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Abstract: Traditional fault tree analysis is an effective tool used to evaluate system risk if the required
data are sufficient. Unfortunately, the operation and maintenance data of some complex systems
are difficult to obtain due to economic or technical reasons. The solution is to invite experts to
evaluate some critical aspect of the performance of the system. In this study, the belief degrees of the
occurrence of basic events evaluated by experts are measured by an uncertain measure. Then, a system
risk assessment method based on an uncertain fault tree is proposed, based on which two general
optimization models are established. Furthermore, the genetic algorithm (GA) and the nondominated
sorting genetic algorithm II (NSGA-II) are applied to solve the two optimization models, separately.
In addition, the proposed risk assessment method is applied for the leakage risk evaluation of a
subsea production system, and the two general optimization models are used to optimize the leakage
risk and maintenance cost of the subsea production system. The optimization results provide a
theoretical basis for practitioners to guarantee the safety of subsea production system.

Keywords: uncertain measure; uncertain fault tree; leakage risk; subsea production system;
optimization

1. Introduction

Optimization between risk and cost is an important topic in the field of industrial and
systems engineering. In past decades, researchers have paid attention to risk assessment
and optimization methods for complex systems based on probability theory, such as
Faddoul et al. [1], Hong et al. [2], Liu et al. [3], Ma et al. [4] and Yousefi et al. [5]. However,
to take probability theory as a mathematical basis for risk evaluation and optimization,
three basic premises need to be met at the same time: events need to be clearly defined; there
are a large number of samples; there is probability repeatability between samples. and In
the field of engineering, it is difficult to obtain sufficient data. Therefore, experts are invited
to evaluate the technical condition of systems, which are often described with ambiguous
language. In 1965, Zadeh [6] proposed the concept of fuzzy set to deal with imprecise and
subjective information. After that, researchers began to deal with various optimization
problems in fuzzy environments, such as Mortazavi [7], Sayyaadi and Baghsheikhi [8],
Yang et al. [9], Zhou et al. [10], and so on. Unfortunately, Liu [11] showed that fuzzy theory
is unsuitable for modeling belief degree via a counter example of the strength of a bridge.
A similar situation exists in the field of system risk evaluation. For example, system risk is
evaluated by experts as approximately 0.0. If the system risk is regarded as a triangular
fuzzy variable (0.005, 0.01, 0.015), it can be concluded that the possibility of the system
risk is exactly 0.01 is 1 and the possibility of the system risk is not 0.01 is 1 based on the
possibility measure. It is usually thought that the possibility of the system risk is exactly
0.01 is 0. In addition, the system risk is exactly 0.01 and the system risk is not 0.01 have the
same possibility measure. This contradictory conclusion also shows that the belief degree
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of experts is unsuitable for modeling by the possibility measure because it does not have a
duality property.

In order to measure belief degree, uncertainty theory was founded by Liu [12] and
refined by Liu [13] based on normality, duality, subadditivity, and product measure axioms.
In recent years, uncertainty theory has been widely used in various fields, such as reliability
analysis [14], inference controller [15], risk assessment [16], and statistics [17]. In terms
of optimization problems, uncertainty theory is still an effective mathematical modeling
tool. For instance, Ke and Yao [18] regarded the units as uncertain variables and proposed
a block replacement strategy in uncertain environments. Liu et al. [19] gave the upper
and lower bounds of insurance premiums with uncertain random losses and established
a mathematical model of an optimal insurance problem. Zhang and Peng [20] solved the
uncertain optimal assignment problem by giving the uncertainty distribution of the optimal
assignment profit. Li et al. [21] regarded the return rate of risky assets as an uncertain
variable and established an uncertain model for portfolio optimization. Li et al. [22]
provided a new reliability metric that encompassed two types of task time uncertainties
and developed a multiple objective to maximize the reliability and efficiency of assembly
lines. Wen et al. [23] presented the minimal expected backorder model and the minimal
backorder rate model with the constraints of costs and supply availability based on an
uncertain measure. Li et al. [24] derived some useful theorems related to the optimal
solutions by modeling the uncertain task time. Guo et al. [25] established a multiechelon
multi-indenture optimization LORA model that took the best cost-effectiveness ratio as
the criterion.

GA and NSGA-II, as well-known evolutionary algorithms for solving optimization
problems, have been successfully applied to different real-world applications, including
reliability optimization.

Andrews and Bartlett [26] used GA for the single objective optimization of a firewater
deluge system on an offshore platform, in which the system was presented with the
structure of a fault tree. Pattison and Andrews [27] described a design optimization
scheme for systems that require a high likelihood of functioning on demand by using GA.
Cui et al. [28] proposed a novel reliability design and optimization method of planetary
gears using the GA, based on the Kriging model. Ardakan and Rezvan [29] considered
the multiobjective optimization of the reliability–redundancy allocation problem with a
cold-standby strategy using NSGA-II. Bhattacharyya and Cheliyan [30] solved a subsea
production system optimization problem by using GA and NSGA-II, in which the risk
was evaluated with fault tree analysis. Due to the advantages of GA and NSGA-II, we
continued to use the above two algorithms to solve optimization models.

Subsea production systems are mainly composed of Xmas trees, manifolds, jumper
tubes, umbilical cables, pipelines, etc. [31]. With the increase in service time of subsea
production systems, more and more safety problems have emerged, especially leakage.
The leakage of subsea production systems results in serious environment pollution and
significant economic losses. Therefore, it is essential to ensure the safety of subsea pro-
duction systems. Additionally, the total maintenance cost is expected as low as possible.
Bhattacharyya and Cheliyan [30] paid attention to such problems and optimized the cost
and reliability of a subsea production system on the basis of a traditional fault tree. Un-
fortunately, it is difficult to obtain sufficient data to evaluate the risk of subsea production
systems. In this situation, experts must evaluate the key performance indicators of a subsea
production system. Then, Cheliyan and Bhattacharyya [32] assessed the leakage risk of a
subsea production system based on a fuzzy fault tree, in which the epistemic uncertainty
was modeled with fuzzy set theory. Because the possibility measure has no duality property,
a self-dual measure is absolutely needed in both theory and practice.

The major contributions of this study are as follows: A risk assessment method for
complex systems with insufficient data is proposed based on uncertain fault tree analysis;
two general optimization models are established for complex systems with insufficient
data, and the GA and NSGA-II are applied to solve the two optimization models, separately.
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Leakage risk is evaluated; two optimization models of the leakage risk and maintenance cost
are established for a subsea production system. Then, the optimization results are discussed.

The remainder of this paper is organized as follows Section 2 proposes a risk as-
sessment method for systems with insufficient data. Section 3 establishes two general
optimization models based on uncertain fault tree and describes the algorithms for solving
the two optimization models. Section 4 outlines a leakage risk evaluation for a subsea
production system, establishes the optimization models of maintenance cost and leakage
risk for the subsea production system, and we discuss the optimization results. In addition,
the steps of GA and NSGA-II are provided in Appendix A.

2. Risk Assessment Method Based on Uncertain Fault Tree

A fault tree is called an uncertain fault tree if the occurrences of the input events are
evaluated by the uncertain measure proposed by Liu [12]. The system risk is the belief
degree of the occurrence of the top event; for the operation rules, refer to Liu [33].

Theorem 1. If Λi, i = 1, 2, . . . , N are independent input events, the belief degree of the occurrence
of output event Λ is

M{Λ} =


N∧

i=1

M{Λi}, for “AND” gate

N∨
i=1

M{Λi}, for “OR” gate.

(1)

Proof. If independent input events Λi, i = 1, 2, . . . , N are connected by an “AND” gate, the
belief degree of the occurrence of the output event Λ can be derived by

M{Λ} =M{Λ1 ∩Λ2 ∩ · · · ∩ΛN}
=M{Λ1} ∧M{Λ2} ∧ · · · ∧M{ΛN}

=
N∧

i=1

M{Λi}.

If independent input events Λi, i = 1, 2, . . . , N are connected by an “OR” gate, the
belief degree of the occurrence of the output event Λ can be derived by

M{Λ} =M{Λ1 ∪Λ2 ∪ · · · ∪ΛN}
=M{Λ1} ∨M{Λ2} ∨ · · · ∨M{ΛN}

=
N∨

i=1

M{Λi}.

The proof is completed.

Example 1. The fault tree shown in Figure 1 describes the system risk. Λi, j = 1, 2, . . . , 7 denote
independent basic events, Ak, k = 1, 2, 3, 4 denote the intermediate events, and ΛTop denotes the
top event in the fault tree. Table 1 lists the belief degrees of the occurrence of the basic events.

As shown in Figure 1, the top event ΛTop can be expressed as

ΛTop = A1 ∪ A2

= {Λ1 ∩ A3 ∩Λ2} ∪ {Λ3 ∩ A4}
= {Λ1 ∩ (Λ4 ∪Λ5) ∩Λ2} ∪ {Λ3 ∩ (Λ6 ∪Λ7)}.

Then, the belief degree of occurrence of the top event ΛTop can be determined, i.e., the risk of
the top event ΛTop, namely,
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M{ΛTop} =M{{Λ1 ∩ (Λ4 ∪Λ5) ∩Λ2} ∪ {Λ3 ∩ (Λ6 ∪Λ7)}}
=M{Λ1 ∩ (Λ4 ∪Λ5) ∩Λ2} ∨M{Λ3 ∩ (Λ6 ∪Λ7)}
= (M{Λ1} ∧ (M{Λ4} ∨M{Λ5}) ∧M{Λ2})
∨ (M{Λ3} ∧ (M{Λ6} ∨M{Λ7}))

= (0.4∧ (0.3∨ 0.5) ∧ 0.3) ∨ (0.2∧ (0.35∨ 0.4))

= 0.3.

The AND gate The OR gate

Figure 1. A fault tree structure.

Table 1. The belief degrees of the occurrence of basic events.

Basic Events Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

Belief degree of occurrence 0.4 0.3 0.2 0.3 0.5 0.35 0.4

If the belief degree is replaced by probability in Example 1, then the risk of the top
event ΛTop can be calculated with the probability method, namely,

P{ΛTop} = P{{Λ1 ∩ (Λ4 ∪Λ5) ∩Λ2} ∪ {Λ3 ∩ (Λ6 ∪Λ7)}}
= (P{Λ1} · (P{Λ4}+ P{Λ5}) · P{Λ2})

+ (P{Λ3} · (P{Λ6}+ P{Λ7}))
= (0.4 · (0.3 + 0.5) · 0.3) + (0.2 · (0.35 + 0.4))

= 0.246.

It can be seen that P{ΛTop} andM{ΛTop} are different, which implies when the data
are sufficient, traditional fault tree analysis is applied to evaluate the probability of the
occurrence of the top event; when the data are insufficient, uncertain fault tree analysis is
used to evaluate the belief degree of the occurrence of the top event.

By comparison ofM{ΛTop} and P{ΛTop} in Example 1, it can be seen thatM{ΛTop}
is larger than P{ΛTop}. However, this does not mean that M{ΛTop} is always larger
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than P{ΛTop}. For example, ifM{Λ2} and P{Λ2} change to 0.2, thenM{ΛTop} = 0.2
and P{ΛTop} = 0.214. Therefore, we cannot simply compare the values ofM{ΛTop} and
P{ΛTop} without knowing the fault tree structure and the belief degrees and probabilities
of the occurrence of all basic events.

3. General Optimization Models Based on Uncertain Fault Tree

In this section, an uncertain fault tree is used to evaluate system risk. Then, a single-
objective optimization model and a multiobjective optimization model based on uncertain
fault tree are separately established.

Consider an uncertain fault tree consisting of n independent basic events. Suppose
that N (N ≤ n) basic events have a variety of maintenance techniques, and incomplete
maintenance, denoted by Λi, i = 1, 2, . . . , N, is usually used. The maintenance cost Ci of
basic event Λi is related to its own risk; it can be expressed by

Ci = Fi(M{Λi}), i = 1, 2, . . . , N, (2)

where Fi is called the risk–cost function. Usually, the risk–cost function is a monotonically
decreasing function, that is, the lower the risk achieved through maintenance, the higher
the maintenance cost to be invested. The total maintenance cost of the top event ΛTop is

CTop =
N

∑
i=1

Ci =
N

∑
i=1

Fi(M{Λi}). (3)

3.1. Single-Objective Optimization Model

The aim of the single-objective optimization model is to determine the risk to be
achieved after basic event maintenance when the total maintenance cost is minimized under
the given system risk level. Decision variables are denoted by M{Λi}, i = 1, 2, . . . , N;
the system risk, denoted by MTop, is the function of M{Λi}, i = 1, 2, . . . , N; and the
total maintenance cost CTop is also a function ofM{Λi}, i = 1, 2, . . . , N. Then, the single-
objective optimization model can be expressed by the following mathematical programming

Min CTop

s.t.
MTop = τ

µi ≤M{Λi} ≤ νi, i = 1, 2, . . . , N,

(4)

where µi and νi are the lower and upper bounds of decision variables M{Λi}, i =
1, 2, . . . , N, respectively. The range of τ is

MTop(µ1, µ2, . . . , µN) ≤ τ ≤MTop(ν1, ν2, . . . , νN). (5)

3.2. Multiobjective Optimization Model

The aim of the multiobjective optimization model is to determine the risk to be
achieved after basic event maintenance when the total maintenance cost and the system
risk are minimized at the same time. MTop and CTop are the functions of decision variables
M{Λi}, i = 1, 2, . . . , N. Then, the multiobjective optimization model can be expressed by
the following mathematical programming

Min CTop
Min MTop
s.t.

µi ≤M{Λi} ≤ νi, i = 1, 2, . . . , N.

(6)
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3.3. Solutions of Optimization Models

GA is a method to search the optimal solution by simulating natural evolution process.
It is an effective and efficient algorithm to solve the single-objective optimization model.
NSGA-II is used to solve the multiobjective optimization model since it can reduces the
complexity of noninferior sorting genetic algorithm and has the advantages of fast running
speed and good convergence of solution set. NSGA-II yields a non-dominated set of
solutions known as the Pareto-optimal solutions. The steps of GA and NSGA-II are
described in the Appendix A.

4. Optimization of Leakage Risk and Maintenance Cost for a Subsea
Production System

The operation and maintenance data of subsea production systems are difficult to
obtain due to the underwater environment, or the obtained data are often interpreted
by experts. Therefore, evaluations of the leakage risk based on the traditional fault tree
analysis method are limited. In this section, the leakage risk of the subsea production
system is evaluated with uncertain fault tree analysis. Then, two optimization models of
leakage risk and maintenance cost are established for subsea production systems. Finally,
the optimization results are presented to show the optimal relationship between leakage
risk and maintenance cost, and the risks of basic events to be achieved after maintenance
are given.

4.1. Leakage Risk Assessment of Subsea Production System

Subsea production systems are the main lifeline of offshore oil and gas exploitation,
which consist of Xmas trees, manifolds, jumper tubes, umbilical cables, pipelines, etc. The
fault tree structure with subsea production system leakage as the top event was reported in
Cheliyan and Bhattacharyya [32]. Tables 2 and 3 briefly describe the fault tree structure.
All basic events (BEs) are described in Table 2. The description of the intermediate events
and top event and their connectivity with events are shown in Table 3.

Based on the uncertain fault tree analysis, the leakage risk of the subsea production
system (denoted byMTop) is

MTop =M{Λ26} ∨M{Λ38} ∨M{Λ39} ∨M{Λ40}
=M{Λ26} ∨ (M{Λ1} ∧M{Λ2}) ∨ (M{Λ11} ∧M{Λ36})
∨(M{Λ32} ∨M{Λ33} ∨M{Λ34} ∨M{Λ35} ∨M{Λ37})

= (M{Λ1} ∧M{Λ2}) ∨M{Λ26}
∨(M{Λ11} ∧ (M{Λ27} ∨M{Λ28} ∨M{Λ29} ∨M{Λ30}))
∨(M{Λ18} ∧M{Λ19}) ∨ (M{Λ20} ∧M{Λ21}) ∨ (M{Λ22} ∧M{Λ23})
∨(M{Λ24} ∧M{Λ25}) ∨ (M{Λ17} ∧M{Λ31})

= (M{Λ1} ∧M{Λ2}) ∨ (M{Λ18} ∧M{Λ19})
∨(M{Λ11} ∧ ((M{Λ3} ∨M{Λ4}) ∨ (M{Λ5} ∨M{Λ6})
∨(M{Λ7} ∨M{Λ8}) ∨ (M{Λ9} ∨M{Λ10})))
∨(M{Λ20} ∧M{Λ21}) ∨ (M{Λ22} ∧M{Λ23})
∨(M{Λ24} ∧M{Λ25}) ∨M{Λ26}
∨(M{Λ17} ∧ (M{Λ12} ∨M{Λ13} ∨M{Λ14} ∨M{Λ15} ∨M{Λ16})).

(7)
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Table 2. Information of basic events.

BE Description BEs Description

Λ1 Overpressure in well Λ14 Defect in pipe manifold connector
Λ2 Failure of control in well Λ15 Defect in pipe–PLET connector
Λ3 Jumper puncture Λ16 Defect in pipe–PLEM connector
Λ4 Jumper rupture Λ17 Failure of connector leakage control
Λ5 Flowline puncture Λ18 Defect in X-tree
Λ6 Flowline rupture Λ19 Failure of X-tree leakage control
Λ7 Pipeline puncture Λ20 Defect in manifold
Λ8 Pipeline rupture Λ21 Failure of manifold leakage control
Λ9 Riser puncture Λ22 Defect in PLET
Λ10 Riser rupture Λ23 Failure of PLET leakage control
Λ11 Failure of leakage control of pipe Λ24 Defect in PLEM
Λ12 Defect in X-tree wellhead connector Λ25 Failure of PLEM leakage control
Λ13 Defect in pipe connector Λ26 Third-party damage

Table 3. Information of the top and intermediate events.

Event Description Gates Connected Event

ΛTop Oil and gas leakage OR Λ26, Λ38, Λ39, Λ40
Λ40 Leakage in key facilities OR Λ32, Λ33, Λ34, Λ35, Λ37
Λ39 Leakage in pipe AND Λ11, Λ36
Λ38 Leakage in gas or oil well AND Λ1, Λ2
Λ37 Connector leakage AND Λ17, Λ31
Λ36 Defect in pipe OR Λ27, Λ28, Λ29, Λ30
Λ35 PLEM leakage AND Λ24, Λ25
Λ34 PLET leakage AND Λ22, Λ23
Λ33 Manifold leakage AND Λ20, Λ21
Λ32 X-tree leakage AND Λ18, Λ19
Λ31 Defect in connector OR Λ12, Λ13, Λ14, Λ15, Λ16
Λ30 Defect in riser OR Λ9, Λ10
Λ29 Defect in pipeline OR Λ7, Λ8
Λ28 Defect in flowline OR Λ5, Λ6
Λ27 Defect in jumper OR Λ3, Λ4

4.2. Single-Objective Optimization Model of Leakage Risk and Maintenance Cost for Subsea
Production System

The fault tree of the subsea production system contains 26 basic events, in which 25
basic events require a variety of maintenance techniques. For all risk–cost functions, we
used the data in [30]. Each risk–cost function is assumed to be two straight lines of different
slopes and can be determined by three points (M1{Λi}, C1

i ), (M2{Λi}, C2
i ), (M3{Λi}, C3

i ),
i = 1, 2, . . . , 25, in which

M1{Λi} =
M2{Λi}

2
, M3{Λi} = 2M2{Λi}, C1

i = 3C2
i , C3

i =
C2

i
2

.

So, (M2{Λi}, C2
i ), i = 1, 2, . . . , 25 need to be defined, which are shown in Table 4. The

unit cost of C2
i , i = 1, 2, . . . , 25 is in million USD. The risk tolerance of basic events is 0.2.

From the single-objective optimization model described in (9), the optimization model
of leakage risk and maintenance cost for the subsea production system can be expressed as

Min CTop

s.t.
MTop = τ

0 ≤M{Λi} ≤ 0.2, i = 1, 2, . . . , 25,

(8)
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In whichMTop can be obtained from Formula (7) and

CTop =
25

∑
i=1

Ci =
25

∑
i=1

Fi(M{Λi}). (9)

Then, we solve the optimal risk level of all basic events after maintenance (denoted by
M∗{Λi}, i = 1, 2, . . . , 25), so as to minimize the total maintenance cost under the allowable
leakage risk of the subsea production system.

Table 4. Information of risk–cost functions of basic events.

BEs Λ1 Λ2 Λ3 Λ4 Λ5

(M2{Λi}, C2
i ) (0.043,2) (0.0332 ,2) (0.0095, 0.15) (0.0094, 0.15) (0.007, 2.5)

BEs Λ6 Λ7 Λ8 Λ9 Λ10

(M2{Λi}, C2
i ) (0.095, 2.5) (0.0078, 6) (0.0103,6) (0.023, 3.5) (0.0288, 3.5)

BEs Λ11 Λ12 Λ13 Λ14 Λ15

(M2{Λi}, C2
i ) (0.0538, 1) (0.0195, 0.75) (0.0205, 0.75) (0.0193, 1.5) (0.0175, 2)

BEs Λ16 Λ17 Λ18 Λ19 Λ20

(M2{Λi}, C2
i ) (0.0183, 1) (0.0425, 0.25) (0.0199, 2) (0.032, 2) (0.0204,6)

BEs Λ21 Λ22 Λ23 Λ24 Λ25

(M2{Λi}, C2
i ) (0.0223, 1.5) (0.0189, 2) (0.0214, 0.75) (0.0189, 2) (0.0214, 1.5)

4.3. Multiobjective Optimization Model of Leakage Risk and Maintenance Cost for Subsea
Production System

From the multiobjective optimization model described in (10), the optimization model
of leakage risk and maintenance cost for the subsea production system can be expressed by

Min CTop
Min MTop
s.t.

0 ≤M{Λi} ≤ 0.2, i = 1, 2, . . . , 25,

(10)

whereMTop and CTop can be calculated by (7) and (9). Then, we solve the optimal risk
level of all basic events after maintenance (denoted byM∗{Λi}, i = 1, 2, . . . , 25), so as to
minimize the total maintenance cost and leakage risk at the same time.

4.4. Results and Discussion

The single-objective optimization Model (8) can be solved by the GA described in
Appendix A.1. The optimization solutions are obtained by running the GA multiple times
because Min CTop converges with increasing generations, each time with a prescribed value
ofMTop. The key parameters of the GA were assigned as follows: the population size
is 100, the crossover probability is 0.8, and the mutation probability is 0.04. As shown in
Figure 2, ifMTop is assigned as 0.03, Min CTop converges when the number of generations
reaches 130, and the total maintenance cost is USD 33.4456. The optimal risks of the basic
events are presented in Table 5. So, the number of generations was specified as 300 to
ensure convergence. The optimization results, i.e., the relationship betweenMTop and Min
CTop, are presented in Table 6 and Figure 3.
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Figure 2. The convergence of Min CTop with the increase in generations.

Table 5. The optimized risk of basic events after maintenance.

M∗{Λ1} M∗{Λ2} M∗{Λ3} M∗{Λ4} M∗{Λ5}
0.086 0.029985 0.0019 0.0188 0.013999

M∗{Λ6} M∗{Λ7} M∗{Λ8} M∗{Λ9} M∗{Λ10}
0.019 0.0156 0.020599 0.029970 0.02999

M∗{Λ11} M∗{Λ12} M∗{Λ13} M∗{Λ14} M∗{Λ15}
0.10759 0.039 0.041 0.0386 0.034999

M∗{Λ16} M∗{Λ17} M∗{Λ18} M∗{Λ19} M∗{Λ20}
0.0366 0.029850 0.02995 0.064 0.0408

M∗{Λ21} M∗{Λ22} M∗{Λ23} M∗{Λ24} M∗{Λ25}
0.02999 0.0378 0.02998 0.0378 0.02999

Table 6. The solution of the singe-objective optimization model.

MTop 0.0190 0.0200 0.0250 0.0300 0.0350
Min CTop 53.3279 51.0307 40.6930 33.4456 30.7314

MTop 0.0400 0.0450 0.0500 0.0550 0.0600
Min CTop 29.1465 28.4458 27.9496 27.5289 26.8427

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
MTOP

30

35

40

45

50

M
in

C
TO

P

Figure 3. The solution of the singe-objective optimization model.

The multiobjective optimization Model (10) can be solved by the NSGA-II described in
Appendix A.2. The key parameters of the NSGA-II were assigned as follows: the population
size is 100, the crossover probability is 0.8, and the mutation probability is 0.04. Figure 4
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shows a comparison between the Pareto front and the solutions of the initial population,
50th-generation population, 80th-generation population, and 180th-generation population.
The values of CTop andMTop almost converge when the number of generations reaches
180. The converge maximum and minimum values of CTop andMTop are used to construct
the ranges of the Pareto front.

(a) (b)

(c) (d)

Figure 4. Convergence process of Pareto optimal solution. The solution of (a) initial population;
(b) 50th-generation population; (c) 80th-generation population; (d) 180th-generation population.

As shown in Figures 4 and 5, the maximum and minimum values of CTop andMTop
converge when the number of generations reaches 300. So, the number of generations was
specified as 300 to ensure the Pareto front converged. Table 7 shows the Pareto optimal
solutions on the Pareto front. It is up to the decision maker to adopt a Pareto optimal
solution that lies on this Pareto front.

The optimization results provide the theoretical basis for practitioners to guarantee
the safety of subsea production systems when they do not have sufficient data, which can
help practitioners determine the preliminary funds need required in consideration of the
system risk and give the maintenance degree of basic events.
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Figure 5. The ranges of CTop and MTop with the number of generations: (a) maximum value of CTop;
(b) minimum value of CTop; (c) maximum value ofMTop; (d) minimum value ofMTop.

Table 7. The Pareto optimal solutions on the Pareto front.

No. MTop CTop No. MTop CTop

1 0.0612638248 27.7478222 49 0.0310619046 34.0771521
2 0.0572564195 27.981213 50 0.0308524248 34.2760071
3 0.0567421952 28.021177 51 0.0303672445 34.278854
4 0.0564184552 28.0770276 52 0.0302840162 34.3660938
5 0.051710345 28.131183 53 0.030074754 34.5212012
6 0.0502892177 28.1920152 54 0.0299697184 34.6846129
7 0.0500242664 28.3133204 55 0.0299152533 35.037695
8 0.0482454929 28.3294124 56 0.0293061756 35.0816926
9 0.0482437703 28.5376517 57 0.0288337629 35.2052424
10 0.0479210354 28.6258182 58 0.0287993911 35.5243215
11 0.0447263397 28.7626312 59 0.0287770222 35.7700708
12 0.0434444279 28.9295184 60 0.0287535734 35.9526883
13 0.0429674306 29.0469512 61 0.0284638849 35.9577624
14 0.042370396 29.2535414 62 0.028078938 36.1577861
15 0.0423279743 29.269485 63 0.0277844038 36.1922948
16 0.0407881686 29.4583618 64 0.0277638228 36.3396034
17 0.0407879569 29.5225774 65 0.0276065402 36.4926474
18 0.0400557271 29.7408744 66 0.027548522 36.7284912
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Table 7. Cont.

No. MTop CTop No. MTop CTop

19 0.0398701558 29.9324046 67 0.0273572349 36.8581749
20 0.039714352 30.0555856 68 0.0273386922 36.9791893
21 0.0389417761 30.1112929 69 0.0268895798 37.1414137
22 0.0388453569 30.2700468 70 0.026788262 37.3833141
23 0.0386 30.4555862 71 0.0267640195 37.4583168
24 0.0377473361 30.5280521 72 0.0264837598 37.7025692
25 0.0375137475 30.5707205 73 0.0261634217 37.9739896
26 0.0368736655 30.7223616 74 0.0261046702 38.0523796
27 0.0367790343 30.8394166 75 0.0260608304 38.2207902
28 0.0367010545 31.0388581 76 0.0256734198 38.3436548
29 0.0364044443 31.1345122 77 0.0255414577 38.4349168
30 0.0363891864 31.3961569 78 0.0253661598 38.5428964
31 0.0360283388 31.4052595 79 0.0253507159 38.7729405
32 0.0358800828 31.4852581 80 0.0252378367 38.9022766
33 0.0358238913 31.644148 81 0.0251321018 39.1191081
34 0.0353863681 31.8501649 82 0.0247701335 39.1363357
35 0.0353751191 31.8641366 83 0.0247283539 39.3371158
36 0.0350310536 32.1544939 84 0.0244106642 39.575638
37 0.0349184312 32.3140202 85 0.0242506241 39.7369331
38 0.0343000317 32.5272719 86 0.0241255785 40.1756648
39 0.0342013048 32.6522411 87 0.0238315582 40.3140573
40 0.0340378531 32.7191019 88 0.0237934558 40.476925
41 0.0333494947 32.8159548 89 0.0237100284 40.5409006
42 0.0328617016 32.9674031 90 0.0234442516 40.6835945
43 0.0326773989 33.3421619 91 0.0233346572 40.6969574
44 0.0321136787 33.4693596 92 0.0232434981 41.1975037
45 0.0320822532 33.657781 93 0.0228107907 41.318251
46 0.0315062067 33.7166985 94 0.0227432198 41.4199314
47 0.0314511688 33.75349 95 0.0226151187 41.7470685
48 0.0310652585 33.912054 96 0.0226 41.7627859

5. Conclusions

It is difficult to obtain operation and maintenance data of subsea production systems,
and the obtained data are often interpreted by experts. Therefore, evaluations of leakage
risk based on the traditional fault tree analysis method are limited. Although the fuzzy fault
tree is also used to evaluate system risk under incomplete information, it often produces
conflicting evaluation results because the possibility measure does not have a duality
property. In this study, the belief degrees of occurrence of basic events were measured with
an uncertain measure. Then, the leakage risk of a subsea production system was evaluated
with uncertain fault tree analysis. Furthermore, optimization models were established to
optimize the leakage risk and maintenance cost of a subsea production system. The specific
contributions of this study are as follows:

(1) The belief degrees of the occurrence of basic events evaluated by experts are measured
with an uncertain measure. A risk assessment method for complex systems with
insufficient data was proposed based on uncertain fault tree analysis.

(2) Two general optimization models were established for complex systems with insuffi-
cient data, in which the system risk is evaluated by an uncertain fault tree. GA and
NSGA-II were applied to solve the two optimization models, separately.

(3) The leakage risk of the subsea production system was evaluated with the proposed risk
assessment method. Based on the findings, two optimization models were proposed
to optimize the leakage risk and maintenance cost of a subsea production system, and
the optimization results were discussed.
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In future research, the proposed risk assessment method and optimization models
will be used in the risk assessment and optimization problems for other complex systems
with insufficient data.
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Appendix A

Appendix A.1. The Steps of GA

Step 1: Initialization
For each basic event Λi,M{Λi} is generated by

M{Λi} = µi + αi(νi − µi), (A1)

in which αi is a random number generated between 0 and 1; µi and νi are the minimum and
maximum values ofM{Λi}, i = 1, 2, . . . , N, respectively. The chromosome is constituted
by (M{Λ1},M{Λ2}, . . . ,M{ΛN}). Then, k chromosomes are generated; the jth risk of
basic event Λi is denoted byM(j){Λi}, i = 1, 2, . . . , N, j = 1, 2, . . . , k.

Step 2: Calculate the risk of the top event
According to the fault tree structure of the subsea production system, the risk of the top

event is calculated with Theorem 1. Then, the k risk of the top event is obtained, denoted
byM(j)

Top, j = 1, 2, . . . , k.
Step 3: Calculate the total maintenance cost
IfM(j)

Top = τ, j = 1, 2, . . . , k, the total maintenance cost can be calculated with Equation
(3).

IfM(j)
Top 6= τ, j = 1, 2, . . . , k, proceed to Step 4.

Step 4: Selection
Calculate the average value

M̄Top =
1
k

k

∑
j=1
M(j)

Top, j = 1, 2, . . . , k. (A2)

Compare M̄Top with τ, if M̄Top ≤ τ, then M(j)
Top, j = 1, 2, . . . , k, which is greater

than M̄Top, is selected. If M̄Top > τ, thenM(j)
Top, j = 1, 2, . . . , k, which is less than M̄Top,

is selected.
Step 5: Crossover
For each basic event Λi, two individuals M(j1){Λi} and M(j2){Λi} are randomly

selected; random numbers p and q between 0 and 1 are generated. Then, new individuals
are generated by

M( j́1){Λi} = p ·M(j2){Λi}+ q ·M(j1){Λi} (A3)

https://doi.org/10.1016/j.ress.2018.12.030
https://doi.org/10.1016/j.joes.2017.11.005
https://doi.org/10.1016/j.joes.2017.11.005
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and
M( j́2){Λi} = p ·M(j1){Λi}+ q ·M(j2){Λi},

in which j1 = 1, 2, . . . , k, j2 = 1, 2, . . . , k and j1 6= j2.
ReplaceM(j1){Λi} andM(j2){Λi} withM( j́1){Λi} andM( j́2){Λi}, respectively.
Step 6: Mutation
The individuals and locations to be mutated are randomly selected.

Appendix A.2. Steps of NSGA-II

Step 1: Initialization
For each basic event Λi,M{Λi} is generated by

M{Λi} = µi + αi(νi − µi) (A4)

in which αi is a random number generated between 0 and 1; µi and νi are the minimum and
maximum values ofM{Λi}, i = 1, 2, . . . , N, respectively. The chromosome is constituted
by (M{Λ1},M{Λ2}, . . . ,M{ΛN}). Then, k chromosomes are generated; the jth risk of
basic event Λi is denoted byM(j){Λi}, i = 1, 2, . . . , N, j = 1, 2, . . . , k.

Step 2: Fast nondominated sort
Calculate the objective functions M(j)

Top and C(j)
Top, j = 1, 2, . . . , k with Equations (7)

and (3), respectively. Arrange these chromosomes by using the fast nondominated sorting
approach and arrive at the set X(j)

1 , j = 1, 2, . . . , k.
Step 3: Crossover
Randomly select individuals M(j1){Λi} and M(j2){Λi}, 0 ≤ j1, j2 ≤ k, j1 6= j2 to

generate new individuals by

M(j′1){Λi} = 0.5[(1 + r1)×M(j1){Λi}+ (1− r1)×M(j1){Λi}]

and
M(j′2){Λi} = 0.5[(1− r1)×M(j1){Λi}+ (1 + r1)×M(j1){Λi}],

in which

r1 =

(2u1)
1

η+1 , if u1 ≤ 0.5[
1

2(1−u1)

] 1
η+1 , if u1 > 0.5,

where u1 is a random number in [0,1], and η > 0 is a distribution index.
Step 4: Mutation
The individuals who undergo mutation are randomly selected with probability p, and

the new individuals after the mutation are generated by

M(j′){Λi} = δ ·M(j){Λi},

in which

δ =

[2u2 + (1− 2u2)× (1− δ1)
ηm+1]

1
ηm+1 − 1, if u2 ≤ 0.5

1− [2(1− u2) + 2(u2 − 0.5)× (1− δ2)
ηm+1]

1
ηm+1 , if u2 > 0.5

where u2 is a random number in the interval [0,1]; ηm is the distribution index, δ1 and δ2
are generated by

δ1 =
M(j){Λi} − νi

νi − µi
and δ2 =

µi −M(j){Λi}
νi − µi

, respectively.

Then, k new chromosomes are generated, denoted by (X(j))
′
, j = 1, 2, . . . , k.
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Step 5: Elite retention strategy
Combine X(j)

1 , j = 1, 2, . . . , k and (X(j))
′
, j = 1, 2, . . . , k to construct 2k chromosome

set, denoted by (X(j)
1 )

′′
, j = 1, 2, . . . , 2k. Compute the objective functions (M(j)

Top)
′

and

(C(j)
Top)

′
of (X(j)

1 )
′
, j = 1, 2, . . . , k with Equations (7) and (3), respectively. Rearrange the

chromosome set (X j
1)
′′
, j = 1, 2, . . . , 2k and retain the top k chromosomes as chromosome

set X(j)
2 , j = 1, 2, . . . , k. Rename X(j)

2 by X(j)
1 , j = 1, 2, . . . , k, and proceed to Step 3 until the

end of Step 5. The chromosomes construct the near-optimal Pareto front.
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