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Abstract: We focus on the dual interval control problem of multidimensional objects with delay. We
propose a new nonparametric algorithm. In such a case, it is not necessary to determine a parametric
structure of the investigated object. Another difficulty lies in the complex nature of the decision-
making field as it might not be flexible or convenient for decision-makers to exactly quantify their
opinions with crisp numbers. Due to this fact, we introduce the interval-valued observations into the
algorithm by means of the single-level constraint interval arithmetic. The results of computational
experiments illustrate the effectiveness of the algorithm in the case of using intervals instead of
crisp values.
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1. Introduction

In this article, we consider a control problem of multidimensional objects. In [1],
Feldbaum suggested dual control theory. Dual control algorithms combine control and
object learning processes. This theory was extensively developed by Wittenmark and
Astrom [2,3] who suggested applying dual control algorithms in two cases: a short time
horizon and rapidly changing object parameters. In the first stages of theory development,
it was used for linear stochastic systems with unknown parameters [4,5]. Dual control
algorithms were developed for the case of parametric uncertainty [6]. Using this type
of dual algorithm assumes that the structure of the true system is a priory known and
the control task is to optimize its parameters. The dual control approach is widely used
in the development of model predictive control (MPC) systems [7]. Thus, in [8,9], an
adaptive MPC strategy was suggested for linear multi-input multi-output systems. In [10],
the MPC approach for model-structure uncertainty is introduced. The authors highlight
the beneficial effect of MPC with active learning under parametric or structural model
uncertainty. In practice, dual control algorithms were applied in a wide variety of fields,
such as diabetes investigation [11], a semi-batch reactor equipped with a cooling jacket
modeling [12], energy hub modeling [13] and a penicillin fermentation process control [14].

In practice, there is not much a priori information about the control process. In [15],
the author presents an overview of adaptive control methods based on how much model
information is needed. Processes in the industry (metallurgy, chemical industry, mining
industry, production of electronic components, etc.) are complex and the researcher has no
data on the mathematical structure of the system. It could be difficult and time-consuming
to build an accurate parametric model. Thus, a parametric approach for constructing
control systems might be impractical [16]. Therefore, data-driven or modal-free methods for
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creating controllers have become widespread [16]. One of these [17] shows some results in
constructing a control system on data-dependent matrices that can replace systems models.
In [18], dual control algorithms based on neural networks are used to approximate a priory
unknown functions. The neural approach is applicable for multidimensional dynamic
systems with unknown structures [19]. Another method that allows modeling systems
with unknown structures is the echo state networks [20]. A dual control algorithm for
multidimensional dynamic objects using nonparametric estimation of a reverse regression
function was suggested in [21].

In control systems, the value of desired output is set by an expert. It is not frequent
that the knowledge of experts is precise and such imprecise knowledge of experts should
be represented by interval numbers for reflecting the imprecision. To solve the dual
control problem we will use interval arithmetic which is called single-level constraint
interval arithmetic (SLCIA) [22]. There are also some articles devoted to a framework of
interval-based data analysis in control problems [23–25]. In this study, we include interval
values in a nonparametric dual control algorithm for multidimensional systems. Similar
to the work [24], we use SLCIA to calculate control actions as it simplifies the process of
calculations and computer implementation.

In the existing methods [26], traditional fuzzy control algorithms are used to deal
with dynamic systems which can be described with differential equations. In real appli-
cations, sometimes it is impossible to take into account the dynamics of the process if the
measurement interval of the output variable is more than the output time constant. So it
is impossible to take into account the dynamics of the process in the control system. We
study static objects with transport delay. In the presence of such delay, it is possible to
make a shift in the observation matrix by the delay value to bring the one-to-one correspon-
dence between the values of the input and output variables and not take it into account in
further reasoning.

Thus, the main problem considered in the article is the construction of control algo-
rithms under conditions of uncertainty. For this, a synthesis of the following approaches is
proposed. The first is the dual control theory for control in the absence of a training sample
for setting up the control device. Dual control theory is used to combine two competing
goals: training and control. In [27,28], a dual control algorithm for stochastic systems
with multiple uncertainties is suggested for crisp values. The second one is the theory of
nonparametric control for objects whose mathematical description is a priori unknown
up to parameters. It is a general-purpose algorithm, meaning it does not depend on the
object’s mathematical description. It can be applied to a wide class of objects with known
qualitative properties (dynamic or static, for example). Moreover, SLCIA is introduced for
working with interval values of setpoints. In [29], SLCIA was used for the fuzzy interval
optimal control problem. We propose this approach to the dual control problems for inter-
val variables under uncertainties. In this paper, for the first time, a nonparametric interval
dual control algorithm is proposed.

The rest of the paper is organized as follows. In Section 2, we present the formulation of
the dual control problem. In Section 3, we propose a nonparametric dual control algorithm.
In Section 4, the results of the numerical experiments of modeling multidimensional objects
are described. We conclude our work in Section 5.

2. Problem Formulation under Interval Uncertainty

Consider a control system, whose general scheme is shown in Figure 1. The notation
is as follows: x = (x1, x2, ..., xn) ∈ Ω(x) ⊂ Rn is an output variable of the process,
x∗ = (x∗1 , x∗2 , ..., x∗n) ∈ Ω(x) ⊂ Rn is a vector of set points, u = (u1, u2, ..., um) ∈ Ω(u) ⊂
Rm is a control input vector, ξ is a vector random disturbances, Gx1 , Gx2 , ..., Gxn are the
system response channels corresponding to output variables and including control tools,
gx = (gx1 , gx2 , ..., gxn) ∈ Ω(gx) ⊂ Rn is the random inaccuracy of measurements of output
variables of the process with zero mathematic expectation and limited dispersion.
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Figure 1. The general scheme of closed loop system.

The input and output variables are continuous because of the nature of the process
but the measurements are made at discrete times due to control tools so we investigate
discrete-continuous systems. Such systems are also called hybrids as the continuous part
consists of multiple-operation technological chains and the discrete part consists of digital
controllers [30]. The agreed notation is as follows: ui,j, j = 1, 2, . . . , m, i = 1, 2, . . . , s – the ith
measurement of jth component of the control variable u; xi,j, j = 1, 2, . . . , n, i = 1, 2, . . . , s –
the ith measurement of jth component of the output variable x. We have an initial sample
of observations {ui, xi, i = 1, 2, . . . , s}, where s is sample size.

The task of the control unit is to generate such a control action u that the difference
between object output value x and the value x∗ is minimal. In the previous paragraph,
we commented on the case when all variables were considered crisp numbers. However,
in practice, it is usual that decision information is uncertain. It might not be flexible or
convenient for decision-makers to exactly quantify their opinions with crisp numbers. A
possible solution to model and deal with such uncertainty is by means of interval values. In
this regard, and following, we introduce and formulate a situation when values of reference
variables are intervals. For that, we use intervals notation proposed by Stefanini and Bede
in [31] to define the set of real intervals as

KC = {[a, a] : a ≤ a, a, a ∈ R},

where [a, a] notes the classic real interval. In multidimensional case,

Kn
C = KC × · · · × KC︸ ︷︷ ︸

n times

,

that is, Kn
C is the space of nonempty compact and convex sets of n-dimensional real num-

bers Rn.
The value of desired output is set by an expert. So, we refer to new information given

by an expert and due to this information, we deal with intervals. For this purpose, we make
the transition from x∗ = (x∗1 , x∗2 , ..., x∗n) ∈ Ω(x) ⊂ Rn to y∗ = (y∗1 , y∗2 , ..., y∗n) ∈ Kn

C. Under
the assumption, we are going to obtain intervals instead of crisp values for control variables.
We introduce a new notation of control variable v = (v1, . . . , vm) ∈ Km

C for interval values.
We use different notations {ui, xi, i = 1, 2, . . . , s}, x(t) ∈ Rn, u ∈ Rm for observations, which
we obtain by measuring input and output variables of the process and {v, y∗}, y∗ ∈ Kn

C,
v ∈ Km

C for approximation.

3. SLCIA Basic Concepts

On the topic of interval arithmetic and analysis we can find discussions and notations
by Stefanini and Bede in [31], Moore [32,33], and Alefeld and Herzberger [34], among
others. In [22], it is proposed a variant of constraint interval arithmetic (CIA) that operates
with a single parameter (level) in each interval operand of an expression, called single-
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level constraint interval arithmetic (SLCIA). This arithmetic was used in the discrete-time
interval optimal control problem [29], and in the next section, we propose its extension to
the evaluation of expressions in interval-valued dual control problems.

Let us bring the basic definitions of single-level constraint interval arithmetic [22].

Definition 1 ([22]). Let A = {[a, a]} ∈ KC be any interval. Then

1. A continuous function A : [0, 1]→ R such that

min
0≤λ≤0

A(λ) = a, max
0≤λ≤0

A(λ) = a,

will be called a constraint function associated with A.
2. Associated with the interval A we define the decreasing convex constraint function A :

[0, 1]→ R by means

A(λ) = λa + (1− λ)a, 0 ≤ λ ≤ 1,

or equivalently
A(λ) = (a− a)λ + a, 0 ≤ λ ≤ 1.

3. Associated with the interval A we define the increasing convex constraint function A′ :
[0, 1]→ R by means

A′(λ) = (1− λ)a + λa, 0 ≤ λ ≤ 1,

or equivalently
A′(λ) = a + λ(a− a), 0 ≤ λ ≤ 1.

For discussions and examples of SLCIA, we refer to [22], particularly, for the evaluation
of expression with intervals. In this regard, we highlight the following definitions of
expression in interval arithmetic, with a role for the calculus of interval-valued expressions.

Definition 2 ([22]). An expression E(A1, ..., Aq) is a correct expression in interval arithmetic if
E(x1, ..., xq) is a correctly constructed expression in a formal language for arithmetic operations
with real number operands x1, ..., xq and usual arithmetic operations on real numbers.

Definition 3 ([22]). Let A1(λ), ..., Aq(λ) be the decreasing convex constraint functions associated
to A1, ..., Aq ∈ KC, E(A1(λ), ..., Aq(λ)). The evaluation of a correct expression is performed
according to the following rule:

E(A1, ..., Aq) =

[
min

λ∈[0,1]
E
(

A1(λ), ..., Aq(λ)
)
, max

λ∈[0,1]
E
(

A1(λ), ..., Aq(λ)
)]

. (1)

This is the evaluation of the expression E with the given arguments provided that the min
and max exist. A similar role exists for increasing convex constraint functions associated with
A1, ..., Aq ∈ KC.

Let us observe that, as usual in computational calculus, it is interesting to explore how
to evaluate the interval-valued expression E, by means of its corresponding real-valued
expression given in (1), at a discrete set of values for λ. For such discretization, and given
p ∈ N, let us consider a classic partition of [0, 1] πp = {λk : k = 1, . . . , p + 1}, with
0 = λ1 < λ2 < · · · < λp+1 = 1; in particular, let us use λk =

k−1
p , for k = 1, . . . , p + 1. As a

result after computation on the partition, it is expected to obtain an approximation of the
expression E. To this end, in the following, we present a useful result for computational
calculus in the next section under continuity of the expression E(x1, . . . , xq).
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Proposition 1. Let us consider A1(λ), ..., Aq(λ) the decreasing convex constraint functions as-
sociated to A1, ..., Aq ∈ KC, and an expression in interval arithmetic E(A1, ..., Aq), in which the
corresponding real-valued expression E(x1, . . . , xq) is continuous. For any p ∈ N, consider the
partition on [0, 1] πp = {λk : k = 1, . . . , p + 1}, with λk = k−1

p , for k = 1, . . . , p + 1. Then,
E(A1, ..., Aq) is a correct expression in interval arithmetic, and

E(A1, ..., Aq) =

[
lim
p→∞

min
λk∈πp

E
(

A1(λk), ..., Aq(λk)
)
, lim

p→∞
max
λk∈πp

E
(

A1(λk), ..., Aq(λk)
)]

. (2)

Proof. On one hand, A1(λ), ..., Aq(λ) are decreasing convex constraint functions, and
then, from Definition 1, they are continuous on [0, 1]. Since the real-valued expression
E(x1, . . . , xq) is continuous, it derives that E

(
A1(λ), ..., Aq(λ)

)
is continuous on the compact

set [0, 1], what implies that there exist the minimum and maximum of E
(

A1(λ), ..., Aq(λ)
)

on [0, 1]. Therefore, following Definitions 2 and 3, E(A1, ..., Aq) is a correct expression in in-
terval arithmetic and can be calculated by the equality (1). On the other hand, from the conti-
nuity of E

(
A1(λ), ..., Aq(λ)

)
on the compact set [0, 1], it follows that

minλ∈[0,1] E
(

A1(λ), ..., Aq(λ)
)
= limp→∞ minλk∈πp E

(
A1(λk), ..., Aq(λk)

)
, and maxλ∈[0,1]

E
(

A1(λ), ..., Aq(λ)
)
= limp→∞ maxλk∈πp E

(
A1(λk), ..., Aq(λk)

)
, and then the equality (2) is

fulfilled.

As a consequence of the previous result, let us point out that given p and its associated
partition πp, the interval given by[

min
λk∈πp

E
(

A1(λk), ..., Aq(λk)
)
, max

λk∈πp
E
(

A1(λk), ..., Aq(λk)
)]

can be used as an approximation to interval E(A1, ..., Aq), which is useful in the computa-
tional calculus in the next section.

4. Nonparametric Interval Dual Control Algorithm

The mathematical description of the investigated object can be as follows:

x = A(u), (3)

where A is an unknown object operator. If there exists an inverse operator A−1, A−1 A = 1, then

x = A−1 A < x = x∗ >, u = A−1 < x > . (4)

From now on, we assume that A−1 exists and it is a continuous function. It is an
ill-posed problem [35]. The exact solution exists for the case of output noise absence. In the
presence of noise, some regularization methods can be applied to obtain an exact solution
for systems that could be modeled by a linear differential equation [36]. For the model-free
case or situation of nonparametric uncertainty, it is advisable to use kernel estimations to
obtain the estimation of the inverse operator [37].

The “ideal” regulator could have the form (4). The formula (4) could be used in order
to obtain the desired trajectory x = x∗. In this case, we calculate the “ideal” value of the
control variable u∗. The major problem is that in many cases it is impossible to construct
such a scheme because the operator A is unknown. The estimation of the inverse operator
Â−1 is used to obtain the estimation û∗. The idea is to estimate it directly from input u and
output x [38].

Consider the dual control algorithms which were first proposed by Feldbaum [1].
The control aim of such algorithms has dual nature: caution and probing [3]. Feldbaum
considered a situation when the structure of the model and the laws of the distribution
of the random disturbances are known. In [39], the idea of applying the nonparametric
estimation of regression function in control systems was first suggested for crisp values.
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The method is robust to nonparametric uncertainty: the mathematical description of the
object is unknown.

As a task of control unit to obtain control action u(t), so the inverse function A−1
i of

(3) exists:

uj = A−1
j (x∗i ), i = 1, 2, . . . , n, j = 1, 2, . . . , m, (5)

where A−1
j is a continuous function. As y∗i are compact sets and A−1

j are continuous
functions, then we find that vj are also intervals.

Previously, the nonparametric algorithm of dynamic processes dual control for crisp
values was suggested in [21]. Due to uncertain data context and the presence of interval-
valued data, we propose the nonparametric interval dual control algorithm of a multidi-
mensional object by means of SLCIA. The proposed algorithm includes the following steps:

Step 1. Under the new framework, we deal with intervals instead of points. For
this purpose, taking into account SLCIA, we define each interval-valued variable of y∗ =
(y∗1 , y∗2 , . . . , y∗n) by means of their decreasing convex constraint functions associated, and
give an initial value to p. Then, we consider the partition πp = {λk : k = 1, . . . , p + 1},
with λk = k−1

p , for k = 1, . . . , p + 1, for the discretization for each interval variable y∗j =

[y∗j , y∗j ], j = 1, 2, . . . , n, what provides the following discrete subsets:

{y∗kj } ⊂ [y∗j , y∗j ], k = 1, 2, ..., p + 1,

with y∗kj = λky∗j + (1− λk)y∗j . Note that y∗1j = y∗j , y∗p+1
j = y∗j .

Then, for each level λk, k = 1, 2, ..., p + 1 of the interval (y∗1(λk), y∗2(λk), . . . , y∗n(λk)) we
calculate the level λk of the control variable v = (v1(λk), v2(λk), . . . , vm(λk). We operate
on all levels and then take the minimum and maximum of the operations in relation to λ
for each vj, j = 1, 2, . . . , m to obtain the extremes of the new interval of the control variable
v = (v1, v2, . . . , vm). For each value of control variable v = (v1, v2, . . . , vm) we use the
following control algorithm.

Step 2. We use Nadaraya–Watson nonparametric estimation of inverse regression
function [39,40]. For this purpose, it is necessary to define bandwidth parameters hx and
hu. Bandwidth parameters for each component of the vector of variables u and x are
determined due to the following algorithm.

(i) Calculate the value of bandwidth parameter hx
w, w = 1, 2, . . . , n:

hx
w = β|y∗w,s+1 − x0

w|, (6)

where coefficient β > 1, x0
w is the closest observation to the value y∗w,s+1 of the sample

{xw,i, i = 1, 2, . . . , s}, w = 1, 2, . . . , n.
(ii) Determine the value of the coefficient hu:

hu = γ|us+1 − u0|, (7)

where coefficient γ > 1, u0 is the closest observation to the value us+1 of the sample
{ui, i = 1, 2, . . . , s′, s′ < s}. The sampling points satisfy the following conditions:

|y∗w,s+1 − xw,i|/hx
w ≤ 1, i = 1, . . . , s′, w = 1, 2, . . . , n. (8)

Step 3. We calculate the component v∗j,s(λk), j = 1, 2, . . . , m which accumulates the
knowledge about the object. The first variable v∗1,s(λk) can be calculated as a nonparametric
estimation of the regression function for discrete observations {ui, xi, i = 1, 2, . . . , s} in the
following form:
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v∗1,s(λk) =

s
∑

i=1
u1,i

n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
s
∑

i=1

n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

) , (9)

where
n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
is a kernel function. Kernel function

n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
and bandwidth parameter hx

w satisfies the following convergence conditions [39,41]:

hx
w > 0; &&0 ≤ Φ

(
(y∗w,s+1(λk)− xw,i)/hx

w
)
< ∞;

lim
s→∞

hx
w = 0; &&

∫
Ω(x)

Φ
(
(y∗w,s+1(λk)− xw,i)/hx

w
)

dxw,i = 1; (10)

lim
s→∞

s(hx
w)

n = ∞; &&
1

hx
w

lim
s→∞

Φ
(
(y∗w,s+1(λk)− xw,i)/hx

w
)
= δ(x∗w,s+1(λk)− xw,i).

The main idea is that each subsequent value vi(λk), i = 2, 3, . . . , m depends on the
value vi(λk), i = 1, 2, . . . , m − 1 found in the previous step. The estimation of v∗j,s(λk),
j = 2, 3, . . . , m is based on a Nadaraya–Watson estimation of inverse regression function
which refers to the local approximation methods [39].

Step 4. So, for components vj(λk), j = 2, 3, . . . , m addend v∗j,s(λk), j = 2, 3, . . . , m is
proposed to calculate due to the formula:

v∗j,s(λk) =

s
∑

i=1
uj,i

j−1
∏

w=1
Φ
(

v∗j,s(λk)−uw,i

hu

)
n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
s
∑

i=1

j−1
∏

w=1
Φ
(

uw,s+1−uw,i
hu

) n
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

) . (11)

Step 5. The search step ∆vj,s+1 could have the form:

∆vj,s+1(λk) =
n

∑
i=1

Θi
(
y∗i,s+1(λk)− xi,s

)
, j = 1, 2, . . . , m, (12)

where Θ = (Θ1, Θ2, . . . , Θn) could be found as a minimum of quadratic criterion:

R(Θ1, Θ2, . . . , Θn) =

(
s−1

∑
i=1

n

∑
p=1

(
y∗p,i+1(λk)−

s−1

∑
j=1

xp,j+1

×
m

∏
q=1

Φ

(v∗q,i +
n
∑

w=1
Θw

(
y∗w,i+1(λk)− xw,i

)
− uq,j+1

hu

)

×
m

∏
q=1

Φ

(v∗q,i(λk) +
n
∑

w=1
Θw

(
y∗w,i+1(λk)− xw,i

)
− uq,j+1

hu (λk)

)−1))2

→ min
(Θ1,Θ2,...,Θn)

(13)

The value of variable Θ belongs to the interval [0, 1].
Step 6. In this case, the nonparametric dual control algorithm can be represented as follows:

vj,s+1(λk) = v∗j,s(λk) + ∆vj,s+1(λk), j = 1, 2, . . . , m, (14)

where the component v∗j,s accumulates the knowledge about the object, the component
∆vj,s+1 is the “learners” search step.
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Step 7. For each value of reference variables (y1(λk), y2(λk), . . . , yn(λk)), we have
calculated the value of control variable v = (v1(λk), v2(λk), . . . , vm(λk)), λk =

k−1
p , for k =

1, . . . , p + 1. Then, we choose the minimum and the maximum value of the control variable.
For example, for variable v1: v1 = min{v1(λk)}, v1 = max{v1(λk)}, k = 1, . . . , p + 1. So,
we obtain intervals for every control variable v = (v1, v2, . . . , vm):

vj = [vj, vj], j = 1, 2, . . . , m.

We use the Gaussian kernel function as it is continuous and universal. From Proposi-
tion 1 it follows that the minimum and the maximum value of the control variable exist. So,
we obtain an approximation of the interval values v = (v1, v2, . . . , vm) using the proposed
algorithm, as was concluded in Section 3.

5. Numerical Examples

At the initial stage of the control algorithm (14) search step ∆vj,s+1(λk) (12) plays a key
role. This component stands for the ability of control to lead the object to the desired output.
A sample of observations {ui, xi, i = 1, 2, . . . , s} of input and output variables begins to
accumulate from the first measurement and grows in the process of system control. The
increased sample size leads to the growing role of the component v∗j,s(λk), j = 1, 2, . . . , s,
this term contains the knowledge about the controlled object. This is the case of active
data accumulation.

The combined method of data accumulation assumes that there is an initial sample of
observations {ui, xi, i = 1, 2, . . . , s}, but at the following times sample is supplemented with
new elements (us+1, xs+1), (us+2, xs+2), . . . . In this case, the active and passive methods of
data accumulation are associated. An available sample of observations is not sufficient to
construct a high-quality system, but at the beginning, such a system is trained more than in
the case of active data accumulation. This case is the most consistent with practice because
the development of complex adaptive systems does not start from scratch.

Let us consider the case of the combined method of data accumulation of simulation
of the object which has three input u = (u1, u2) and two output x = (x1, x2) variables. Let
the object be described by the following equations:{

x1 = u1 + 1.5u2,

x2 = 1.5u1 + 2u2.
(15)

As it was said, if reference variables are intervals, control input u is also interval
variables, and expressions given in (15) are interpreted following the arithmetic given by
SLCIA. To illustrate the situation when the reference variables are intervals we conduct
computational experiments under the considered interval-valued arithmetic, by means of a
discretization of the parameter λ. Then, in order to use the suggested algorithm for each
level λk, k = 1, 2, ..., p + 1 of the interval (y∗1(λk), y∗2(λk), . . . , y∗n(λk)) we calculate the level
λk of the control variable v = (v1(λk), v2(λk), . . . , vm(λk). In the experiment, the set points
are y∗1 = [1.8, 2], y∗2 = [2.8, 3].

The object control system is constructed by using a nonparametric estimation. In this
case, the dual control algorithm has the following form:{

v1,s+1(λk) = v∗1,s(λk) + ∆v1,s+1(λk),

v2,s+1(λk) = v∗2,s(λk) + ∆v2,s+1(λk).
(16)

Firstly, it is necessary to calculate the component v∗1,s of dual control algorithm (16):

v∗1,s(λk) =

s
∑

i=1
u1,i

2
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
s
∑

i=1

2
∏

w=1
Φ
(

y∗w,s+1(λk)−xw,i
hx

w

) . (17)



Axioms 2023, 12, 193 9 of 12

The component v∗2,s is calculated as follows:

v∗2,s(λk) =

s
∑

i=1
u2,iΦ

(
v∗1,s(λk)−u1,i

hu

)
2

∏
w=1

Φ
(

y∗w,s+1(λk)−xw,i
hx

w

)
s
∑

i=1
Φ
(

v∗1,s(λk)−u1,i
hu

)
2

∏
w=1

Φ
(

y∗w,s+1(λk)−xw,i
hx

w

) . (18)

In numeric experiments, we use the Gaussian kernel function which is a popular and
practical choice [42]. For instance, it has the following form for the variable x [43]:

Φ

(
y∗w,s+1(λk)− xw,i

hx
w

)
=

1√
2π

e
− 1

2

(
y∗w,s+1(λk)−xw,i

hx
w

)2

. (19)

To assess the results of the simulation of control algorithms using a nonparametric
model, the quadratic relative error was used for each λ-level:

W(λk) =

√√√√√√√√
1
s

s
∑

i=1

n
∑

j=1

(
y∗j,i(λk)− xj,i

)2

1
s−1

s
∑

i=1

n
∑

j=1

(
xj,i − m̂xj

)2
, (20)

where m̂xj—the estimation of mathematic expectation of the j-th component of output
variable x.

Then, the control error could have the following form:

W =
1

p + 1

p+1

∑
i=1

W(λk). (21)

The value of the relative error (21) belongs to the interval [0, 1]. A small error value
(close to zero) indicates the high accuracy of control algorithms.

There is a case of the combined method of information accumulation. The sample
{u1,i, u2,i, xi, i = 1, 2, . . . , s}, s = 200 was passively accumulated. Since the 200 step dual
control (14) algorithm starts working on the next 500 steps. In the following experiment
control, we calculate input 100 times and find the minimum and maximum values to obtain
intervals vj = [vj, vj], j = 1, . . . , 3. The results are presented in Table 1.

Table 1. The results of control for various values of the parameters.

s v1 v2 y∗
1 y∗

2

200 [1.234, 1.690] [0.164, 0.492] [1.8, 2] [2.8, 3]
300 [1.184, 1.681] [0,032, 0.191] [1.8, 2] [2.8, 3]
400 [1.344, 1.712] [0.116, 0.432] [1.8, 2] [2.8, 3]
500 [1.688, 1.808] [0.082, 0.152] [1.8, 2] [2.8, 3]

Let us consider the results of the experiment when the desired output x∗ has a stepwise
form and is presented as crisp values:{

x∗1,i = 5, x∗2,i = 7, i = 200, 299,

x∗1,i = 2, x∗2,i = 3, i = 300, 400.
(22)

In the first step, the algorithm is adjusted and then causes the object to the desired
output. The simulation results in the absence of interference are shown in Figure 2. In
Figures 2 and 3, the index means the number of a sample element. The first 200 sample
elements from 0 to 199 were passively accumulated, and the control process started from
the 200 elements, so the first index is 200 in Figure 2. With the new value of the reference
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variable, x∗1 or x∗2 algorithm tuning occurs, then the algorithm causes the object to the
desired value. The graphics of control variables u1, u2, u3 are shown in Figure 3. The
control error is 0.08.

(a) (b)

Figure 2. The control results in the absence of interference, when the task control is a stepwise impact
for variables: (a) x1; (b) x2.

Figure 3. Control variables values: (a) u1; (b) u2.

6. Conclusions

In this paper, an interval dual control problem was proposed and the nonparamet-
ric algorithm was extended to the control theory using single-level constrained interval
arithmetic. First, the training control algorithm is conducted at the same time as the control
process. Second, the use of intervals allows for taking into account a variety of random
factors, such as the inaccuracy of measurements. The proposed algorithm (Equation (14))
is effective in finding the interval solution of the control problem. A numerical example
shows that the procedure to solve interval dual control problems is efficient. Moreover,
a discretization method has a practical solution for a control problem decision. Future
work will consider the insertion of the nonparametric dual control theory into the theory of
fuzzy sets, i.e., we intend to study fuzzy control problems using single-level constrained
fuzzy arithmetic. As another future research line, we will study the case when A−1 is not
necessarily a function, and extend the method for the construction of the interval/fuzzy
solution for such a new case.
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