.0009) 0.0022 (0.0005) 0.0012 (0.0005) 0.0020 (0.0005)
β22 0.0048 (0.0010) 0.0023 (0.0005) 0.0016 (0.0005) 0.0019 (0.0005)
π1 0.0023 (0.0012) 0.0014 (0.0009) 0.0010 (0.0009) 0.0014 (0.0009)
π2 −0.0023 (0.0012) −0.0014 (0.0009) −0.0010 (0.0009) −0.0014 (0.0009)

Table 4. Simulation results of AEP-MAR for Scenario 2.

AEP-MAR σ1 σ2 τ1 τ2 α1 α2

n = 250 0.4823 (0.0344) 0.4857 (0.0420) 0.5048 (0.0015) 0.4957 (0.0014) 1.0618 (0.4893) 1.0240b (0.4989)
n = 500 0.4985 (0.0115) 0.5031 (0.0137) 0.5028 (0.0009) 0.4990 (0.0006) 1.0173 (0.4212) 0.9883 (0.4293)



Axioms 2023, 12, 196 7 of 10

Table 5. Simulation results for Scenario 3.

GMAR TMAR LMAR AEP-MAR

β11 0.0046 (0.0017) 0.0030 (0.0012) 0.0035 (0.0015) 0.0035 (0.0014)
β12 0.0053 (0.0020) −0.0008 (0.0009) 0.0019 (0.0013) 0.0008 (0.0012)

n = 250 β21 0.0078 (0.0015) 0.0023 (0.0008) 0.0044 (0.0017) 0.0045 (0.0010)
β22 0.0102 (0.0017) 0.0025 (0.0009) 0.0051 (0.0013) 0.0028 (0.0012)
π1 0.0035 (0.0028) 0.0022 (0.0021) 0.0030 (0.0026) 0.0026 (0.0022)
π2 −0.0035 (0.0028) −0.0022 (0.0021) −0.0030 (0.0026) −0.0026 (0.0022)

β11 −0.0008 (0.0008) 0.0003 (0.0005) −0.0016 (0.0008) 0.0006 (0.0007)
β12 0.0129 (0.0012) 0.0030 (0.0004) 0.0037 (0.0006) 0.0033 (0.0006)

n = 500 β21 0.0076 (0.0010) 0.0015 (0.0005) 0.0040 (0.0007) 0.0018 (0.0006)
β22 0.0106 (0.0015) 0.0012 (0.0004) 0.0040 (0.0005) 0.0022 (0.0005)
π1 0.0018 (0.0024) 0.0001 (0.0010) 0.0014 (0.0012) 0.0008 (0.0011)
π2 −0.0018 (0.0024) −0.0001 (0.0010) −0.0014 (0.0012) −0.0008 (0.0011)

Table 6. Simulation results for Scenario 4.

GMAR TMAR LMAR AEP-MAR

β11 0.0053 (0.0016) 0.0063 (0.0019) 0.0057 (0.0023) 0.0031 (0.0016)
β12 0.0050 (0.0015) 0.0070 (0.0016) 0.0112 (0.0022) −0.0027 (0.0014)

n = 250 β21 0.0116 (0.0023) 0.0084 (0.0018) 0.0075 (0.0020) 0.0055 (0.0015)
β22 0.0094 (0.0021) 0.0050 (0.0018) 0.0105 (0.0016) 0.0036 (0.0015)
π1 0.0067 (0.0023) −0.0106 (0.0021) −0.0031 (0.0021) −0.0004 (0.0021)
π2 −0.0067 (0.0023) 0.0106 (0.0021) 0.0031 (0.0021) 0.0004 (0.0021)

β11 0.0026 (0.0012) 0.0022 (0.0013) 0.0010 (0.0019) 0.0009 (0.0006)
β12 −0.0016 (0.0013) 0.0046 (0.0014) 0.0065 (0.0017) −0.0015 (0.0010)

n = 500 β21 0.0100 (0.0022) 0.0030 (0.0013) 0.0065 (0.0012) 0.0026 (0.0011)
β22 0.0086 (0.0022) −0.0032 (0.0013) 0.0050 (0.0013) 0.0023 (0.0013)
π1 −0.0012 (0.0022) −0.0171 (0.0023) −0.0045 (0.0021) −0.0012 (0.0020)
π2 0.0012 (0.0022) 0.0171 (0.0023) 0.0045 (0.0021) 0.0012 (0.0020)

Table 7. Simulation results for Scenario 5.

GMAR TMAR LMAR AEP-MAR

β11 −0.0149 (0.0079) −0.1418 (0.0216) −0.0337 (0.0021) −0.0033 (0.0018)
β12 0.0965 (0.0268) 0.1251 (0.0170) 0.0659 (0.0053) 0.0155 (0.0038)

n = 250 β21 −0.0672 (0.0097) −0.1476 (0.0237) −0.0761 (0.0068) −0.0108 (0.0035)
β22 0.0173 (0.0264) −0.1247 (0.0166) 0.0504 (0.0032) 0.0075 (0.0029)
π1 0.0875 (0.0145) 0.0577 (0.0054) 0.0805 (0.0090) 0.0041 (0.0058)
π2 −0.0875 (0.0145) −0.0577 (0.0054) −0.0805 (0.0090) −0.0041 (0.0058)

β11 −0.0218 (0.0030) −0.1329 (0.0195) −0.0240 (0.0016) −0.0019 (0.0002)
β12 0.0835 (0.0103) 0.1183 (0.0151) 0.0535 (0.0038) 0.0030 (0.0004)

n = 500 β21 −0.0680 (0.0060) −0.1401 (0.0214) −0.0704 (0.0056) −0.0049 (0.0004)
β22 −0.006 2 (0.0085) −0.0843 (0.0145) −0.0466 (0.0025) −0.0057 (0.0003)
π1 0.0951 (0.0107) 0.0647 (0.0044) 0.0800 (0.0076) 0.0034 (0.0019)
π2 −0.0951 (0.0107) −0.0647 (0.0044) −0.0800 (0.0076) −0.0034 (0.0019)

Example 2. In this example, we apply numerical simulation to illustrate the finite-sample perfor-
mance of the model selections for the proposed AEP-MAR model via the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). The dataset is generated according to Scenario 4
in Example 1. We consider the k-component mixture AR model, where k = 1, 2, 3, 4, 5. We calculate
the AIC and BIC value of the GMAR model, the TMAR model, the LMAR model, and the proposed
AEP-MAR model for each k. The corresponding results are shown in Table 8. From Table 8, we find
that the the two-component AEP-MAR model is selected by minimizing AIC and BIC.
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Table 8. AIC and BIC for Example 2.

GMAR TMAR LMAR AEP-MAR

Components AIC BIC AIC BIC AIC BIC AIC BIC

1 1498.48 1512.54 1093.55 1195.44 1337.81 1351.87 1024.01 1035.10
2 1420.37 1448.48 1115.97 1154.62 1274.51 1302.62 990.35 1032.54

n = 250 3 1109.58 1151.74 1095.32 1155.05 1060.34 1102.50 1004.53 1067.77
4 1257.33 1313.54 1079.92 1160.73 1072.44 1128.66 1014.00 1098.32
5 1003.50 1073.77 1094.09 1195.98 1189.40 1259.67 1000.94 1106.34

1 2028.47 2045.31 1992.91 2013.96 1992.99 2019.83 1981.64 2006.90
2 2172.48 2206.16 2064.95 2111.27 2037.35 2071.04 1944.68 1995.21

n = 500 3 2135.74 2186.27 2132.66 2204.24 2055.36 2105.88 2139.67 2215.46
4 2095.95 2163.32 2120.83 2217.68 2147.28 2214.65 2116.72 2227.78
5 2243.17 2327.38 2112.55 2234.66 2157.19 2241.40 2109.66 2235.98

4. A Real Data Analysis

In this section, we will apply the proposed methodology to analyze the daily return
series of Hong Kong Hang Seng Index (HSI). The data covers the periods from 2 January
2002 to 31 December 2020, which includes 4689 observations. The original series is shown
in Figure 1. From Figure 1, we can clearly see that the daily price series is non-stationary.
Similar to [13], we let xt = 100 ∗ (log(Pt)− log(Pt−1)), where Pt is the daily price in t-th day.
The corresponding xt series are shown in Figure 2. We can observe from Figure 2 that xt is
stationary. The skewness and excess kurtosis of xt are −0.3 and 9.01, respectively, which
also means that the xt series does not satisfy the normality assumption. Meanwhile, the
density of log of the daily closing price of the Hong Kong Hang Seng Index is drawn in
Figure 3. From Figure 3, we find that the marginal distribution of the series is clearly not
symmetric and exhibits multimodality. This indicates that we need to use a mixture AR
model rather than an AR model to describe the daily trend of HSI.

Figure 1. The price of Hong Kong Hang Seng Index (HSI), January 2002–December 2020.
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Figure 2. The log-return of Hong Kong Hang Seng Index (HSI), January 2002–Dececember 2020.
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Figure 3. Density of log of the daily closing price of Hong Kong Hang Seng Index.

In real data analysis, it is important to choose the number of components k and the order
of AR components for the MAR model. According to the distribution characteristics de-
scribed above, we first consider a two-component mixture AR model and a three-component
mixture AR model for this dataset. According to Wong & Li (2000) [1], we used AIC and
BIC as the model-selection criteria. An example of the performances of the model-selection
criteria can be seen in the Example 2 in Section 3.

The corresponding results are reported in Table 9. From Table 9, we can see that all of
the methods rank the two-component as the best. Additionally, the best model selected by
minimizing AIC and BIC is the two-component and second-order AEP-MAR model; the
value of AIC is 5.61, and the value of BIC is 70.14. This shows that the AEP-MAR model
can fit the characteristics of high kurtosis and multimodality in the the log-return series of
HSI better. The estimation results for the selected model are given in Table 10. According to
Table 10, we obtain the following the two-component and second-order AEP-MAR model
for the daily return series of Hong Kong Hang Seng Index.

h(xt|Ft−1;θ) = 0.7564 f1(−0.0447xt−1 + 0.0610xt−2, 0.5240, 1.2187, 0.4808) (8)

+0.2436 f2(−0.6032xt−1 − 0.1394xt−2, 0.5473, 0.9012, 0.5333),

We obtain from the model (8) that the first component can be interpreted as the overall
trend of the log-returns with relatively small fluctuations, and the second component can be
interpreted as the irrational “Unilateral Overshooting Phenomenon” in financial markets.

Table 9. AIC and BIC of a real dataset.

AR(2) AR(3)

Components Method AIC BIC AIC BIC

GMAR 5.86 70.38 9.86 87.29
k = 2 TMAR 5.79 70.32 9.80 87.23

LMAR 5.80 70.33 9.79 87.22
AEPD-MAR 5.61 70.14 9.62 87.06

GMAR 15.82 112.61 21.82 137.97
k = 3 TMAR 15.76 112.56 21.74 137.90

LMAR 15.76 112.55 21.75 137.90
AEPD-MAR 15.68 112.48 21.68 137.83

Table 10. The estimation results of two-component and second-order AEP-MAR model.

Component β1 β2 σ τ α π

component1 −0.0447 0.0610 0.5240 0.4808 1.2187 0.7564
component2 −0.6032 −0.1394 0.5473 0.5333 0.9012 0.2436
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5. Discussion

In this paper, we introduced a robust mixture autoregressive procedure via an asym-
metric exponential power distribution. The proposed method has greater flexibility and
can adapt to unknown error structures. Under some specific parameters, our method can
also be equivalent to the existing method, e.g., GMAR and LMAR as its special cases. In
addition, an EM algorithm was introduced to solve the proposed optimization problem.
The merits of the proposed method are illustrated by some numerical simulations and a
real data analysis. The results indicated that the proposed method was robust and was
adaptive to the error distribution. Finally, we will study the large sample properties of the
proposed method as future work.
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