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Abstract: Social recommendation systems based on the graph neural network (GNN) have received
a lot of research-related attention recently because they can use social information to improve
recommendation accuracy and because of the benefits derived from the excellent performance of
the graph neural network in graphic data modeling. A large number of excellent studies in this
area have been proposed one after another, but they all share a common requirement that the data
should be centrally stored. In recent years, there have been growing concerns about data privacy.
At the same time, the introduction of numerous stringent data protection regulations, represented
by general data protection regulations (GDPR), has challenged the recommendation models with
conventional centralized data storage. For the above reasons, we have designed a flexible model of
recommendation algorithms for social scenarios based on federated learning. We call it the federated
graph neural network for recommendation systems (FedGR). Previous related work in this area has
only considered GNN, social networks, and federated learning separately. Our work is the first to
consider all three together, and we have carried out a detailed design for each part. In FedGR, we
used the graph attention network to assist in modeling the implicit vector representation learned by
users from social relationship graphs and historical item graphs. In order to protect data privacy, we
used FedGR flexible data privacy protection by incorporating traditional cryptography encryption
techniques with the proposed “noise injection” strategy, which enables FedGR to ensure data privacy
while minimizing the loss of recommended performance. We also demonstrate a different learning
paradigm for the recommendation model under federation. Our proposed work has been validated on
two publicly available popular datasets. According to the experimental results, FedGR has decreased
MAE and RMSE compared with previous work, which proves its rationality and effectiveness.

Keywords: social recommendation; graph neural network; federated learning; privacy protection

1. Introduction

Recommendation systems have gradually attracted more and more attention in recent
years [1,2]. When both are parties involved in recommendation systems, users and busi-
nesses can benefit. Graph neural networks (GNNs) have gradually become common in
various fields due to their excellent performance in graph-data processing [3]. Therefore,
the use of GNNs techniques in recommendation systems has become popular, and the cor-
responding recommendation problem has been transformed into a link-prediction problem
in GNNs [4]. Numerous recent works have started to incorporate the social information of
target users into recommendation model construction [2,5,6]. Thus, the low-dimensional
representations of the surrounding neighbors are normally either averaged or fused with
the low-dimensional representations of the target user’s historical behavioral data using
the attention mechanism to obtain a final more accurate low-dimensional representation
of the user. Although the recommendation performance of recommendation systems has
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been nicely improved by combining graph neural networks and user social network infor-
mation [7], they all face a common problem: that data needs to be stored centrally [8,9].
Moreover, centralized storage has drawn public attention to data privacy and security
issues. In addition, the recent introduction of a series of data privacy regulations, repre-
sented by the GDPR (https://gdpr-info.eu/ (accessed on 1 April 2022)), not only reflects
the strict attitude of public institutions towards data privacy issues but also indicates that
data privacy security should be an essential consideration in the construction of recommen-
dation systems. Distributed data storage, which corresponds to centralized storage, has the
property of data protection at the physical level, but it is also prone to data-island problems.
Google formally proposed the concept of federated learning in 2016 in an attempt to find
a balance between privacy protection and efficient use of data. However, they all suffer
from these common drawbacks as follows. (1) In order to ensure the data security of users,
traditional cryptographic technologies such as local differential privacy (LDP) [10] and
homomorphic encryption (HE) [11] are generally introduced into federated learning to
protect user data. However, some proof of work traditional differential privacy may not fit
into the federation learning framework at all [12]. By summarizing these previous works,
we propose the innovative work of federated graph neural network for recommendation
systems(FedGR). It has effectively addressed the aforementioned challenges. First of all,
in order to solve the discomfort of traditional cryptography in federated learning and the
huge decline in recommendation performance, we have adopted two privacy protection
methods in FedGR, ” encryption decryption” and ” noise-injection”. By combining these
two means, the degradation of recommendation performance can be controlled to the
greatest extent and lead to excellent data privacy protection capabilities. Second, to reduce
the load on the edge nodes and the communication load during model aggregation, we
adopt a split model design where the item model is placed at the server side and the user
model is left at the edge nodes. The benefits of this approach are diverse. Finally, we
introduce the corresponding feature information for each item in the item model. We
tested our proposed FedGR on two real datasets and showed significant improvements
in both MAE and RMSE compared to some past federated recommendation work. The
main contributions of our work are as follows: we are the first to apply the split-model
approach to social recommendation in a federated learning framework and propose a novel
data protection approach in a federated learning framework. The efficient combination
of traditional cryptographic techniques and joint learning with the burden of complex
models on edge nodes is addressed. Our content is organized as follows. We present our
related work in Section 2, and then we elaborate on the details of our proposed work in
Section 3. In Section 4, we will validate the effectiveness of our work on the Ciao and
Epinions datasets, and finally we will conclude the paper and present directions for our
future research work.

2. Related Work

In this section, we present the three areas most relevant to our work, namely, (1) so-
cial recommendation, (2) the graph neural network for recommendation systems, and
(3) privacy-protection recommendation.

2.1. Social Recommendation

People in the same social circle tend to have similar interests [13], and they share their
interests with each other; therefore, social networks are an essential source of improving
the accuracy of recommendation systems. We classify social recommendation into two
broad categories: traditional methods based on matrix factorization and deep learning
models based on GNNs. Prior to the popularity of GNNs, researchers mainly used social
information as a regularization term to constrain the final user representation and enrich
the single-user representation. SoRec [14] proposed a cofactor decomposition approach
that shares a common potential user feature matrix decomposed by user scores and social
relations. SocialMF [15] considered that the behavior of user u is influenced by its direct

https://gdpr-info.eu/
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neighbors Nu. Therefore, the author takes the weighted average of the potential eigenvector
of user u direct neighbor as the potential eigenvector estimate of user u. Following the
emergence of GNNs, a large body of work has demonstrated their efficiency in social
recommendation. Graphrec [2] and Graphrec+ [16] are from the same team. In both
works, the authors use GNNs to learn user embeddings and item embeddings from social
relationship graphs and historical item graphs and then pass these two embeddings through
a multilayer perceptron to predict the final ratings. DiffNet [5] and DiffNet++ [17] use
GNNs to model users’ social relationships and interactive items, arguing that users’ interests
are diffused in the network, and the central user’s propensity to consume is influenced by
both low-order and high-order users to further improve the recommendations accuracy.
Figure 1 below is a schematic diagram of social recommendation.

Figure 1. Social recommendation diagram.

2.2. Graph Neural Network for Recommendation Systems

Applications of GNNs in recommendation systems can be divided into general rec-
ommendation and sequential recommendation, where the former is static and does not
incorporate temporal information. The latter is dynamical. Therefore, we will also discuss
the application of GNNs in recommender systems in two aspects. Figure 2 shows the two
most salient relations of GNN in the recommendation systems.

Figure 2. Recommend common graph structures in the system. user–user and user–item graphs.

2.2.1. For General Recommendation

GNNs can enhance user and item representation learning by explicitly encoding
synergistic signals through node aggregation, which is more flexible and convenient for
modeling multi-hop information than other models. GC-MC [18] uses GCN [19] as an
encoder to learn user embedding and item embedding from user–item bipartite graph of
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user items and is used to predict and complete the missing values in the scoring matrix.
PinSAGE [20] is a recall algorithm proposed by Pinterest based on GraphSAGE [21], which
learns aggregation functions directly instead of fixed nodes, thus differing from Transduc-
tive learning methods such as GCN. This is more in line with the changing needs of graph
nodes in realistic situations.

2.2.2. For Sequential Recommendation

Converting sequential data into a sequential graph allows for more flexible primitive
transformations for item selection, and GNNs can capture complex user interest preferences
implicit in sequential behavior through a ring structure. HetGNN [22] constructs an edge
between two consecutive item items with the same sequence as the edge type using all of
the user’s behavior sequences. FGNN [1] uses GRU [23] with an attention mechanism to
iteratively update user preferences with item representation of sequence concept. A large
body of past work has shown that GNN-based models have shown strong advantages in
the recommendation domain. Therefore, in our work, we also adopt GNNs applied to
user-model learning, and we mainly use GAT [24] .

2.3. Privacy-Protection Recommendation

As one of the early representative works in federation recommendation, in FCF [25],
each edge user trains a local model using their own historical data, user embedding is
updated locally, and finally only item embedding gradient data is uploaded to the server,
but the gradient information may still leak some sensitive user data, so FedMF [26] au-
thors additional use homomorphic encryption technique to protect the uploaded gradient
information. As an early exploration of federated learning in the recommendation domain,
the above two methods effectively protect the user embeddings and item embeddings,
but they do not protect the interaction information between using items and learn some
higher-order information. As a representative of federated learning in the field of recom-
mendation systems in recent years, FedGNN [9] has demonstrated a fresh design idea.
In order to protect data privacy, it has introduced two innovative technologies, namely,
“Local Differential Privacy (LDP)” and “pseudo item labeling”, on the framework of fed-
erated learning to protect user data. Unfortunately, FedGNN does not consider social
information, which is an effective auxiliary to learn information in the learning process
of low-dimensional representations, and its user model and item model are located at
the edges, which imposes a large burden on model aggregation and local storage. By
thoroughly considering the advantages and disadvantages of the above work, we proposed
FedGR, which effectively combines GNNs, federated learning, and privacy protection
technology and has considerably improved the recommendation performance.

3. Proposed Framework

In this section, we detail the details of our proposed FedGR framework. In the
following, we will first introduce the notation and its associated conceptual definitions, as
shown in Table 1.

Table 1. Symbols and definitions.

Symbol Definitions and Descriptions

pi embedding of user i
qj embedding of item j
f ei friends embedding of user
rij user i’s rating score for item j, rij in [0,1,2,3,4,5]
αij weighting factor of item j to user i
βij weighting factor of friend j and user i
υi product of the item embeddings of user i and the corresponding score embeddings
hi collection of historical interaction item IDs for user i
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Table 1. Cont.

Symbol Definitions and Descriptions

hnoise
i collection of noise item IDs added by user i

Fi a set of features of item i,Fi = f1, f2 · · · fn
FEi a set of features embedding representation of item j,FEi = f e1, f e2 · · · f en
ψi embedding representation learned by user i in the user–item graph
ψ

f
i the embedding representation learned by user i friends in the user–item graph

µi embedding representation learned by user i in the social graph
GI

i history item graph of user i
Gs

i social relation graph of user i
G f

i friends item graph of user i
Eh

i history item embedding set of user i
E f

i friends history item embedding set of uer i
eij user i’s rating of item j embedding
∆i user i obtains the set of item IDs from the server

3.1. Model Overview

In this subsection, we present the overall architecture of FedGR and the overall model
architecture is shown in Figure 3. In our FedGR, we jointly work with multiple edge servers
to train a unified recommendation model. The whole implementation is as follows: Step
1, the server will randomly initialize a user model and send it to each edge server after
encryption processing; step 2, each edge node will retrieve the local database to obtain
the current user’s historical interactive item sequence and send it to the server to obtain
the embedding vector of the corresponding item after ”noise injection” and ”encryption
decryption” processing; step 3, the local user model will be trained for specified rounds; step
4, the local model will be uploaded to the server and aggregated to form a unified global
model through FedAVG [27] algorithm; and step 5, the server distributes the aggregated
model to the edge nodes. Repeat steps 2–5 above until the number of training rounds
is specified.

Figure 3. Overall overview of FedGR. The two dashed boxes on the left represent edge clients and the
dashed boxes on the right represent server nodes. They are mainly responsible for training the fusion
of item embeddings and model parameters, with the Encryption and Decryption module in between.
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3.2. Item Model

In this section, we explain the learning process of item embeddings. Denote the set of
features of item i. In our work, we incorporate the features of item i into the learning of
hidden vectors for item representation. This enables better learning of individualized fea-
tures among different item vectors. In FedGR, our item model employs a simple multilayer
perceptron network that can be flexibly replaced for different application scenarios. The
specific algorithmic steps are shown in Algorithm 1.

Algorithm 1 Item Embedding

Input: feature set of item i
Fi = f1, f2 · · · fn

Output: representation of item qi
1: // embedding representation of each feature.
2: for k in Fi do
3: MLPembedding(k)→ FEk

i
4: end for
5: // Connect all feature vectors and do feature crossing through multi-layer fully con-

nected network .
6: CONCAT(FEi)→ mid_var
7: MLP(mid_var)→ qi
8: //the final embedding representation of item i .
9: return qi

The input is a series of features of item i. Step 1 loops through all of the features
of the input item. For item i, the initial state of each feature is represented by numbers.
First, each feature is vectorized through the embedding layer on the right side of Figure 3,
and all features are converted from numerical representation to low-dimensional vector
representation. This prevents the sparsity problem caused by the lack of features of some
items. The effective feature information crossover can be performed later . Step 2: After the
embedding layer, each feature forms an embedding vector of uniform length. Through the
multi-layer perceptron (MLP), each feature vector is effectively crossed through the MLP
network to learn useful information from each other. Step 3: The final low-dimensional
vector representation of item i is obtained through the transformation of vectors.

3.3. User Model

The main function of the user model is to learn a vector representation of the user by
combining the historical behavioral data of the user with the contact information of the
user’s social friends. First, we will build the user–item graph and user–user graph based
on the local history and social information of the users. We use ψi,µi, which represents
the embedded representation that user i learned from the item graph and the embedded
representation that user i learned from the social graph, respectively. These two vectors
play a role in the end-user embedding representation construction from different perspec-
tives, and we combine the learned representations from the two graph spaces. Finally, pi
represents the vector representation of user i. In the following subsections, we present the
details of each module and the corresponding implementation algorithms.

3.3.1. Item Graph Representation

The user–item graph contains information not only about the items the user has
historically interacted with but also about the user’s attitude. Here, rij , as a real value
representation, can reflect whether the user i has a positive or negative attitude towards the
historical interactive item j. In the data set, we use rij, adopting the ”five-point scale” , which
is not limited. Algorithm 2 gives us an ensemble learning example of user embeddings.
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Algorithm 2 Item Graph Representation

Input: Input of the user–item graph and the embedding representation of the correspond-
ing item (obtained from the server side)

GI
i , Eh

i

Output: user–item embedding representation ψi
1: //Represent all scoring data as a low-dimensional vector .
2: MLPembedding(rij)→ eij
3: //obtain user–item embedding(every item)
4: CONCAT(Eh

i , ei)→ mid_var
5: MLP(mid_var)→ υi
6: // Calculate the attention weight coefficient of items to users.
7: CONCAT(υi, embeddingi)→ mid_var
8: MLP(mid_var)→ αi
9: // the finally user–item embedding representation

10: MLP(αi � υi)→ ψi.
11: return ψi

Algorithm 2 obviously presents the detailed process of learning the user’s represen-
tation ψi. Step 0: The user–item graph and item embeddings are fed into the algorithm
as initial information. In addition, we inject a lot of noise data through ”noise injection”
to protect the user’s real consumption data. The default score for these noisy data is zero.
We will first set rij converted to low-dimensional representation eij , and we use ei, which
represents all rating-embedding sets of user i. Since our item embeddings are pre-trained on
the server side, we can directly fuse the original embedding representation of the item with
the current user-rated embedding of the item. Use the following Equation (1) as follows:

CONCAT(Eh
i , ei) (1)

where Eh
i represents the embedded set representation of user i historical items, and ei

represents the embedding set of user i ratings on the corresponding items. There are
two ways to aggregate the historical interaction items of all users. One is to use simple
mean values as weight coefficients in the aggregation process. The alternative is to use the
attention mechanism for aggregation to differentiate the aggregation weight of each item.
Indeed, the latter is better. The attention network is defined as Equation (2):

αij = W2 · σ(W1 · CONCAT(υij, embeddingi) + b1) + b2 (2)

where υij represents the unified representation of the user i rating embedding of item j and
the initial embedding of item j, and embeddingi represents the initial embedding of user i.
Item aggregation use follows Equation (3) representation:

ψi = MLP(αi � υi) (3)

υi denotes the uniform representation of all items embedding and corresponding rating
embedding in the item graph of user i, � represents the point between vectors, and αi
denotes the set of all corresponding weight coefficients.

3.3.2. Social Aggregation

Similar to previous works that learn embedding representations from user–item pairs,
we also introduce an attention mechanism in the social relationship aggregation process,
where the influence of different friends is different and reflected by different attention
weighting coefficients. The exact procedure is shown in Algorithm 3.
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Algorithm 3 Social Representation

Input: input social graph/user–friend–item graph/friends item-embedding set

Gs
i , G f

i , E f
i

Output: user i social embedding representation µi
1: // calc the friends j user–item embedding representation, use Algorithm 2
2: MLP(αj � υj)→ ψj
3: // calc the user–user attention score
4: MLP(CONCAT(embeddingi, ψj))→ βij
5: //cacl the user i social embedding representation use all friends j and attention score
6: MLP(βi � ψ

f
i )→ µi

7: return µi

The embeddings corresponding to the user social graph, friend history item interaction
graph, and friend history consumption item are fed into the model as raw data. Similar to
Algorithm 2, since the initial scores of all friends on items are numerical scores from 1 to 5,
they need to be represented as low-dimensional vectors first. The item embeddings and
score embeddings can then be fused through a multi-layer neural network. The specific
formula is as follows Equation (4):

MLP(CONCAT(E f
i , ei))→ υi (4)

Here, E f
i denotes the embedding representation of all first-order friends of user i that have

consumed items, and ei is the corresponding rating embedding. The computation of the
attention scores between friends and consumed items is similar to the one in Equation (2),
but the attention scores of first-order friends and their history items should be computed
first before the user and user attention scores are calculated. The calculation formula of the
user–user attention score is shown in step 5 of Algorithm 3, where embeddingi represents
the initial embedding representation of the current user to be calculated and ψ

f
i represent

the embedded representation set learned by all friends of user i from their corresponding
historical product graph. The final βi is the set of weight coefficients of user i’s friends.
Through algorithm 3, we can obtain the embedding representation of user i in the social
relationship graph by combining the influence of different first-order friends as follows in
Equation (5).

µi = MLP(βi � ψ
f
i ) (5)

Ultimately, user i learns the final low-dimensional vector representations from the user–item
graph and user–user graph, respectively, ψi and µi,⊕ representative vector splicing. There-
fore, the final low-dimensional vector learned by user i from user model is characterized
by the following Equation (6):

pi = MLP(ψi ⊕ µi) (6)

3.4. Security Model

In our proposed work, we innovatively adopt two approaches to secure user data
privacy. We can flexibly adjust the data privacy protection strength and optimize the recom-
mendation performance for different recommendation scenarios. First, in step 2 as shown
in Figure 3, the edge node obtains the embedding representation of the corresponding item
from the server through the real personal history item ID, and first, the ”Noise Injection”
operation will be performed locally. The relevant formulation is as follows: In our proposed
work, we innovatively adopt two approaches to secure user data privacy. The relevant
formula is shown as follows in Equations (7) and (8):

∆i = hi + hnoise
i (7)
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len(hnoise
i ) = ε · len(hi) (8)

In the above formula, hi represents the item ID set that user i has genuinely consumed,
and hnoise

i represents the items that user i has not consumed. It is the forged data added by
”noise injection”. Together, they form the ID set ∆i. This can effectively confuse the ”thief”
to speculate about the real consumption habits and relevant data of user i. In Function (8),
the hyperparameter ε is used to control the proportion of ”noisy data” added. The greater
the level of privacy protection, the better, but at the same time, the performance drops.
Through our experiments, we observed that when ε, a favorable balance between privacy
protection and recommendation performance can be achieved when ε ∈ (0.2, 0.35). After
the noise injection process, the second security protection can be entered:module in our
framework ”encryption-decryption” module. The specific implementation is shown in
Figure 4.

Figure 4. Encryption protection module. The target data will be encrypted symmetrically first,
followed by an asymmetric encryption protection module.

The data set ∆i, which is processed by the previous “noise injection”, is firstly en-
crypted by a symmetrical encryption model; it is particularly suitable for encrypting a large
number of model parameters and can effectively protect large files. In FedGR, we use it
to encrypt the original data, which will eventually generate two parts: the encrypted data
containing the original data and the symmetric encryption key. However, since symmetric
encryption uses the same key in both the encryption and decryption phases, there is a risk of
losing the secret key. Thus, after the file is symmetrically encrypted, asymmetric encryption
is performed on the symmetric encryption secret key, which is signed using the private key
stored locally by the edge server. At this point, the files transmitted to the server include
noisy data with symmetric encryption, and symmetric encryption keys with asymmetric
encryption processing. After receiving these two, similar to the client requesting data
from the server, when the server distributes model parameters and item-embedding to the
client, it will also go through the “encryption-decryption” module . The difference is that
”noise injection” will not be performed on the server. Next, the client puts the noisy item
embeddings into the user model for training to obtain the final model parameters, which
are clearly trained from the noisy data, and it is also difficult for the thief to intercept the
model parameters to invert the corresponding user consumption behavior data.

4. Experiment

In this section, we will select several benchmark models from different perspectives
and evaluate the performance of our proposed FedGR model on two real data sets.

4.1. Experimental Settings
4.1.1. Datasets

We chose two highly popular publicly available social datasets, Ciao and Epinions
(http://www.cse.msu.edu/~tangjili/trust.html (accessed on 1 April 2022)), which are
extremely commonly used in social recommendation scenarios and have been used for

http://www.cse.msu.edu/~tangjili/trust.html
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performance evaluation in a large number of works in this domain. Specifically, what is
crucial for our work is that both datasets contain categorical information, which we can
incorporate as essential feature information in the term-representation learning process.
The statistics of the two datasets are shown in Table 2.

Table 2. Statistics of the datasets.

Datasets Ciao Epinions

Users 2248 22,168
Items 16,862 296,277

Ratings 36,065 920,075
Social Connections 57,545 355,812

Rating Scale [1,5] [1,5]

4.1.2. Evaluation Metrics

We use two extremely popular evaluation metrics: MAE (mean absolute error) and
RMSE (root mean square error), both of which are the most commonly used metrics to
measure the accuracy of variables and mainly reflect the scale of deviation of the predicted
value from the true value. Smaller values for both metrics represent better performance.
The specific calculation formula of these two formulas is shown Equations (9) and (10):

MAE(X, h) =
1
m

m

∑
i=1
|h(X(i))− y(i)| (9)

RMSE(X, h) =

√
1
m

m

∑
i=1

(h(X(i))− y(i))2 (10)

where h(X(i)) and y(i), respectively, represent the predicted value and the real value, and
m represents the total number of data.

4.1.3. Parameter Settings

In our tests, we adopt a modern way of dividing the datasets, which we call UBC (user-
based cutting). In the past, data partitioning for federated learning works were essentially
based on centralized training dataset cuts, but we argue that this is not realistic and that it
is more reasonable to partition edge users based on features learned by federated learning.
Suppose M represents the set of all edge user nodes, M = mt, mv, me, where mt represents the
training user set, mv represents the validation user set, and me represents the test user set. In
total, 80% of the user set is divided into the training set, 10% into the validation set, and 10%
into the test set. In all experiments, we initialize the parameters based on Gaussian distributions.
We also control the number of first-order users, mainly to prevent some edge users from having
good social ties and a much higher than average number of first-order friends, while others
only have a small number of first-order friends or even no social relation, leading to biased
learning results, so we set the number of friends to 5, 10, 15, 20. The embedding size d is
tuned from 8, 16, 32, 64; the noise ratio in FedGR is chosen as 0, 0.1, 0.2, 0.3, 0.4, 0.5; and for
the comparison method with local differential privacy protection, we set a gradient clipping
threshold of 0.3, a laplace noise length of 0.1, a learning rate chosen as 0.1, 0.05, 0.01, and the
number of local edge users training before each model training. Finally, the training stopping
criterion is to reach the pre-defined number of training rounds.

4.1.4. Baselines

In order to evaluate our proposed framework more comprehensively, we have selected
three groups of methods to compare with the FedGR method, including the traditional
social recommendation systems model (SoReg, SocialMF), the recommendation model
combined with deep graph neural network technology (GraphRec, GCMC+SN), and the
recommendation systems model with privacy (FeSoG, FedMF).
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SoReg [28]: A factor analysis recommendation algorithm based on the probability matrix
decomposition.
SocialMF [29]: Introducing trust propagation in matrix decomposition, the user indicates
that friends close to that user indicate .
GraphRec [2]: Graph neural networks are used to learn user embeddings and item embed-
dings from user history product graphs and social graphs.
GCMC+SN [25]: A graph-neural-network-based recommendation model is used to gener-
ate embeddings for each user in the social network using the node2vec technique.
FeSoG [30]: A social recommendation system with privacy protection, using local differen-
tial privacy (LDP) and pseudo-item labeling as a means of user data privacy protection.
FedMF [26]: The representation of each user is computed by matrix factorization, and
homomorphic encryption is used to protect the user data from disclosure.

4.2. Quantitative Results

The performance of all compared models is shown in Table 3, and for a more visual
observation, we generate Figure 5.

Table 3. Empirical results compared with different baseline methods. The last row will show the
percentage improvement of FedGR over the remaining federally recommended approaches.

Method Ciao MAE Ciao RMSE Epinions MAE Epinions RMSE

SoReg 0.8627 1.1021 0.9119 1.1703
SocialMF 0.8270 1.0501 0.8837 1.1328
GraphRec 0.8141 1.0133 0.8326 1.0814

SoRGCMC+SN 0.7824 1.0031 0.8480 1.1070
FeSoG 1.4937 1.9136 1.3847 1.7969
FedMF 2.0792 2.4216 1.5254 2.0685
FedGR 1.3650 1.7941 1.2773 1.5806

Improvement (%) 8.6 6.2 7.7 12.1

Figure 5. Ciao Datasets: MAE, RMSE Epinions datasets: MAE and RMSE. The vertical axis indicates
the performance parameters of each algorithm in the corresponding dataset. The smaller the value,
the better the performance.
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We have the following observations from the data in the results . (1) Although both are
based on social information for recommendation prediction, it is obvious that the GraphRec,
GCMC+SN model combined with deep neural network ultimately performs better on both
datasets than SoReg and SocialMF using traditional matrix decomposition techniques. (2) With
the same dataset, all recommendation models based on the federated learning approach
perform worse than the centralized framework processing. (3) The models that incorporate
the graph neural network technology all perform better than those that do not incorporate the
graph neural network technology. (4) Among all of the federated recommendation methods,
our proposed FedGR has the best performance. The main reasons for this are as follows:
firstly, we add item category information as a feature to the item-embedding learning process,
which enriches the item-embedding representation. Second, we add a graph neural network
to the user model to construct the social graph and item graph of the user. We effectively learn
the hidden vector representations of the users. Thirdly, our proposed two privacy protection
methods can minimize the degradation of recommendation performance under the premise
of privacy protection, especially our ”Encryption-Decryption” method, which fundamentally
does not produce the degradation of recommendation performance.

4.3. Analysis of Parameters

In this section, we analyze some of the main hyperparameters in FedGR that determine
the performance of FedGR, including (a) the number of friends in the social relation grap;
(b) the number of items in the item graph; (c) the number of ”noise items” into the user–item
graph construction; for each parameter with different values, we mainly use the MSE and
RMSE values as measures. The results are shown in Figure 6.

Figure 6. The performance trend of FedGR under different parameters, by observing MAE and RMSE.

As shown in (a), the number of first-order friends has a strong influence on the final
MAE/RMSE when the social graph is constructed, in FedGR; initially, when the number of
users is less than 15, the MAE/RMSE all show a rapid decreasing trend, mainly because as
the number of friends increases, it can provide more learning for the user representations’
more valid information for the learning of user representations. However, when the
number of friends is larger than 15, the decline starts to slow down, and even after 25, both
MAE/RMSE show a slight rebound trend, although the increase in rebound varies. We
believe that the reasons for this are manifold and can be summarized into two main aspects:
(1) there are a large number of users whose first-order number of friends is originally not
15; and (2) too many friends will introduce noisy data that interfere with the target user’s
prediction and reduce the overall performance of the final model. By looking at the figure
shown in (b), we can see that a similar situation to that in figure (a) arises. Figure (c) shows
an entirely different dynamic from (a,b), where MAE/RMSE both increase with the increase
in noise ratio. We found that in FedGR, if the noise item is set to 0, the performance is even
better than some proposed social recommendation models in the past, but as the number
of noise items increases, the MSE/RMSE both tend to rise rapidly, so knowing how to
minimize the performance loss in social recommendation while protecting data privacy
and security has been a key concern in this area.

5. Conclusions and Future Work

In this paper, we innovatively propose a federated learning framework based on a
split-model social recommendation framework, which we call FedGR. To the best of our
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knowledge, our work is the first social recommendation systems model that decouples
the user and item models and is privacy-protected. FedGR brings the advantages of GNN
and social information to the recommendation systems and brings great accuracy to them.
At the same time, in response to recent privacy protection concerns, our work builds on
previous frontier work in federated learning. The combination of the two makes FedGR
exhibit excellent performance. In FedGR, we achieve a excellent trade-off between privacy
protection and recommendation performance while providing users with a lot of flexibility.
To improve the recommendation performance, we incorporate the feature type information
of items when retraining the item embeddings, and we propose two privacy preserving
methods to improve privacy protection and minimize the loss in the recommendation
performance. Finally, we compare our proposed FedGR with several different reference
types on several real public datasets and show the effectiveness of our work on all datasets.
Although, FedGR has shown its validity, we believe that it still has the following problems.
(1) It does not consider the time series information of users’ consumption. In our work, we
purely consider the types of items consumed by users in the past, but the reality is that
users’ interests alter over time, which has been well established in recent years by a large
amount of work on sequential and session recommendations [31]. (2) In FedGR, we are still
using the more traditional FedAvg model parameter aggregation approach, although there
has been a lot of work in the past that has confirmed its effectiveness and is extremely popular.
However, simply averaging over all model parameters as different model parameters may
result in some loss of model performance. Recently, there has been a lot of work proposing
an aggregation approach similar to the attention mechanism [32], where the final model
parameters are obtained by summing different weight values according to the variability of
each edge user. Therefore, our future work will consider introducing the recurrent neural
network (RNN) or transformer and alternative technologies to explore the evolution of user
interests, which are closer to the actual situation. Second, we will introduce a better federated
learning algorithm to replace the FedAVG algorithm we currently use. Moreover, all of our
work will still be conducted under the topic of socially recommended privacy protection.
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