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Abstract: Object detection and image recognition are some of the most significant and challenging
branches in the field of computer vision. The prosperous development of unmanned driving tech-
nology has made the detection and recognition of traffic signs crucial. Affected by diverse factors
such as light, the presence of small objects, and complicated backgrounds, the results of traditional
traffic sign detection technology are not satisfactory. To solve this problem, this paper proposes
two novel traffic sign detection models, called YOLOv5-DH and YOLOv5-TDHSA, based on the
YOLOv5s model with the following improvements (YOLOv5-DH uses only the second improvement):
(1) replacing the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS) structure in the YOLOv5s
backbone with a transformer self-attention module (T in the YOLOv5-TDHSA’s name), and also
adding a similar module to the last layer of its neck, so that the image information can be used
more comprehensively, (2) replacing the YOLOv5s coupled head with a decoupled head (DH in both
models’ names) so as to increase the detection accuracy and speed up the convergence, and (3) adding
a small-object detection layer (S in the YOLOv5-TDHSA’s name) and an adaptive anchor (A in the
YOLOv5-TDHSA’s name) to the YOLOv5s neck to improve the detection of small objects. Based
on experiments conducted on two public datasets, it is demonstrated that both proposed models
perform better than the original YOLOv5s model and three other state-of-the-art models (Faster
R-CNN, YOLOv4-Tiny, and YOLOv5n) in terms of the mean accuracy (mAP) and F1 score, achieving
mAP values of 77.9% and 83.4% and F1 score values of 0.767 and 0.811 on the TT100K dataset, and
mAP values of 68.1% and 69.8% and F1 score values of 0.71 and 0.72 on the CCTSDB2021 dataset,
respectively, for YOLOv5-DH and YOLOv5-TDHSA. This was achieved, however, at the expense of
both proposed models having a bigger size, greater number of parameters, and slower processing
speed than YOLOv5s, YOLOv4-Tiny and YOLOv5n, surpassing only Faster R-CNN in this regard.
The results also confirmed that the incorporation of the T and SA improvements into YOLOv5s leads
to further enhancement, represented by the YOLOv5-TDHSA model, which is superior to the other
proposed model, YOLOv5-DH, which avails of only one YOLOv5s improvement (i.e., DH).

Keywords: computer vision; object detection; traffic sign detection; you only look once (YOLO);
attention mechanism; feature fusion

MSC: 68W01; 68T01

1. Introduction

The detection and recognition of traffic signs play essential roles in the fields of assisted
driving and automatic driving. Traffic signs are not only the main sources for drivers to
obtain the necessary road information, but they also help adjust and maintain traffic
flows [1]. However, in real-life scenarios, the influence of complex weather conditions and
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the existence of various categories of objects presented on the road—with a large proportion
of these being small objects—have brought great challenges to the research on automatic
detection and recognition of traffic signs.

There were two traffic sign detection and recognition techniques in the early days—
one based on color features and the other based on shape features. Later, hybrid techniques
emerged, e.g., [2], which considered both the color and geometric information of traffic
signs during the feature extraction. The noise reduction and morphological processing
made it easier to process images based on shapes, using the geometric information of a
triangle, a circle, or a square commonly found in traffic signs, along with the RGB color
information, in order to identify the images containing traffic signs. Although such a
technique can detect the presence of traffic signs in images, it cannot distinguish between
different classes of traffic signs.

With the emergence of deep learning, some models based on it have been applied
for image classification and object detection, showing excellent performance, such as the
two-stage detectors, represented by, e.g., the region-based convolutional neural networks
(R-CNNs), and the single-stage detectors, represented by, e.g., You Only Look Once (YOLO)
versions. R-CNN [3] was the first model applying convolutional neural networks (CNNs)
for object detection. R-CNN generates candidate boxes first before detection to reduce
the information redundancy, thus improving the detection speed. However, it zooms and
crops images, resulting in a loss of original information. SPP-net [4] defined a spatial
pyramid pooling (SPP) layer in front of the fully connected layer, which allowed one to
input images of an arbitrary size and scale, thus not only breaking the constraint of fixed
sizes of input images but also reducing the computational redundancy. Fast R-CNN [5]
changed the original string structure of R-CNN into a parallel structure and absorbed the
advantages of SPP-net, which allowed it not only to accelerate the object detection but
also to improve the detection accuracy. However, if a large number of invalid candidate
regions is generated, it would lead to a waste of computing power, whereas a small number
of candidate regions would result in missed detection. Based on the above problems,
Ren et al. proposed the concept of region proposal networks (RPNs) [6], which generates
candidate regions through neural networks to solve the mismatch between the generated
candidate regions and the real objects. However, these two-stage models were not superior
in training and detection speed, so single-stage models, represented by the YOLO family,
came into existence [7]. By creating the feature map of the input image, the learning
category probability, and the boundary box coordinates of the entire image, YOLO sets
the object detection as a simple regression problem. The algorithm only runs once, which
of course reduces the accuracy, but allows achieving a higher processing speed than the
two-stage object detectors, thus making it suitable for real-time detection of objects. The
first version of YOLO, YOLOv1 [8], divides each given image into a grid system. Each
grid detects objects by predicting the number of bounding boxes of the objects in the grid.
However, if small objects in the image appear in clusters, the detection performance is
not as sufficient. The second version, YOLOv2 [9], preprocesses the batch normalization
based on the feature extraction network of DarkNet19 to improve the convergence of the
network. Later, YOLOv3 [10] added logic regression to predict the score of each bounding
box. It also introduced the method of Faster R-CNN giving priority to only one bounding
box. As a result, YOLOv3 can detect some small objects. However, YOLOv3 cannot fit
well with the ground truth. YOLOv4 [11] uses weighted real connections (WRCs), cross-
mini-batch normalization (CmBN), self-adaptive training (SAT), and other methods, which
allows it to not only keep suitable training and detection speed but also achieve better
detection accuracy. YOLOv5 passes each batch of training data through a data loader,
which performs three types of data enhancement—zooming, color space adjustment, and
mosaic enhancement. From the five models produced to date based on YOLOv5, this
paper proposes improvements to the YOLOv5s model, which uses two cross-stage partial
connections (CSP) structures (one for the backbone network and the other for the neck) and
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a weighted non-maximum suppression (NMS) [12] to improve the detection accuracy of
the occluded objects in images.

The two-stage object detectors, such as R-CNN, SPP-net, and Fast R-CNN mentioned
above, are not suitable for real-time detection of objects due to their relatively low de-
tection speed. As single-stage object detectors, the YOLO versions are obviously better
than the two-stage detectors in terms of the detection speed achieved. However, their
detection performance is not as efficient. To tackle this problem, this paper proposes two
novel YOLOv5s-based traffic sign detection models, called YOLOv5-DH and YOLOv5-
TDHSA, with the following improvements to YOLOv5s (YOLOv5-DH uses only the second
improvement below), which constitute the main contributions of the paper:

1. Replacing the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS) structure in
the YOLOv5s backbone with a transformer self-attention module (T in the YOLOv5-
TDHSA‘s name), and also adding a similar module to the last layer of its neck, so that
the image information can be used more comprehensively;

2. Replacing the YOLOv5s coupled head with a decoupled head (DH in the both models’
names) so as to increase the detection accuracy and speed up the convergence;

3. Adding a small-object detection layer (S in the YOLOv5-TDHSA‘s name) and an
adaptive anchor (A in the YOLOv5-TDHSA‘s name) to the YOLOv5s neck to improve
the detection of small objects.

Based on results obtained from experiments conducted on two public datasets (TT100K
and CCTSDB2021), the proposed YOLOv5-DH and YOLOv5-TDHSA models outperform
the original YOLOv5s model along with three other state-of-the-art models (Faster R-CNN,
YOLOv4-Tiny, YOLOv5n), as shown further in the paper.

The rest of the paper is organized as follows. Section 2 introduces the attention
mechanisms, feature fusion networks, and detection heads commonly used in object
detection models. Section 3 presents the main representatives of the two-stage and single-
stage object detection models. Section 4 explains the YOLOv5s improvements used by
the proposed models, including the transformer self-attention mechanism, the decoupled
head, the small-object detection layer, and the group of adaptive anchor boxes. Section 5
describes the conducted experiments, and presents and discusses the obtained results.
Finally, Section 6 concludes the paper.

2. Background
2.1. Attention Mechanisms

Attention is a data processing mechanism used in machine learning and extensively
applied in different types of tasks such as natural language processing (NLP), image
processing, and object detection [13]. The squeeze-and-exchange (SE) attention mecha-
nism aims to assign different weights to each feature map and focuses on more useful
features [14]. SE pools the input feature map globally, then uses a full connection layer
and an activation function to adjust the feature map, thus obtaining the weight of the
feature, which is multiplied with the input feature at the end. The disadvantage of SE is
that it only considers the channel information and ignores the spatial location information.
The convolutional block attention module (CBAM) solves this problem by first generating
different channel weights, and then compressing all feature maps into one feature map
to calculate the weight of the spatial features [15]. Currently, the self-attention [16] is one
of the most widely used attention mechanisms due to its strong feature extraction ability
and the support of parallel computing. The transformer self-attention mechanism, used
by the YOLOv5-TDHSA model proposed in this paper, can establish a global dependency
relationship and expand the receptive field of images, thus obtaining more features of
traffic signs.

2.2. Multi-Scale Feature Fusion

The feature pyramid network (FPN) [17] utilized in Faster R-CNN and Mask R-
CNN [18] is shown in Figure 1a. It uses the features of the five stages of the ResNet
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convolution groups C2–C6, among which C6 is obtained from a MaxPooling operation
by directly applying 1 × 1/2 on C5. The feature maps P2–P6 are obtained after the FPN
fusion, as follows: P6 is equal to C6, P5 is obtained through a 1 × 1 convolution followed
by a 3 × 3 convolution, and P2–P4 are obtained through a 1 × 1 convolution followed by a
fusion with the feature of the former 2 × Upsample and a 3 × 3 convolution.

Axioms 2023, 12, x FOR PEER REVIEW 4 of 20 
 

relationship and expand the receptive field of images, thus obtaining more features of 
traffic signs. 

2.2. Multi-Scale Feature Fusion 
The feature pyramid network (FPN) [17] utilized in Faster R-CNN and Mask R-CNN 

[18] is shown in Figure 1a. It uses the features of the five stages of the ResNet convolution 
groups C2–C6, among which C6 is obtained from a MaxPooling operation by directly ap-
plying 1 × 1/2 on C5. The feature maps P2–P6 are obtained after the FPN fusion, as follows: 
P6 is equal to C6, P5 is obtained through a 1 × 1 convolution followed by a 3 × 3 convolu-
tion, and P2–P4 are obtained through a 1 × 1 convolution followed by a fusion with the 
feature of the former 2 × Upsample and a 3 × 3 convolution. 

The FPN in YOLOv3 is shown in Figure 1b. The features of C3, C4, and C5 are used. 
The features from C5 to P5 first pass through five layers of convolution, and then through 
one layer of 3 × 3 convolution. The features of P4 are obtained by connecting M5 (through 
1 × 1 Conv + 2 × Upsample) and C4 through five layers of convolution, and one layer of 3 
× 3 convolution. The features of P3 are obtained by connecting M4 (through 1 × 1 Conv + 
2 × Upsample) and C3 through five layers of convolution, and one layer of 3 × 3 convolution. 

The feature extraction network of YOLOv5 uses a ‘FPN + Path Aggregation Network 
(PAN)’ [19] structure, as shown in Figure 1c. PAN adds a bottom-up pyramid behind the 
FPN as a supplement. FPN conveys the strong semantic features from top to bottom, while 
PAN conveys strong positioning features from bottom to top. The specific operation of 
PAN includes first copying the last layer M2 of FPN as the lowest layer P2 of PAN, and 
then fusing M3 with the downsampled P2 to obtain P3. P4 is obtained through a feature 
fusion of M4 and downsampled P3. However, the feature extraction network does not 
work well for the detection of small objects. The feature fusion utilized by the YOLOv5-
TDHSA model, proposed in this paper, is based on a small-object detection layer, making 
the detection of small objects more accurate. This is described in more detail in Section 4.3. 

C6

C5

C4

C3

C2

M5

P6

P5

P4

P3

P2

1×1Conv 3×3Conv

1×1/2Maxpool

1×1Conv 3×3Conv

1×1Conv 3×3Conv

1×1Conv 3×3Conv

2×UpSample

2×UpSample

2×UpSample

+

+

+

C5

C4

C3

M5 P5

P4

P3

5×Conv 3×3Conv

5×Conv 3×3Conv

5×Conv 3×3Conv

M4

M3

1×1Conv
2×UpSample

1×1Conv
2×UpSample

C4

C3

C2

M41×1Conv
UPSample

1×1Conv

C1

M3

M2

P4

P3

P2

1×1Conv +

+

UPSample

+

+

CBS

CBS

1×1Conv

1×1Conv

1×1Conv

a.Faster R-CNN
and 

   Mask R-CNN
b.YOLOv3 c.YOLOv5

 
Figure 1. Different feature fusion structures. 

2.3. Detector Head 
Since the head of YOLOv1 only generates two detection boxes for each grid, it is not 

suitable for both dense and small-object detection tasks. Its generalization ability is weak 
when the size ratio of the same-type objects is uncommon. The head of YOLOv2 improves 
the network structure and also adds an anchor box. YOLOv2 removes the last fully con-
nected layer in YOLOv1, and uses convolution and anchor boxes to predict the detection 
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The FPN in YOLOv3 is shown in Figure 1b. The features of C3, C4, and C5 are used.
The features from C5 to P5 first pass through five layers of convolution, and then through
one layer of 3 × 3 convolution. The features of P4 are obtained by connecting M5 (through
1 × 1 Conv + 2 × Upsample) and C4 through five layers of convolution, and one layer of
3 × 3 convolution. The features of P3 are obtained by connecting M4 (through 1 × 1
Conv + 2 × Upsample) and C3 through five layers of convolution, and one layer of
3 × 3 convolution.

The feature extraction network of YOLOv5 uses a ‘FPN + Path Aggregation Network
(PAN)’ [19] structure, as shown in Figure 1c. PAN adds a bottom-up pyramid behind the
FPN as a supplement. FPN conveys the strong semantic features from top to bottom, while
PAN conveys strong positioning features from bottom to top. The specific operation of
PAN includes first copying the last layer M2 of FPN as the lowest layer P2 of PAN, and then
fusing M3 with the downsampled P2 to obtain P3. P4 is obtained through a feature fusion of
M4 and downsampled P3. However, the feature extraction network does not work well for
the detection of small objects. The feature fusion utilized by the YOLOv5-TDHSA model,
proposed in this paper, is based on a small-object detection layer, making the detection of
small objects more accurate. This is described in more detail in Section 4.3.

2.3. Detector Head

Since the head of YOLOv1 only generates two detection boxes for each grid, it is
not suitable for both dense and small-object detection tasks. Its generalization ability is
weak when the size ratio of the same-type objects is uncommon. The head of YOLOv2
improves the network structure and also adds an anchor box. YOLOv2 removes the last
fully connected layer in YOLOv1, and uses convolution and anchor boxes to predict the
detection box. However, since the use of convolution to downsample the feature map
results in a loss of the fine-grained features, the model’s detection of small objects is poor.
Consequently, the passthrough layer structure has been introduced in the head of YOLOv2
to divide the feature map into four parts to preserve the fine-grained features. The head of
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YOLOv3 introduces a multi-scale detection logic and utilizes a multi-label classification
idea on the basis of YOLOv2. The loss function has been optimized as well. YOLOv4
adopts a multi-anchor strategy, different from YOLOv3. Any anchor box greater than the
intersection over union (IoU) [20] threshold is regarded as a positive sample, thus ensuring
that the positive samples ignored by YOLOv3 will be added to YOLOv4 to improve the
detection accuracy of the model. The output of YOLOv5 has three prediction branches.
The grid of each branch has three corresponding anchors. Instead of the IoU maximum
matching method, YOLOv5 calculates the width–height ratio of the bounding box to the
anchor of the current layer. If the ratio is greater than the parameter value set, this indicates
that the matching degree is poor, which is considered as a background. The coupled
detection head of YOLOv5s performs both the recognition and positioning tasks on a
feature map simultaneously. However, these tasks have different focuses, making the final
recognition accuracy low. The ‘decoupled head’ idea allows one to separate these two
tasks and achieve better performance. Therefore, the models proposed in this paper use a
decoupled head instead of the original YOLOv5s coupled head, which is described in more
detail in Section 4.2.

3. Related Work

Over the past 20 years, the object detection models were divided into two categories:
(1) traditional models (before 2012), such as V-J detection [21,22], HOG detection [23],
DPM [24], etc., and (2) deep learning (DL) models, beginning with AlexNet [25]. The
following subsections briefly present the DL object detection models, divided into two-
stage and one-stage models, whose development route is illustrated in Figure 2.
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3.1. Two-Stage Object Detection Models

Krizhevsky et al. proposed AlexNet as a CNN framework when participating (and
winning the first place) in the ImageNet LSVRC 2012 competition. This model brought the
climax to the development of deep learning.

Later, R-CNN emerged for object detection. However, R-CNN unifies the size of all
candidate boxes, which causes a loss of the image content and affects the detection accuracy.
Based on R-CNN, SPP-net, Fast R-CNN, Faster R-CNN, Mask R-CNN, and other models
have been developed subsequently.

SPP-net was proposed in 2014. It inserts a spatial pyramid pooling layer between
the CNN layer and fully connected layer, which allows it to solve the R-CNN loss of the
image content caused by adjusting all candidate boxes to the same size. In order to find
the location of each area in the feature map, the location information is added after the
convolution layer. However, the time-consuming selective search (SS) [26] method is still
used to generate the candidate areas.

On the basis of R-CNN, Fast R-CNN adds an RoI (region of interest) pooling layer
and reduces the number of model parameters, thus greatly increasing the processing speed.
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The method of SPP-net is used for reference, CNN is used to process the input images, and
the serial structure of R-CNN is changed to a parallel structure, so that classification and
regression can be carried out simultaneously, and the detection is accelerated.

In order to solve the problem that Fast R-CNN uses the SS method to generate candi-
date areas, Faster R-CNN uses an RPN to directly generate candidate areas, which enables
the neural network to complete the detection task in an end-to-end fashion [27].

Based on Faster R-CNN, Mask R-CNN uses a fully constructive network (FCN). The
model operates in two steps: (1) generating the candidate regions through an RPN, and
(2) extracting the RoI features from candidate regions using RoIAlign (region of interest
alignment) to obtain the probability of object categories and the location information of
prediction boxes.

The two-stage object detection models are not suitable for real-time object detection
because they require multiple detection and classification processes, which lowers the
detection speed.

3.2. One-Stage Object Detection Models
3.2.1. YOLO

YOLO’s training and detection are carried out in a separate network. The object
detection is regarded as a process of solving a regression problem. As long as the input
image passes through inference, the location information of the object and the probability
of its category can be obtained [28]. Therefore, YOLO is particularly outstanding in terms
of detection speed. There are different versions of YOLO proposed to date. Based on its
fifth version, YOLOv5, five models have been produced, namely YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5-DH and YOLOv5-TDHSA models,
described in this paper, propose improvements to the YOLOv5s model, whose network
structure is shown in Figure 3. A focus network structure is used at the beginning of the
trunk to derive the value of every other pixel in an image. This is followed by four inde-
pendent feature layers, which are stacked. At that point, the width and height information
is concentrated on the channel, and the input channel is expanded four times.
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YOLOv5s uses Mixup [29] and Mosaic for data enhancement, where Mosaic splices
four images to enrich the background of the detected object. The data of the four images
are processed at one time during a batch normalization computation.
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In the backbone part, the model extracts features from the input image. The extracted
features, through three feature layers, are used for the next network construction.

The main task of the neck part is to strengthen feature extraction and feature fusion,
so as to combine feature information of different scales. In the Path Aggregation Network
(PANet) structure, upsampling and downsampling operations are used to achieve feature
extraction. When the input size is 640 × 640 pixels, the maximum scale of output feature is
80 × 80 pixels, so the minimum size of the detection frame is 8 × 8 pixels. However, when
there are many smaller objects in the dataset, this will affect the detection accuracy. The
proposed improvements of YOLOv5s in this regard are described in Section 4.3.

In the head part, the three feature layers, which have been strengthened, are regarded
as a collection of feature points. This part is used to judge whether the feature points have
objects corresponding to them. The YOLOv5s detection head is a coupled head which
performs complete identification and location tasks on a feature map. However, recognition
and location are two different tasks. Therefore, this paper proposes a branch structure to
carry out recognition and location tasks separately. This improvement to the YOLOv5s
structure is described in more detail in Section 4.2.

There have been some improvements of YOLOv5 recently proposed for traffic sign
and traffic light recognition. For instance, Chen et al. [30] introduced a Global-CBAM
attention mechanism for embedding into YOLOv5′s backbone in order to enhance its
feature extraction ability, and achieved sufficient balance between the channel attention
and spatial attention for improving the target recognition. Due to this, the overall accuracy
of the model was improved, especially for small-sized target recognition, and the mean
accuracy (mAP) achieved was 6.68% higher than that before the improvement.

In order to solve the problem of using YOLOv5s for the recognition of small-sized traf-
fic signs, Liu et al. [31] proposed to replace the original DarkNet-53 backbone of YOLOv5s
with MobileNetV2 network for feature extraction, selecting Adam as the optimizer. The
result of this was the reduction in the number of parameters by 65.6% and the computation
amount by 59.1% on the basis of improving the mAP by 0.129.

Chen et al. [32] added additional multi-scale features to YOLOv5s to make it faster
and more accurate in capturing traffic lights when these occupy a small area in images. In
addition, a loop was established to update the parameters using a gradient of loss values.
This led to mAP improvement (from 0.965 to 0.988) and detection time reduction (from
3.2 ms inference/2.5 ms to 2.4 ms inference/1.0 ms NMS per image).

3.2.2. SSD

The Single Shot MultiBox Detector (SSD) [33] is a one-stage object detection model
proposed after YOLOv1. In order to improve YOLO’s imperfection for small-object detec-
tion, SSD uses feature maps of different sizes and prior boxes of different sizes to further
improve the regression rate and accuracy of the predicted box. The proportion of the prior
frame size to the image is calculated as follows:

Sk = Smin +
Smax − Smin

m− 1
(k− 1), (1)

where k ∈ [1, m], m denotes the number of characteristic graphs, and Smax and Smin denote
the maximum and minimum value of the ratio, respectively.

4. Proposed Improvements to YOLOv5s

This section describes the YOLOv5s improvements used by the models proposed in
this paper. The decoupled head (DH) improvement is used by both proposed models,
YOLOv5-DH and YOLOv5-TDHSA, whereas the other two improvements are used only
by YOLOv5-TDHSA.
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4.1. Transformer Self-Attention Mechanism

The transformer model was proposed by the Google team in June 2017 [34]. It has not
only become the preferred model in the NLP field, but also showed strong potential in the
field of image processing. The transformer abandons the sequential structure of Recurrent
Neural Networks (RNNs) and adopts a self-attention mechanism to enable the model to
parallelize training and make full use of the global information of training data.

The core mechanism of the transformer model is the self-attention depicted in Figure 4.
The regular attention mechanism first calculates the attention distribution on all input
information and then obtains the weighted average of the input information according to
this attention distribution. Self-attention maps the input features to three new spaces for
representation, namely Query (Q), Key (K), and Value (V). The correlation between Q and
K is calculated as well, after which a SoftMax function is used to normalize the data and
widen the gap between the data to enhance the attention. The weight coefficient and V
are weighted and summed to obtain the attention value. The self-attention mechanism
maps the features to three spatial representations, which allows one to avoid problems
encountered when features are mapped to only one space. For example, if Q1 and Q2 are
directly used to calculate the correlation, there will be no difference between the correlation
between Q1 and Q2 and the correlation between Q2 and Q1. In this case, the expression
ability of the attention mechanism will become weak. If K is introduced to calculate the
correlation between the original data, it can reflect the difference between Q1 and K2 on
one hand and Q2 and K1 on the other, which can also enhance the expression ability of the
attention mechanism. Since the input of the next step is the attention weight obtained, it is
not appropriate to use Q or K; thus, the third space, V, is introduced. Finally, the attention
value is obtained through weighted summation.
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However, the transformer model would significantly increase the amount of compu-
tation, resulting in higher training costs. The feature dimension is the smallest when the
image features are transferred to the last layer of the network. At this moment, the influence
on training the model would be the smallest if the transformer is added. Therefore, the
proposed YOLOv5-TDHSA model uses the transformer only as a replacement of the CBS at
the last layer of the backbone of the original YOLOv5s model, and also adds the transformer
to the last layer of its neck.
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4.2. Decoupled Head

After performing analytical experiments indicating that the coupled detection head
may harm YOLO’s performance, the authors of [35] recommend replacing the original
YOLO’s head with a decoupled one. This idea is taken on board by the models proposed
in this paper to reduce the number of parameters and network depth, thus improving the
model training speed and reducing the feature losses.

During the object detection, it is necessary to output the category/class and position
information of the object. The decoupled head uses two different branches to output the
category and position information separately as the recognition and positioning tasks have
different focuses. The recognition focuses more on the existing class to which the extracted
features are closer. The positioning focuses more on the location coordinates of the ground
truth box so as to correct the parameters of the bounding box. YOLO’s head uses a feature
map to complete the two tasks of recognition and location in a convolution. Therefore, it
does not perform as well as the decoupled head D1 shown in Figure 5, which is used by the
models proposed in this paper. However, the decoupling process increases the number of
parameters, thus affecting the training speed of the model. Therefore, in order to reduce the
number of parameters, the feature first goes through a 1 × 1 convolution layer to reduce
the dimension and then through two parallel branches with two 3 × 3 convolution layers.
The first branch is used to predict the category. Since there are 45 categories in the TT100K
dataset used in this paper, the channel dimension becomes 45 after a convolution operation
and the processing of the Sigmoid activation function [36]. The second branch is mainly
used to determine whether the object box is a foreground or background. As a result,
the channel dimension becomes 1 after the convolution operation and Sigmoid activation
function. There is also a third branch used to predict the coordinate information (x, y, w,
h) of the object box. Therefore, after the convolution operation, the channel dimension
becomes 4. Finally, the three outputs are integrated into 20 × 20 × 50 feature information
through Concat for the next operation. The decoupled heads D2, D3, and D4, shown
in Figure 6, also follow the same steps to generate feature information of 40 × 40 × 50,
80× 80× 50, and 160× 160× 50, respectively. The proposed YOLOv5-DH model only uses
D1, D2, and D3 to replace the ‘Head’ part of the original YOLOv5s model (c.f., Figure 3).
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4.3. Small-Object Detection Layer and Adaptive Anchor

During the detection of traffic signs, the changing distance between the shooting
equipment and the object makes the size of traffic signs in the collected images different,
which has a certain impact on the detection accuracy [37]. YOLOv5s solves this problem
in the form of PANet. Taking an input image size of 640 × 640 pixels as an example, the
feature information of the feature map output through the original model is 80 × 80 × 255,
40 × 40 × 255, and 20 × 20 × 255, respectively. At this time, the grid sizes of the generated
detection box are 8 × 8 pixels, 16 × 16 pixels, and 32 × 32 pixels, respectively. However,
when there is a large number of objects with size smaller than 8 × 8 pixels in the dataset,
the detection performance for these small objects is not acceptable. Furthermore, the
feature pyramid pays more attention to the extraction and optimization of the underlying
features. With increasing the depth of the network, some features at the top level will be
lost, reducing the accuracy of the object detection.

To improve the detection of small objects, a branch structure is added to the PANet
of YOLOv5s to maintain the same size of the input image. However, the neck part adds a
160 × 160 × 128 feature information output. In other words, the feature map continues to
expand by performing the convolution and upsampling on the feature map after layer 17.
Meanwhile, the 160 × 160 pixels feature information obtained from layer 19 is fused with
the layer 2 feature in the backbone at the layer 20 to make up for the feature loss during
feature transmission. The addition of a small object detection layer in the network can ease
the difficulty of small object detection. At the same time, it combines the features of the
top level with those of the bottom level to supplement the features lost in the bottom level,
thus improving the detection accuracy.

The network structure after the addition of the small-object detection layer is shown
in Figure 6. A branch is added to connect layer 2 and layer 19 (the red solid line part). In
this case, the added fourth output size is 160 × 160 × 128. After the head decoupling, the
feature information size is 160 × 160 × 50. The minimum size of the generated detection
box is 4 × 4 pixels, which improves the detection of small objects.

The original YOLOv5s network model has only three detection layers. As a result,
there are three groups of anchor boxes corresponding to the feature maps at three different
resolutions. In each group of anchor boxes, there are three different anchors. A total of nine
anchors can be used to detect large, medium, and small objects. However, the YOLOv5-
TDHSA model, proposed in this paper, deepens the network and adds an output layer of
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feature information. It uses a group of 12 anchor boxes, added to the original YOLOv5s
model, to calculate the feature map at the new resolution. The ratio between an anchor and
the width and height of each ground truth box is calculated, and the K-Means and genetic
learning algorithms are used to obtain the best possible recall (BPR). When BPR is greater
than 0.98, it indicated that the four groups of anchor boxes generated can be suitable for
custom datasets.

The addition of the small-object detection layer and the group of adaptive anchor boxes
allows us to significantly improve the detection accuracy of the proposed YOLOv5-TDHSA
model, as demonstrated in the next section.

5. Experiments
5.1. Datasets

Two public datasets were used in the experiments conducted for the performance com-
parison of models. The first one was the Tsinghua-Tencent 100 K Chinese traffic sign detec-
tion benchmark [38], denoted as TT100K in [39]. It includes 100,000 high-definition images
with large variations in illuminance and weather conditions, among which 10,000 images
are annotated that contain 30,000 traffic sign instances (in total), each of which theoretically
belongs to one of the 221 Chinese traffic sign categories. The images are taken from the
Tencent Street View Map. Sample images are shown in Figure 7. However, there is a serious
imbalance in the distribution of categories in this dataset, and even some categories do not
have instances corresponding to them. Therefore, in the conducted experiments, similarly
to [39], only categories with more than 100 traffic sign instances were used, resulting in 45
categories spread over 9170 images.
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The other dataset used in the experiments was the CCTSDB2021 Chinese traffic sign
detection benchmark [40], which was built based on the CCTSDB2017 dataset [41,42] by
adding 5268 annotated images of real traffic scenes and replacing images containing easily
detected traffic signs with more difficult samples of a complex and changing detection en-
vironment. Three traffic sign classes are distinguished in CCTSDB2021, namely a warning,
a mandatory, and a prohibitory traffic sign class, as shown in Figure 8. There are a total of
17,856 images, including 16,356 images in the training set and 1500 images in the test set.
However, the weather environment attribute, which represents a great challenge for the
object detection models, is only present in the images of the test set and not of the training
set. Therefore, only these 1500 images, presenting greater difficulty to the detection of
traffic signs contained in them, were used in the experiments.
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In the experiments, as shown in Table 1, the 9170 TT100K images and 1500 CCTSDB021
images were separately divided (using the same ratio) into a training set (60% of the total
number of images), a validation set (20%), and a test set (20%). The corresponding number
of labels in each of these three sets is shown in Table 1.

Table 1. Splitting the datasets into training, validation, and test sets.

TT100K Dataset CCTSDB2021 Dataset

Training set 13,908 labels 1935 labels
Validation set 4636 labels 645 labels

Test set 4636 labels 645 labels

5.2. Experimental Environment

In the training process, the initial learning rate was set to 0.01, and a cosine annealing
strategy was used to reduce it. 300 epochs were performed with the batch size set to 32.
The experiments were conducted on a PC with a Windows 10 operating system, Intel (R)
Core (TM) i7-10,700 CPU@2.90 GHz, NVIDIA GeForce RTX3090, and 24GB video memory,
by using CUDA 11.1 for training acceleration, PyTorch 1.8.1 deep learning framework for
training, and an input image size of 640 × 640 pixels, as shown in Table 2.

Table 2. Experimental environment’s parameters.

Component Name/Value

Operating system Windows 10
CPU Intel (R) Core (TM) i7-10,700
GPU GeForce RTX3090

Video memory 24 GB
Training acceleration CUDA 11.1

Deep learning framework for training PyTorch 1.8.1
Input image size 640 × 640 pixels

Initial learning rate 0.01
Final learning rate 0.1
Training batch size 32

5.3. Evaluation Metrics

Evaluation metrics commonly used for the performance evaluation of object detection
models include precision, average precision (AP), mean average precision (mAP), recall, F1 score,
and processing speed measured in frames per second (fps).
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Precision refers to the proportion of the true positive (TP) samples in the prediction
results, as follows:

precision =
TP

TP + FP
(2)

where TP denotes the number of images containing detected objects with IoU > 0.5, that
is, the number of images containing positive samples that are correctly detected by the
model; FP (false positive) represents the number of images containing detected objects with
IoU ≤ 0.5.

Recall refers to the proportion of correct predictions in all positive samples, as follows:

recall =
TP

TP + FN
, (3)

where FN (false negative) represents the number of images wrongly detected as not con-
taining objects of interest.

The average precision (AP) is the area enclosed by the precision–recall curve and the X
axis, calculated as follows:

AP =
∫ 1

0
p(r)dr, (4)

where p(r) denotes the precision function of recall r.
F1 score is the harmonic average of precision and recall, with a maximum value of 1 and

a minimum value of 0, calculated as follows:

F1 = 2 · precision · recall
precision + recall

. (5)

The mean average precision (mAP) is the mean AP value over all classes of objects,
calculated as follows:

mAP =
∑ AP

Nclasses
, (6)

where Nclasses denotes the number of classes.

5.4. Results

Based on the two datasets, experiments were conducted for performance comparison
of the proposed YOLOv5-DH and YOLOv5-TDHSA models to four state-of-the-art models,
namely R-CNN, YOLOv4-Tiny, YOLOv5n, and YOLOv5s. The size and number of param-
eters of models are shown in Table 3 and the duration of a single experiment conducted
with each model is shown in Table 4. On the two datasets, TT100K and CCTSDB2021,
five separate experiments were performed with each of the models compared. In each
experiment, the same data were utilized for all models, generated by randomly splitting
the used dataset into a training set, a validation set, and a test set, as per Table 1. The results
obtained for each model were averaged over the five experiments in order to serve as the
final evaluation of the model performance.

Table 3. The size and number of parameters of compared models.

Model Size
(MB)

Number of Parameters
(Million)

Faster R-CNN 360.0 28.469
YOLOv4-Tiny 22.4 6.057

YOLOv5n 3.6 1.767
YOLOv5s 13.7 7.068

YOLOv5-DH 22.8 11.070
YOLOv5-TDHSA 24.8 12.224
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Table 4. Single experiment duration of compared models.

Dataset Faster
R-CNN

YOLOv4-
Tiny YOLOv5n YOLOv5s YOLOv5-

DH
YOLOv5-
TDHSA

TT100K 47 h 37.5 h 30 h 32 h 33 h 35 h

CCTSDB
2021 8.5 h 4 h 0.8 h 1 h 2 h 2.5 h

Tables 5–10 show the mAP and F1 score results obtained in each experiment, conducted
on the TT100K dataset, for each of the models compared. Table 11 shows the averaged mAP
and F1 score results over the five experiments, along with the processing speed achieved,
measured in frames per second (fps). The obtained results, shown in Table 11, demonstrate
that on the TT100K dataset, both proposed models (YOLOv5-DH and YOLOv5-TDHSA)
outperform all four state-of-the-art models in terms of mAP and F1 score, at the expense
of having a bigger size, greater number of parameters, and slower processing speed
(surpassing only Faster R-CNN). From the two proposed models, YOLOv5-TDHSA is
superior to YOLOv5-DH in terms of both evaluation metrics (mAP and F1 score).

Table 5. Results of Faster R-CNN on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 52.9 53.6 54.1 53.4 52.6

F1 score 0.576 0.581 0.586 0.579 0.575

Table 6. Results of YOLOv4-TINY on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 57.7 62.8 63.1 64.6 63.2

F1 score 0.608 0.672 0.655 0.654 0.675

Table 7. Results of YOLOv5n on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 66.0 66.2 65.1 66.3 66.6

F1 score 0.651 0.645 0.639 0.646 0.641

Table 8. Results of YOLOv5s on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 74.5 75.6 75.2 75.3 75.1

F1 score 0.728 0.741 0.740 0.730 0.728

Table 9. Results of YOLOv5-DH on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 77.2 78.3 77.6 78.5 78.1

F1 score 0.762 0.771 0.762 0.772 0.769
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Table 10. Results of YOLOv5-TDHSA on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 83.3 83.5 82.6 83.3 84.2

F1 score 0.819 0.811 0.797 0.810 0.816

Table 11. Results of compared models on TT100K dataset.

Model F1Score mAP
(%)

Processing Speed
(fps)

Faster R-CNN 0.579 53.3 40
YOLOv4-Tiny 0.653 62.3 160

YOLOv5n 0.644 66.0 111
YOLOv5s 0.733 75.1 100

YOLOv5-DH 0.767 77.9 84
YOLOv5-TDHSA 0.811 83.4 77

Tables 12–17 show the mAP and F1 score results obtained in each experiment, conducted
on the CCTSDB2021 dataset, for each of the models compared. Table 18 shows the averaged
mAP and F1 score results over the five experiments, along with the processing speed
achieved. The obtained results, shown in Table 18, demonstrate that both proposed models
(YOLOv5-DH and YOLOv5-TDHSA) outperform all four state-of-the-art models in terms
of mAP and F1 score on this dataset as well, at the expense of having a bigger size, greater
number of parameters, and slower processing speed (surpassing only Faster R-CNN). From
the two proposed models, YOLOv5-TDHSA is again superior to YOLOv5-DH in terms of
both evaluation metrics (mAP and F1 score).

Table 12. Results of Faster R-CNN on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 61.9 48.7 45.7 46.0 61.1

F1 score 0.65 0.62 0.59 0.61 0.65

Table 13. Results of YOLOv4-TINY on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 62.6 64.2 53.7 62.3 64.7

F1 score 0.66 0.68 0.62 0.65 0.67

Table 14. Results of YOLOv5n on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 68.7 72.5 54.8 60.7 71.3

F1 score 0.72 0.72 0.60 0.63 0.74
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Table 15. Results of YOLOv5s on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 64.7 70.2 58.9 68.5 73.7

F1 score 0.70 0.72 0.63 0.69 0.76

Table 16. Results of YOLOv5-DH on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 71.9 67.6 62.2 65.2 73.8

F1 score 0.71 0.70 0.68 0.68 0.76

Table 17. Results of YOLOv5-TDHSA on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 69.1 73.4 62.1 69.7 74.7

F1 score 0.73 0.76 0.66 0.67 0.76

Table 18. Results of compared models on CCTSDB2021 dataset.

Model F1Score mAP
(%)

Processing Speed
(fps)

Faster R-CNN 0.62 52.7 28
YOLOv4-Tiny 0.66 61.5 162

YOLOv5n 0.68 65.6 83
YOLOv5s 0.70 67.2 77

YOLOv5-DH 0.71 68.1 70
YOLOv5-TDHSA 0.72 69.8 66

6. Discussion

The incorporation of the proposed improvements into YOLOv5s resulted in overall bet-
ter traffic sign detection. This was confirmed by a series of experiments conducted for evalu-
ating and comparing the performance of the proposed models (YOLOv5-DH and YOLOv5-
TDHSA) to that of YOLOv5s and three other state-of-the-art models, namely Faster R-CNN,
YOLOv4-Tiny, and YOLOv5n, based on two datasets—TT100K and CCTSDB2021. The
obtained results clearly demonstrate that both proposed models outperform all four models,
in terms of the mean average precision (mAP) and F1 score.

Although both proposed models are better than the two-stage detection Faster R-CNN
model, in terms of the model’s size, number of parameters, and processing speed, they
still have some shortcomings in this regard compared with the one-stage detection models
(YOLOv4-Tiny, YOLOv5n, YOLOv5s). Therefore, in the future, some lightweight modules
will be introduced into the proposed YOLOv5-TDHSA model (which is superior to the
other proposed model YOLOv5-DH) in order to reduce its size and number of parameters,
and increase its processing speed.

To check if the proposed models are significantly different statistically from the com-
pared state-of-the-art models, we applied the (non-parametric) Friedman test [43,44] with
the corresponding post-hoc Bonferroni–Dunn test [45,46], which are regularly used for the
comparison of classifiers (more than two) over multiple datasets.
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First, using the Friedman test, we measured the performances of the models, used
in the experiments described in the previous section, across both datasets. Basically, the
Friedman test shows whether the measured average ranks of models are significantly
different from the mean rank expected, by checking the null hypothesis (stating that all
models perform the same and the observed differences are merely random), based on the
following formula:

Tx2 =
12N

k(k + 1)

(
∑k

i=1 r2
i −

k(k + 1)2

4

)
, (7)

where k denotes the number of models, N denotes the number of datasets, and ri. represents
the average rank of the i-th model. In our case, k = 6 and N = 2.

Instead of Friedman’s Tx2 statistic, we used the better Iman and Davenport statistic [47],
which is distributed according to the F-distribution with (k− 1) and (k− 1)(N − 1) degrees
of freedom, as follows:

TF =
(N − 1)Tx2

N(k− 1)− Tx2
. (8)

Using (8), we calculated the following values: TF = 34 for F1 score and TF = ∞
for mAP. As both these values are greater than the critical values of 3.45 and 5.05 for six
models and two datasets, with confidence levels of α = 0.10 and α = 0.05, respectively, we
rejected the null hypothesis and concluded that there are significant differences between
the compared models.

Next, we proceeded with a post-hoc Bonferroni–Dunn test, in which the models were
compared only to a control model and not between themselves [44,48]. In our case, we used
the proposed YOLOv5-TDHSA model as a control model. The advantage of the Bonferroni–
Dunn test is that it is easier to visualize because it uses the same Critical Difference (CD)
for all comparisons, which can be calculated as follows [48]:

CD = qα

√
k(k + 1)

6N
, (9)

where qα denotes the critical value for α
k−1 . When k = 6, qα = 2.326 for α = 0.10, and

qα = 2.576 for α = 0.05 [48]. Then, the corresponding CD values, calculated according to
(9), are equal to 4.352 and 4.819, respectively. Figure 9 shows the CD diagrams based on
F1 score and mAP. As can be seen from Figure 9, the proposed YOLOv5-TDHSA model
is significantly superior to Faster R-CNN on both evaluation metrics for both confidence
levels, and achieves at least comparable performance to that of YOLOv4-Tiny on both
evaluation metrics for both confidence levels, and to that of YOLOv5n on F1 score for
both confidence levels. It is not surprising that the Bonferroni–Dunn test found YOLOv5-
DH and YOLOv5-TDHSA similar to YOLOv5s, as both proposed models are based on it.
Having incorporated only one YOLOv5s improvement into itself, naturally, YOLOv5-DH is
reported by the Bonferroni–Dunn test as more similar to YOLOv5s than YOLOv5-TDHSA.
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Figure 9. Critical difference (CD) comparison of YOLOv5-TDHSA (the control model) against other
compared models with the Bonferroni–Dunn test, based on (a) F1 score with confidence level α = 0.05,
CD = 4.819; (b) F1 score with confidence level α = 0.10, CD = 4.352; (c) mAP with confidence level
α = 0.05, CD = 4.819; (d) mAP with confidence level α = 0.10, CD = 4.352 (any two models not
connected by a thick black horizontal line are considered to have significant performance differences
between each other).

7. Conclusions

We have proposed two novel models for accurate traffic sign detection, called YOLOv5-
DH and YOLOv5-TDHSA, based on the YOLOv5s model with additional improvements.
Firstly, a transformer self-attention module with stronger expression abilities was used in
YOLOv5-TDHSA to replace the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS)
structure in the YOLOv5s backbone. A similar module was added to the last layer of the
YOLOv5-TDHSA’s neck, so that the image information can be used more comprehensively.
The features were mapped to the new three spaces for representation, thus improving
the representation ability of the feature extraction. The multi-head mechanism used aims
to realize the effect of multi-channel feature extraction. So, the transformer can increase
the diversity of similarity computation between inputs and improve the ability of feature
extraction. Secondly, a decoupled detection head was used in both proposed models to re-
place the YOLOv5s coupled head, which is responsible for the recognition and positioning
on a feature map. As these two tasks have different focuses, resulting in a misalignment
problem, the decoupled head uses two parallel branches—one responsible for the cate-
gory recognition and the other responsible for positioning—which allows to improve the
detection accuracy. However, as the decoupled head is not as fast as the coupled head,
and due to the increase in the number of model parameters, the dimension was reduced
through a 1 × 1 convolution before the decoupling to achieve balance between the speed
and accuracy. Thirdly, for YOLOv5-TDHSA, a small-object detection layer was added to
the YOLOv5s backbone and connected to the neck. At the same time, upsampling was
used on the feature map of the neck to further expand the feature map. Supplemented by a
group of adaptive anchor boxes, this new branch structure can not only ease the difficulty
of small-object detection performed by YOLOv5-TDHSA, but can also compensate the
feature losses caused by feature transmission with the increasing network depth.

Experiments conducted on two public datasets demonstrated that both proposed
models outperform the original YOLOv5s model and three other state-of-the-art models
(Faster R-CNN, YOLOv4-Tiny, YOLOv5n) in terms of the mean accuracy (mAP) and F1
score, achieving mAP values of 77.9% and 83.4% and F1 score values of 0.767 and 0.811 on
the TT100K dataset, and mAP values of 68.1% and 69.8% and F1 score values of 0.71 and
0.72 on the CCTSDB2021 dataset, respectively, for YOLOv5-DH and YOLOv5-TDHSA. The
results also confirm that the incorporation of the T and SA improvements into YOLOv5s
leads to further enhancement, and a better performing model (YOLOv5-TDHSA), which
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is superior to the other proposed model (YOLOv5-DH) that avails of only one YOLOv5s
improvement (i.e., DH).
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