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Abstract: This paper proposes a partial differential equation model based on the model introduced
by V. A. Kuznetsov and M. A. Taylor, which explains the dynamics of a tumor–immune interaction
system, where the immune reactions are described by a Michaelis–Menten function. In this work,
time delay and diffusion process are considered in order to make the studied model closer to reality.
Firstly, we analyze the local stability of equilibria and the existence of Hopf bifurcation by using the
delay as a bifurcation parameter. Secondly, we use the normal form theory and the center manifold
reduction to determine the normal form of Hopf bifurcation for the studied model. Finally, some
numerical simulations are provided to illustrate the analytic results. We show how diffusion has a
significant effect on the dynamics of the delayed interaction tumor–immune system.
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1. Introduction

Some local tissue cells in the biological system lose their normal regulation or are
infected by certain viruses in their growth and then become tumor cells. A primary cause
of human death is malignant tumor cells. In order to minimize the possibility of a patient
dying, it is necessary to use some specific treatments or a combination of therapies such as
surgery, chemotherapy, radiotherapy, etc. However, the immune function of the body can
inhibit the attack of normal cells by invaders and the transformation into potential cancer
cells, which is a natural defense of biological organs against tumor growth [1]. For the early
stages of cancer, the use of an immune response is effective to treat tumors [2,3]. Thus,
immunotherapy is becoming an essential treatment for tumors [4]. Furthermore, the study
of the dynamics of the tumor–immune interaction system by mathematical models is very
important and is one of the biomedical models that has attracted considerable attention
over the past few decades.

In order to understand the complex dynamics of the tumor–immune system, mathe-
matical models, such as ordinary differential equations (ODEs) [5–7] and partial differential
equations (PDEs) [8–11], are largely used to explore the dynamics of the immune system
and tumor growth. Various valuable results have been achieved, and these results have
an important theoretical and clinical meaning in tumor research. For example, in ref. [12],
the authors present an analytic approach to describe and establish solutions to a porous
medium system of equations, showing applications in invasive-invaded biological dynam-
ics. Furthermore, interesting analytical results apropos invasive-invaded systems with
nonlinear diffusion and advection are given in [13]. New results on the multidimensional
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stability of V-shaped traveling fronts for a reaction–diffusion equation with a nonlinear con-
vection term in Rn(n ≥ 3) are presented in [14]. It is certain that constructing mathematical
models supplies us with a new view to understanding the tumor–immune system.

Scientists have found that the immunity of an organism itself, which can help the
immune cells fight against tumor cells, may be delayed [15]. Furthermore, resting cells
can hunt and kill malignant tumor cells more than they can degenerate and transform into
hunting cells themselves. Meanwhile, such a process can be achieved within a certain time
interval, sometimes even a short time interval. Moreover, numerous scholars researching
tumor–immune system interaction models have used only current information for pre-
dicting the future state [16,17]; however, future development not only depends on present
information but also on past phenomena. For improving this issue, numerous scholars
have considered the time delay in tumor–immune systems [18,19]. Ref. [20] considered
a system of three-dimensional nonlinear delay differential equations, with the authors
including time delay as a representation of the time lag for the conversion of resting cells
to hunting cells. Ref. [21] studied the dynamics of tumor–immune system competition
with time delay, and showed that the dynamical behavior of the system depends on the
time delay parameter. Ref. [22] constructed a system of a number of immune cells that
cooperate to protect the organs from tumor cells; the model included time delay to illustrate
the activation process of immune cells. Ref. [23] proposed a Lotka–Volterra competition
model with a step-wise constant delay to illustrate the interaction between tumor cells
and T lymphocytes, and investigated the necessary and sufficient conditions for local and
global stability.

The motivation for this paper is as follows. First, due to the processes of degeneration,
proliferation, and transformation of tumor cells that can be achieved within a certain
time interval, the existence of a time delay in the tumor–immune interaction system is
necessary. Moreover, many scholars have shown that a time delay induces a change in the
dynamical behavior of models, for example in [24,25], which can be biologically interpreted.
Furthermore, the models governed by DDEs use past phenomena for predicting future
information, which is more realistic. Second, the interaction between tumor cells and the
immune system not only depends on time, but also on the space they live in. Moreover,
tumor cells could spread in organs and trigger some factors, initiating the diffusion of
tumor cells. Therefore, it is important to include time delay and diffusion into the tumor–
immune interaction system, although investigating the time delay in specific mathematical
models, such as models including spatial factors, is significant and more reasonable when
we consider tumor–immune interaction problems. Third, Galach [26] analyzed a simplified
version of Kuznetsov and Talyor’s model [27], where the immune reaction is described by
a linear term, and then included the time delay in the interaction term between tumor cells
and the immune system in the equation that describes the growth of tumor cells. However,
the authors did not investigate the effect of time delay in Kuznetsov and Taylor’s model
with the Michaelis–Menten function. Moreover, the diffusion of tumor cells and immune
cells was not taken into account. Both immune and tumor reactions take a certain amount
of time to identify alien cells and then react after a certain time delay.

Kuznetsov and Taylor’s model explains the response of effector cells to the growth of
cancer cells; this model is different from other tumor–immune interaction system models
because the authors consider the penetration of tumor cells by effector cells. Moreover, they
use the Michaelis–Menten function to illustrate the production of tumor-specific immune
cells. However, tumor invasion and metastatic spread are two essential and fundamental
spatial processes that must be considered in such an important model. To establish the
spatial effect issue, in this work, we consider Kuznetsov and Taylor’s model governed by
PDEs, considering the time delay in the interaction term. Our model is the first to consider
the time delay and diffusion process together in the original Kuznetsov and Taylor model
(with the Michaelis–Menten function). In this paper, we analyze the stability equilibria to
obtain the parameters that affect tumor growth and immune response the most. Moreover,
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we provide a detailed study to display the effect of diffusion parameters and time delay on
the stability of equilibria and the occurrence of Hopf bifurcation.

This paper is organized as follows: We present a partial differential equation model
with time delay and diffusion in Section 2. In Section 3, we carry out a qualitative analysis
of the model, investigate the local stability of equilibria and detect the existence of Hopf
bifurcation. In Section 4, by the use of the center manifold reduction method, we determine
the normal form of Hopf bifurcation. We present some numerical simulations in Section 5.
Finally, we present the conclusion of this study.

2. Model Formulation

The immune system contains many mechanisms for the identification and attack of
tumor cells. The immune cells and tumor cells cannot recognize each other immediately,
and there exists a time delay, τ, for responding. This response time may be small; however,
it cannot be neglected. Furthermore, under the conditions of bounded resources and space,
tumor cells and immune cells diffuse in the organs. Although the spatial environment
affects the growth and interaction between tumor cells and immune cells, it does not only
depend on time. Hence, it is also necessary to provide the complex interaction caused by
spatial characteristics. Considering the above aspect, we construct the following system
of non-linear equations governed by the partial differential equations in the presence of a
time delay to study the dynamics of the tumor–immune interaction system:

∂u
∂t

(x, t) = c1∆u(x, t) + αu(1− u)− cu(t− τ)v(t− τ), t > 0, x ∈ Ω,
∂v
∂t

(x, t) = c2∆v(x, t)− βv +
ζuv

η + u
− u(t− τ)v(t− τ), t > 0, x ∈ Ω,

∂u
∂x

(x, t) =
∂v
∂x

(x, t) = 0, t ≥ 0, x ∈ ∂Ω

u(x, t) = u0(x, t) ≥ 0; v(x, t) = v0(x, t) ≥ 0 t ∈ [−τ, 0], x ∈ Ω

(1)

where Ω is a bounded domain in Rm(m = 1, 2, 3) with smooth boundaries, ∂Ω. For
simplicity, we chose Ω = [0, π], but all calculations can be extended for higher dimensions.
u and v denote the density of cancer cells and immune cells at time t and location x. The
descriptions of the parameters are given in Table 1.

Table 1. Descriptions of the parameters of model (1).

Parameters Description

c1 Diffusion rate of cancer cells

c2 Diffusion rate of immune cells

α The growth rate of cancer cells

c The coefficient of interaction between
immune cells and tumor cells

ζ The production rate of immune cells
stimulated by cancer cells

β The natural death rate of immune cells

η
The number of cancer cells by which

the immune system responds is half of its maximum

τ The discrete time delay in interconnection terms
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3. Qualitative Analysis of the Model
3.1. Equilibria

In this section, we will find the positive steady states of model 1 which are biologically
feasible. The steady state of model 1 is the solution of the system: αu(1− u)− cuv = 0,

−βv +
ζuv

η + u
− uv = 0,

which are:

1. Free equilibrium (i.e., the absence of cancer cells and immune cells), E0 = (0, 0).
2. The axial equilibrium (i.e., the cancer cells exist), E1 = (1, 0).
3. The interior equilibrium (i.e., the coexistence of cancer cells and immune cells),

E2 = (u∗, v∗)

=

(
−(β + η − ζ) +

√
(β + η − ζ)2 − 4βη

2
,

α

c

(
2− (β + η − ζ) +

√
(β + η − ζ)2 − 4ηβ

2

))
.

If (H2) β+ η > ζ holds, then E0 and E1 are the only equilibria points. If (H1) β+ η < ζ
holds, then there is one interior equilibrium point, E2 = (u∗, v∗).

3.2. Stability and Bifurcation Analysis

To understand the dynamics of the suggested model and detect the effect of time
delay and diffusion in the proposed model, we study the stability of equilibria and then we
develop the bifurcation theory to describe how small parameters can change the qualitative
behavior of the model.

3.2.1. Stability of E0

The linearized system for model 1 about steady state E0 has the form:
∂u(x, t)

∂t
= c1

∂2u(x, t)
∂x2 + αu(x, t) + h.o.t,

∂v(x, t)
∂t

= c2
∂2v(x, t)

∂x2 − βv(x, t) + h.o.t.

We can see that the linearized system is independent of the time delay; therefore, the
stability of the equilibrium E1 will depend only on the diffusion parameters.

We can investigate the stability of E0 by substituting:{
u(x, t) = cos(nx)un(x, t),
v(x, t) = sin(nx)vn(x, t),

n = 0, 1, 2, . . .

into the linearized system of model 1 to obtain the characteristic equation associated with
E0 as follows:

[λ + c1n2 − α][λ + c2n2 + β] = 0.

Then, the stability result of the equilibrium E0 is resumed in the following lemma.

Lemma 1. Let c∗1 =
α

n2 n = 0, 1, 2, . . .. The steady state E0 is locally asymptotically stable

for all τ ≥ 0 if c1 > c∗1 , and is unstable if c1 < c∗1 for all τ ≥ 0.

Proof. The characteristic equation associated with equilibrium E0 has two roots: λ1 = −c2n2 − β,

which is always negative, and λ2 = −c1n2 + α, which is negative if c1 >
α

n2 = c∗1 , (n 6= 0)

and positive if c1 < c∗1 for all τ ≥ 0. If n = 0 (without diffusion), then the equilibrium E0 is
unstable for all τ ≥ 0.
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Remark 1. The above result shows the necessity of including diffusion in the model; however, the
diffusion parameters are responsible for the stability of the equilibrium E0.

3.2.2. Stability of E1

We pass now to the stability analysis of the equilibrium E1 to show the parameters
that have an impact on the dynamics of the system.

The linearized system about the steady state E1 = (1, 0) has the form:
∂u(x, t)

∂t
= d1

∂2u(x, t)
∂x2 − αu(x, t)− cv(x, t− τ) + h.o.t,

∂v(x, t)
∂t

= d2
∂2v(x, t)

∂x2 − βv(x, t) +
ζ

(η + 1)2 v(x, t)− v(x, t− τ). x ∈ Ω, t > 0.

The characteristic equation for τ = 0 is given by:(
λ + d1n2 + α

)(
λ + d2n2 + β− ζ

η + 1
+ 1
)
= 0.

The characteristic equation above has two roots:

λ1 = −d1n2 − α < 0,

and
λ2 = −d2n2 − β +

ζ

η + 1
− 1.

Under hypothesis (H2), λ2 is negative. Then, we have the stability results as follows.

Lemma 2. When τ = 0 and (H2) holds, the steady state E1 is locally asymptotically stable.

3.2.3. Stability and Bifurcation Analysis of the Interior Equilibrium

When (H1) holds, there exists an interior equilibrium. In what follows, we present the
stability results for E2 = (u∗, v∗).

The characteristic equation around the equilibrium E2 is given as follows:

λ2 + Anλ + (Bnλ + Cn)e−λτ + Fn = 0, (2)

where An, Bn, Cn and En are given as follows:

An = c1n2 + c2n2 − α + 2αu∗ + β− ζu∗

η + u∗
,

Bn = cv∗ + u∗,

Cn = cv∗
(

c2n2 + β− ζu∗

η + u∗

)
+ u∗α(2u∗ − 1) + c1n2u∗ + cu∗

ζηv∗

(η + u∗)2 ,

Fn =
(

c1n2 + 2αu∗ − α
)(

c2n2 + β− ζu∗

η + u∗

)
.

For τ = 0, the characteristic Equation (2) becomes:

λ2 + (An + Bn)λ + Cn + Fn = 0,

with

An + Bn = c1n2 + c2n2 + α(2u∗ − 1) + cv0 > α(2u∗ − 1 + cv∗) > 0,

Cn + Fn =
(

cv∗ + c1n2 + α(2u∗ − 1)
)(

c2n2 + β− ζu∗

η + u∗

)
+u∗α(u∗ + v∗) + c1n2u∗ + cu∗

ζηv∗

(η + u∗)2 .
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Denote
Φ(n) = Cn + Fn = φ2n4 + φ1n2 + φ0, (3)

where

φ2 = c1c2,

φ1 = c1

(
β− ζu∗

η + u∗
+ u∗

)
+ c2(cv∗ + α(2u∗ − 1)),

φ0 = u∗
(

α(2u∗ − 1) + cv∗
ζη

(η + u∗)2

)
+ (cv∗ + α(2u∗ − 1))

(
β− ζu∗

η + u∗

)
.

Note that under the assumption (H3) α(2u∗ − 1) + cv∗ > 0, φ1 is positive. We are now
able to formulate the next result.

Theorem 1. For τ = 0, the stability results for the system (1), when (H1) and (H3) hold, are
given as follows:

1. If φ0 < 0, equilibrium E2 is unstable.

2. If φ0 > 0 and
φ1

φ2
> 0, equilibrium E2 is locally asymptotically stable.

3. If φ0 > 0 ,
φ1

φ2
< 0, Φ

(⌊
− φ1

2φ2

⌋)
> 0 and Φ

(⌊
− φ1

2φ2
+ 1
⌋)

> 0, then the equilibrium

E2 is locally asymptotically stable.

4. If φ0 > 0 ,
φ1

φ2
> 0, Φ

(⌊
− φ1

2φ2

⌋)
< 0 and Φ

(⌊
− φ1

2φ2
+ 1
⌋)

< 0, then the equilibrium

E2 is unstable.

When τ > 0, we suppose that ±iω (ω > 0) are a pair of purely imaginary roots of
Equation (2), and by separating the real and imaginary parts we obtain:

ω2 − Fn = Cncosωτ + Bnωsinωτ,

−Anω = Bnωcosωτ − Cnsinωτ.

Thus, 
cos ωτ =

(ω2 − Fn)Cn − AnBnω2

C2
n + B2

nω2 ,

sin ωτ =
Bnω(ω2 − Fn) + AnCnω

C2
n + B2

nω2 .

(4)

Which implies that

ω4 + (A2
n − B2

n − 2F2
n)ω

2 + F2
n − C2

n = 0. (5)

Let ξ = ω2, then the above equation can be rewritten in the following form:

G(ξ) = ξ2 + (A2
n − B2

n − 2F2
n)ξ + F2

n − C2
n.

The equation G(ξ) = 0:

1. Has no positive roots if (H4) : A2
n − B2

n − 2F2
n < 0.

2. Has one unique positive root, ω0, if (H5) : F2
n − C2

n < 0 holds.
3. Has two positive roots, ω1,2, if (H6) : A2

n − B2
n − 2F2

n < 0, F2
n − C2

n > 0, (A2
n −

B2
n − 2F2

n)
2 − 4(F2

n − C2
n)

2 > 0 holds.

If the assumption (H6) holds, then the critical time delay is determined as follows:
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τ
(k)
l =



1
ωl

[
arccos

(
(ω2

l − Fn)Cn − AnBnω2
l

C2
n + B2

nω2
l

)
+ 2kπ

]
, if (ω2

l − Fn)Cn − AnBnω2
l > 0,

1
ωl

[
2π − arccos

(
(ω2

l − Fn)Cn − AnBnω2
l

C2
n + B2

nω2
l

)
+ 2kπ

]
, if (ω2

l − Fn)Cn − AnBnω2
l < 0,

for l = 0, 1, 2 k = 0, 1, 2, . . . . (6)

Now, the transversality conditions yield:

<
[

dλ

dτ

]−1

τ=τ
(k)
l

= <
(
(2λ + An)eλτ

λ(Bnλ + Cn)
+

Bn

λ(Bnλ + Cn)

)
=

ξ

F2
n ξ + B2

nξ2 G
′
(ξ). l = 0, 1, 2; k = 0, 1, 2, . . . .

This will signify that at least one eigenvalue exists with a non-negative real part for
τ > τ

(k)
l . Furthermore, the conditions for the existence of Hopf bifurcation are necessary to

prove that periodic solutions exist.

Theorem 2. For system (1), τ > 0. If the hypotheses (H1) and (H3) hold, and the stability
conditions of Theorem 1 hold, then:

1. If (H4) is satisfied, then E2 is locally asymptotically stable for all τ > 0.
2. If (H5) is satisfied, then E2 is locally asymptotically stable for 0 < τ < τ0

0 and unstable for

τ > τ0
0 , and the system undergoes a Hopf bifurcation at τ = τ

(k)
0 and k = 0, 1, 2, . . ..

3. If (H6) is satisfied, then there exists m ∈ N such that:

(a) E2 is locally asymptotically stable if τ ∈ [0, τ
(0)
2 )

⋃ m−1⋃
j=0

(τ
(j)
1 , τ

(j+1)
2 ).

(b) E2 is unstable if τ ∈
m−1⋃
j=0

(τ
(j)
2 , τ

(j)
1 )

⋃
(τ

(m)
2 ,+∞).

(c) System (1) undergoes a Hopf bifurcation at E2 when τ = τ
(k)
l , l = 1, 2, and k =

0, 1, 2, · · · .

Remark 2. If (H1) holds, then the stability analysis for the equilibrium E1 and E2 in the presence
of time delay τ are similar.

4. Normal Form of Hopf Bifurcation

In this section, we try to derive the normal formal of Hopf bifurcation at the interior
equilibrium E2 = (u∗, v∗) when τ 6= 0 for the system (1). We define u(x, t) = u(x, t)− u∗

and v(x, t) = v(x, t)− v∗. Herein, we have omitted the bar for convenience. The system (1)
is then given by:

∂u(x, t)
∂t

= τ[c1
∂2u(x, t)

∂x2 + αu(x, t)(1− u(x, t)− 2u∗)− c(u(x, t− 1)v(x, t− 1) + u∗v(x, t− 1) + v∗u(x, t− 1))],

∂v(x, t)
∂t

= τ[c2
∂u(x, t)

∂t
− βv(x, t) +

ζ

η + u∗ + u(x, t)
(u(x, t)u∗ + u(x, t)v∗ + u(x, t)v(x, t))

−(u(x, t− 1)v(x, t− 1) + u∗v(x, t− 1) + v∗u(x, t− 1))− v∗u(x, t)
β + u∗

η + u∗ + u(x, t)
].

∂u(x, t)
∂t

=
∂v(x, t)

∂x
= 0, t ≥ 0, x ∈ ∂Ω,

u(x, t) = u0(x, t) ≥ 0; v(x, t) = v0(x, t) ≥ 0, t ∈ [−τ, 0], x ∈ Ω.

(7)

Let h = (h11, h12)
T be the eigenvector of the linear operator corresponding to eigen-

value iωτ, < h∗, h >= h∗
T

.h = 1, where h∗ = (h21, h22)
T is the normalized eigenvector
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of the adjoint operator of the linear operator corresponding to the eigenvalues −iωτ. We
then obtain:

h = (h11, h12)
T =

1,
ζ

η+u∗ v∗

cu∗

T

,

h∗ = (h21, h22)
T = d

 iω− c2n2 − β + ζ
η+u∗ u∗

cu∗
, 1

T

,

d =

 iω− c2n2 − β + ζ
η+u∗ u∗

cu∗
+

ζ
η+u∗ v∗

−iω + c2n2 + β− ζ
η+u∗ u∗

−1

.

(8)

Let

U(x, t) = U(x, T0, T1, T2, . . .) =
+∞

∑
k=1

εkUk(x, T0, T1, T2, . . .) (9)

be the solution to Equation (7), where

U(x, T0, T1, T2, . . .) = (u(x, T0, T1, T2, . . .), v(x, T0, T1, T1, . . .))T ,
Uk(x, T0, T1, T2, . . .) = (uk(x, T0, T1, T1, . . .), vk(x, T0, T1, T2, . . .))T .

(10)

Denote Di =
∂

∂Ti
, i = 0, 1, 2, . . . and

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ . . . = D0 + εD1 + ε2D2 + . . . ,

uj = uj(x, T0, T1, T2, . . .), uj,1 = uj(x, T0 − 1, T1, T2, . . .),
vj = vj(x, T0, T1, T2, . . .), vj,1 = vj(x, T0 − 1, T1, T2, . . .).

j = 1, 2, 3, . . . . (11)

We then have

dU(x, t)
dt

= εD0U1 + ε2D0U2 + ε3D1U1 + ε3D0U3 + ε3D1U2 + ε3D2U1 + . . . ,

∂2U(x, t)
∂x2 = ε

∂2U1

∂x2 (x, t) + ε2 ∂2U2

∂x2 (x, t) + ε3 ∂2U3

∂x2 (x, t) + . . . .
(12)

We take perturbation τ = τε + ε + µ to deal with the delayed terms, we expand
U(x, t− 1) and v(x, t− 1) at u(x, T0 − 1, T1, T2, . . .) and v(x, T0 − 1, T1, T2, . . .), respectively;
that is,{

u(x, t− 1) = εu1,1 + ε2u2,1 − ε3D1u1,1 + ε3u3,1 − ε3D1u2,1 − ε3D2u1,1 + . . . ,
v(x, t− 1) = εv1,1 + ε2v2,1 − ε2D1v1,1 + ε3v3,1 − ε3D1v2.1 − ε3D2v1,1 + . . . ,

(13)

where uj,1 = uj(x, T0 − 1, T1, T2, . . .), vj,1 = vj(x, T0 − 1, T1, T2, . . .) and j = 1, 2, 3, . . .. Sub-
stituting (9) and (13) into Equation (7), for the ε-order terms, we obtain:

D0u1 − τεc1
∂2U1

∂x2 − τεαu1 + 2τεαu1u∗ + cτε(u∗v1,1 + v∗u1,1) = 0,

D0v1 − τεc2
∂2v1

∂x2 + τεβv1 −
ετε

u∗ + u1 + η
(u1u∗ + u1v∗) + τε(u∗v1,1 + v∗u1,1)− v∗τεu1

(
β + u∗

η + u∗ + u1

)
= 0.

(14)

Since ±iωτ are the eigenvalues of the linear part of (7), the solution to (14) can be
expressed in the following form:

U1(x, T0, T1, T2, . . .) = F(T1, T2, . . .)eiωτεT0 h cos(nx) + rest, (15)

where rest means the conjugate of the preceding terms and h is given in (8) . For the ε2

order terms, we obtain:
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D0u2 − τεc1
∂2u2

∂x2 − τεαu2 + 2τεαu∗u2 + cτε(u∗v2,1 + u2,1v∗)

= −D1u1 + µc1
∂2u1

∂x2 + µαu1 − 2µαu∗u1 + c(τεD1v1,1 − τεv1v1,1 − µu∗v1,1 + τεu1u1,1 − µv∗u1,1),

D0v2 − τεc2
∂2v2

∂x2 + τεβv2 −
ζτε

u∗ + u2 + η
(u2v∗ + v2u∗)− v∗u2

(
β + u∗

η + u∗ + u2

)
= −D1v1 + µc2

∂2v1

∂x2 − µβv1 +
ζτε

u∗ + u1 + η
(τεu1v1 + µu∗v1 + µv∗u1)−

(τεc1u∗v1,1 − τεv1v1,1 − µu∗v1,1 + τεD1v∗u1,1 − τεu1u1,1 − µv∗u1,1) + µv∗u1

(
ζu∗

η + u∗ + u1

)
.

(16)

We substitute Equation (16) into (15), we obtain the coefficient vector of term eiωτεT0 ,
then we obtain:

dc
dT1

= MµF

where

M =
h12h11(v∗ − n2c1 − u∗e−iωτε − u∗ − α)− cu∗h21h12 − h22h11

ζu∗
η+u∗

(h11h21 + h12h22)− αu∗τεh11h21e−iωτε
.

Suppose that the solution of Equation (16) is
u2 =

+∞

∑
k=0

(
r0kFF + r1kF2e2iωτεT0 + r1kG2e−2iωτεT0

)
cos(kx),

v2 =
+∞

∑
k=0

(
m0kFF + m1kF2e2iωτεT0 + m1kFe−2iωτεT0

)
cos(kx),

(17)

where

r0k = −
pk

G2k
c
[(

1 + u∗
(

ζu∗

η + u∗
− 1
))(

h11h12 + h12h11

)
+ 2ceiωτε h11h11

(
c2k2 − βu∗ +

ζu∗

η + u∗

)]
,

m0k = −
pk

G2k

[
ch11 + h122eiωτε

(
ζu∗

η + u∗

)
v∗ + (h11h12 + h12h11)

][
c−

(
ζu∗

η + u∗
− 1
)
(c1k2 + αu∗ + α + v∗c)

]
,

r1k = −
pk

G1k

[(
−ce−iωτε h2

11 + αh11h12

)(
c2k2 + 2iω +

ζu∗

u∗ + η
− βu∗

)
+ α

(
ζu∗

η + u∗
− 1
)

h11h12

]
,

m1k =
pk

G1k

[(
2iω + c1k2 + αu∗ + α + cu∗e−2iωτε

)( ζu∗

u∗ + η
− 1
)

h11h12 −
(

v∗
ζu∗

u∗ + η
− 1
)(

ce−iωτε h2
11 + αh11h12

)]
,

with
pk =< cos(nx) cos(nx), cos(kx) >=

∫ π

0
cos(nx) cos(nx) cos(kx)dx.

F1k =

[(
2iαω + c1k2 + αu∗ + α + v∗ce−2iωτε

)(
2iω + c2k2 +

u∗

η + u∗
− βu∗

)
+

cζv∗

(η + u∗)2

] ∫ π

0
cos(kx) cos(kx)dx,

F2k =

[
cv∗u∗

ζ

η + u∗
+

(
c2k2 +

u∗

η + u∗
− βu∗

)(
c1k2 + αu∗ + α + cv∗

)]
.

For the ε3 order terms, we obtain:
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D0u3 − τεc1
∂2u3

∂x2 − τεαu3 + 2τεαu3 + cτε(u∗v3 + u3v∗)

= −D1u2 − D2u1 + µc1
∂2u2

∂x2 + µαu2 − 2µαu2 + cτε(D1u2,1 + D2u1,1 − v1v2,1 − v2v1,1)

−cµ(u∗v2,1 − u∗D1v1,1 + v1v1,1)− cτε(u2v1 + u1v2)− cµ(u1v1 + u∗v2 + v∗u2),

D0v3 − τεc2
∂2v3

∂x2 − τεβv3 −
ζτε

u∗ + u3 + η
(u3v∗ + v3u∗)− v∗u3

(
ζu∗

η + u∗ + u3

)
= −D1v2 − D2v1 + µc2

∂2v3

∂x2 − βµv2 +
ζτε

u∗ + u2 + η
(u2v1 + v2u1) +

ζµ

u∗ + u2 + η
(u1v1 + u∗v2 + v∗u2)

+τε(D2c1u∗v1,1 + D1u∗v2,1 − v1v2,1 + D1v1v1,1)− µ(v∗v2,1 − v∗D1v1,1v1v1,1).

(18)

We substitute Equations (15) and (17) into Equation (18), we obtain the coefficient
vector of term eiωτεT0 , then we obtain:

∂F
∂T2

= ΞF2F,

with

Ξ =
1

G3

[
−ατεh21 ∑

k≥0
(dkr0kh11 + h11r0ke−2iωτε + r0kh11e−iωτε + r1kh11eiωτε)+

h22
ζ

eta + u∗
τε ∑

k≥0
dk(r0kh12r1kh12 + m0kh11 + m1kh11)

]

and
G3 =

[
h21(h11 − cu∗τεh11e−iωτε) + h22h12

] ∫ π

0
cos(πx) cos(nx)dx.

In conclusion, the normal form of Hopf bifurcation for the system (1) reduced on the
center manifold is

∂F
∂T

= ε
∂F
∂T1

+ ε2 ∂F
∂T2

+ . . . .

Let F → F
ε

; thus, the above equation becomes:

F = MµF + ΞF2F.

To obtain the normal form of Hopf bifurcation in polar coordinates, we let F = reiθ ,
we thus obtain: 

ṙ = <(M)µr +<(Ξ)r3,

θ̇ = =(M)µ +=(Ξ)r2.
(19)

We state the following theorem.

Theorem 3. If
<(M)µ

<(Ξ) holds for system (19), system (1) admits periodic solutions around the

positive equilibrium.

1. If <(M)µ < 0, the bifurcating periodic solutions are unstable.
2. If <(M)µ > 0, the bifurcating periodic solutions are locally asymptotically stable.

5. Numerical Simulations

This part is devoted to the exposition of the results throughout numerical simulations.
The values of parameters are chosen according to [27] and are stated in Table 2.
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Table 2. Corresponding values of parameters for the numerical simulations of both cases, namely
τ = 0 and τ = 0.197.

Parameter c c1 c2 α β ζ η

Value 0.2 0.25 0.25 4.1851 0.3743 4.5 1

Remark 3. The numerical simulations in this paper were carried out using the software Matlab and
were performed over a spatial domain [0, π] and over a time domain [0, 100]. Most of the parameters
are as described in the Table 1. In the absence of delay (i.e., τ = 0), the "built-in pdepe" function was
used to plot the results. We provide both the spatial patterns of the solutions in addition to solution
profiles for t ∈ [0, 100]. When the time delay was positive (i.e., τ > 0), numerical simulations were
obtained using a forward-in-time and centered-in-space finite differences scheme. The spatial mesh
interval was ∆x = 0.03 and the time step was ∆t = 0.01.

Discussion

When τ = 0 and η = 4.5, we have β + η > ζ. Then, the hypothesis (H2) holds. Ac-
cording to Lemma 2, E1 = (1, 0) is locally asymptotically stable, which is shown in Figure 1.
For τ = 0, the positive equilibrium E2 is locally asymptotically stable, Figure 2, and for
τ = 0.19 > τ0

0 , E2 loses its stability and we observe that Hopf bifurcation occurs, Figure 3.
With the set of values given in Table 1, the hypothesis (H1) holds, then the system (1) ad-
mits a unique positive equilibrium point E2 = (0.1, 18)T . We have F2

0 − C2
0 = −6142.23 < 0,

then (H5) holds, and the stability of the interior steady state is determined by τ according
to Theorem 2, i.e., E2 is locally asymptotically stable if τ ∈ (0, τ0

0 ), whereas E2 is unstable if
τ > τ0

0 . With same set of values, we obtain ω0 = 20.317 and τ0
0 = 0.02 as the solutions of

Equations (5) and (6), respectively. Therefore, we depict some spatiotemporal patterns for
this case by taking τ as a varying parameter and initial conditions of (u(t), v(t)) = (0.1, 0.1)
for t ∈ [−τ, 0].

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

t

0.5

0.6

0.7

0.8

0.9

1

1.1

u

Solution Profile

0 10 20 30 40 50 60 70 80 90 100

t

-0.1

0

0.1

0.2

0.3

0.4

0.5

v

Solution Profile

(c) (d)

Figure 1. Mesh plot formation of solution of the system (1) in the absence of a time delay (a,b) and
corresponding solution profile plots formation (c,d). Here, the parameters are as in Table 2, except
that η = 4.5.
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(a) (b)

Figure 2. Mesh plot formation of the solutions of the system (1) in the absence of a time delay.
(a,b) represent the solutions u and v respectively.

(a) (b)

(c) (d)

Figure 3. Mesh plot formation of solution of the system (1) in the presence of a time delay (a,b) and
spatiotemporal pattern formation (c,d).

Observing the figures of the numerical simulations with a time delay and in the
absence of a time delay, we notice that when the time delay is inferior to the critical value,
the interior equilibrium is locally asymptotically stable, which means that the immune
system can keep tumor cell growth under control at this moment. Tumor cells may not
proliferate extensively in the organs. It is established that the immune and tumor cells
could coexist in the body. Although the efficiency of the immune system is shown (see
Figures 2 and 4), as the time delay increases, periodic variation is observed (Figures 3 and 5).
This demonstrates that the hyperplasia time for tumor cells is large, which diminishes the
efficiency of the immune system.
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Figure 4. Solutions profile shapes of system (1) in the absence of a delay.
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Figure 5. Solutions profile shapes of system (1) in the presence of a time delay.

6. Conclusions

In this work, we explore a mathematical model which explains the tumor–immune in-
teraction system. The model which refers to Kuznetsov–Taylor’s model with the Michaelis–
Menten function is based on partial differential equations with a time delay. First, we
investigate the stability of the equilibria in the absence of a time delay. Using the time
delay as a bifurcation parameter, the necessary conditions for the stability of the interior
equilibrium in the presence of a time delay are established. The critical value for which
Hopf bifurcation occurs is obtained. We show that when the bifurcation parameter, τ,
passes through the critical value, the stability of an interior equilibrium changes from stable
to unstable. Applying the normal form together with the center manifold reduction, the
normal form of Hopf bifurcation of the considered model is determined. In this paper, we
consider spatial factors and the essential time for the reaction of the immune system and the
tumor cells; then, by analysis of the results and numerical simulations, we observe that the
critical value of Hopf bifurcation depends on diffusion. The stability of bifurcating periodic
solutions can be also changed. Therefore, the dynamical behavior of the tumor–immune
interaction system can be affected by spatial factors and time delay.
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