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Abstract: In view of the diversity of stimulated current that neurons may experience, an extended
Hindmarsh–Rose neuron model is proposed and the corresponding fractional-order neuron model,
with no equilibrium point, is depicted. Additionally, various hidden attractors of the addressed
neuron model are analyzed by changing system parameters and the order of fractional-order neuron
system. Furthermore, hybrid projective synchronizations of the proposed neurons are investigated
and schemes are obtained by designing suitable controllers according to fractional stability theory.
Besides, the validity of the theoretical results is verified through numerical simulations. In short, the
research results have potential application in revealing the dynamical behaviors of neuron system
and controlling the behaviors of neuron into certain status.
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1. Introduction

The biological nervous system, which is essential within an organism, is responsible
for some important functions. It can not only sense external stimuli, but also generate,
process, conduct, and integrate signals and engage with various cognitive activities, such as
feeling, learning, thinking, and controlling the movement of the organism. It is well known
that the nervous system is composed of billions of neurons. Research on the complex
dynamics of neuron plays an important role in revealing the dynamics of nervous system
and can provide scientific principles for defeating various kinds of neurological diseases.

Mathematical models of neurons have great value in exactly describing the electri-
cal activity of neurons. For this reason, neuron models have been built from different
perspectives. In 1952, Alan Lloyd Hodgkin and Andrew Fielding Huxley established the
Hodgkin–Huxley neuron model (HH) [1] based on the electrical activity of squid giant
axons, which pioneered computational neuroscience and provided an important starting
point for theoretical biological neuroscience and computational neuroscience. Since the
mid-20th century, models of neurons’ electrical activity have been successively deduced,
featuring the Hindmarsh–Rose (HR) [2], FitzHugh–Nagumo [3], Chay [4], Morris–Lecar
model [5], and Izhikevich [6] models. Meanwhile, their dynamics have also been investi-
gated [7–11]. These neuron models are convenient for simplified calculation and detailed
nonlinear analysis. However, in the process of simplification, some factors in the neuron
model are ignored or simplified. Recently, Wang and Zhang established a novel neuron
model from the perspective of energy [12], which had similar dynamics to HH model [13].
The phase synchronization of function neurons developed from a simple neuron circuit
was discussed and the energy diversity of neurons exposed to different situations was
revealed [14]. With the establishment and development of neuron models, neurodynamics
was applied into many fields, such as the variant model of FitzHugh–Nagumo model and
its applications in pulse-stream neural networks [15], dynamics of the modified Izhikevich
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neuron model and the associated electronic realization applications [16]. Especially, in
the connection with some diseases, neurodynamics played an important role [17–21]. For
example, to reveal the mechanism of Parkinson’s disease, an extended thalamic–basal
ganglia model was proposed [17] and a biophysically based model was utilized to demon-
strate the parkinsonian dynamical properties [18]; a hippocampal neuron-reduced model
under the pathological condition of Alzheimer’s disease was built for AD research [19]; the
neurodegenerative disorder Huntington’s disease (HD) was discussed via observing focal
adhesion kinase (FAK) activity [20]; and a disease model of amyotrophic lateral sclerosis
(ALS) was produced by analyzing the histopathological changes and the number of motor
neurons [21].

Among many neuron models, the HR neuron model has attracted strong interest from
many researchers due to its unique advantages. For example, the effect of synapses on the
electrical activity and synchronization status of Hindmarsh–Rose neurons under Gaussian
white noise was revealed [17]. Besides, an adaptive Hindmarsh–Rose neuron model was
addressed and system parameters were estimated via a learning algorithm for synchroniza-
tion between neurons [18]. The existence of Hopf bifurcation of time-delay fractional-order
Hindmarsh–Rose neuron was obtained via a linearizing method [22]. Additionally, dynam-
ical behaviors of delayed Hindmarsh–Rose neurons near nonhyperbolic equilibrium were
discussed. It was found that time delay changing could induce saddle-node bifurcation [23].
The multistability of a modified neuron model was considered and spatiotemporal pat-
terns of the neuron network composed of the considered neuron were explored [24]. The
effect of external current on the synchronization of a disordered Hindmarsh–Rose neural
network was revealed. It was found that whether the network can obtain synchronization
or desynchronization was dependent on the type of noise [25]. Topology and dynamical
pattern in neuron network with HR neurons as the nodes can be locally and accurately
recognized by using a deterministic learning algorithm and constructing a fast dynamical
pattern recognition method via synchronization, respectively [26]. Given the environment
the neuron is in, by introducing a new variable denoting magnetic flux, the improved
Hindmarsh–Rose neuron models were proposed, their dynamics have been investigated,
and some results have been gained. Changes in magnetic flux can alter the number of
equilibrium points and their stability [27]. A neuron network composed of modified neuron
coupled with discontinuous exponential flux was constructed and factors affecting the
spatiotemporal pattern were reported [28]. The effect of electromagnetic induction could
influence the neuron electric activities [29]. Results in [30] suggest that the dynamics of the
neuron model is greatly affected by phase noise. From the perspective of energy, a pair
of delayed Hindmarsh–Rose neurons coupling with electrical and chemical synapses was
considered, causing the total energy consumption to be weirdly different [31]. According
to the above, various dynamical behaviors and different kinds of synchronization about
integer-order neuronal systems have been investigated.

With the extensive application of fractional calculus, fractional-order neuron mod-
els have been proposed and their dynamics have been explored. For example, various
dynamical behaviors of a fractional-order memristive HR neuron induced by small pa-
rameter changing were discussed [32] and Hopf bifurcation of fractional-order HR neuron
model caused by time delay was investigated [33]. Different kinds of synchronizations
of fractional-order neurons were discussed under different situations, such as adaptive
synchronization under electromagnetic radiation [34], generalized projective synchro-
nization [35], synchronization of fractional-order neurons in presence of noise [36], and
synchronization of nonidentical fractional-order neurons [37]. By analyzing the related liter-
ature, it can be found that, although some dynamics of fractional-order neurons have been
investigated, there is some work to be performed due to the complex behaviors of neurons
closely related to the nervous function of an organism. For example, as an important syn-
chronization means, chaos projective synchronization was hardly reported in the existing
results. As a vital phenomenon, hidden attractors of neurons should be investigated.
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Therefore, in this paper, to further research the dynamics of neurons under a compli-
cated external forcing current, a fractional-order extended HR neuron model is put forward
and its dynamics are explored. The proposed neuron model can be more accurately fit
the neuronal system to a certain extent because of the introduction of fractional calculus.
The research into the addressed neuron model is helpful for revealing the complex phe-
nomenon of the nervous system and provides some theoretical basis for the application
of neurodynamics in biological information. The remainder of this paper is arranged as
follows. Fractional stability theory and relative preliminaries are introduced in Section 2,
hidden attractors of the mentioned neuron model are analyzed in Section 3, and in Section 4,
schemes about hybrid projective synchronizations are given. The validity of the schemes
is verified via theoretical analysis and numerical simulation. Conclusions are drawn in
Section 5.

2. Fractional Stability Theory and Relative Preliminaries

Compared with other fractional calculus, Riemann–Liouville, Grünwald–Letnikov,
Atangana–Baleanu, and so on, the Caputo derivative can avoid problems with uncertainties
and singularities while modeling fractional-order systems. Due to the super-singularity,
the Riemann–Liouville fractional derivative is not convenient for engineering and physical
modeling. To solve this problem, the Italian geophysicist Caputo proposed a fractional
differential definition with weak singularity. It solved the fractional-order initial value
problem in the Riemann–Liouville definition and was widely used in the modeling of
viscoelastic materials. Therefore, in following discussion, the Caputo derivative will be
used, with the definition is depicted as:

Definition 1. For a given continuously differentiable function f (t) : [0,+∞)→ R , Caputo’s
fractional differential operator [38] can be depicted as

c
0Dq

t f (t) =
1

Γ(n− q)

∫ t

0

f n(τ)

(t− τ)q−n+1 dτ (1)

where 0 < q < 1, Γ(·) is the gamma function Γ(τ) =
∫ ∞

0 tτ−1e−tdt with the characteristics of
Γ(τ + 1) = τΓ(τ).

Since the definition of the Caputo fractional differential operator was proposed, it has been
widely used due to its similar Laplace transformation formula to that of the integer-order operator.
For brevity, c

0Dq
t f (t) is abbreviated as Dq f (t).

Lemma 1 ([39]). Take the system
DqX = A(X)X (2)

into consideration, where X = (x1, x2, · · · , xn) ∈ Rn is the system variable, 0 < q < 1. If
all eigenvalues λi(i = 1, 2, · · · , n) of A(X) at the equilibrant point X∗ meet the condition
|arg(λi)| ≥

qπ
2 , then System (2) will stabilize at the equilibrant point X∗.

Note 1. For the equilibrium point X∗ of System (2), if all eigenvalues of A(X∗) have a negative
real part, it can be said that System (2) is stable at X∗.

Lemma 2 ([39]). Take the system
DqX = A(X)X (3)

into account with the state variable X ∈ Rn and order q in the range of 0 < q < 1; if there is
a positive definite matrix P, XT PDqX ≤ 0 holds for any X. It can be said that system (3) will
stabilize at zero.

Lemma 3. If A is a real symmetric matrix, then there exists a sufficiently large real numbert, such
that tI + A is a positive definite matrix, where I is the identity matrix with the same type as A.
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Proof. Supposing A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 with aij = aji, then we have

tI + A =


k + a11 a12 · · · a1n

a21 k + a22 · · · a2n
...

...
. . .

...
an1 an2 · · · k + ann

 (4)

which has a leading principal submatrix with k-order of

∆k(t) =

∣∣∣∣∣∣∣∣∣
t + a11 a12 · · · a1k

a21 t + a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · t + akk

∣∣∣∣∣∣∣∣∣ (5)

When t is large enough, ∆k(t) is the determinant of a strictly principal diagonally dom-
inant matrix, namely t + aii > ∑

j 6=i

∣∣aij
∣∣(i = 1, 2, · · · , n) holds. Therefore, one can obtain

∆k(t) > 0(k = 1, 2, · · · , n). This suggests that tI + A is positive definite. �

3. System Description and the Hidden Attractors

Recalling the famous HR neuron model [40], it is described as
.
x = y− ax3 + bx2 − z + Iext.
y = c− dx2 − y
.
z = r(S(x + x0)− z)

(6)

where x, y, and z are system variables representing the membrane potential, recovery
variable, and adaption current, respectively. Other symbols, including a, b, c, d, r, S, x0,
Iext are system parameters with x0 representing resting potential, Iext an external forcing
current, a, b describing the rate of membrane potential change, c, d being utilized to keep the
adaption current in voltage-clamp conditions, and r and S relating to a short depolarizing
current characterizing the change in adaption current.

For the external forcing current Iext, dynamics of the HR neuron model with direct
current have been widely discussed [41–44]. In neuroscience, some noninvasive transcra-
nial stimulation can generate various currents affecting the electricity activity of neurons.
Meanwhile, with the gradual deepening of research on neuron models, it is found that the
classical HR neuron model is subject to some restrictions in exploring complex characteris-
tic of neurons. Based on this, an extended HR neuron model is attained by substituting
Iext = mxtanh(ϕ) in (6) and is written as

.
x = y− ax3 + bx2 − z + mxtanh(ϕ)
.
y = c− dx2 − y
.
z = r(S(x + x0)− z)
.
ϕ = −kx

(7)

where variable ϕ enters to express exchange of calcium ions.
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According to Definition 1, the corresponding fractional-order extended HR neuron
model in terms of the Caputo definition can be given as

Dqx = y− ax3 + bx2 − z + mxtanh(ϕ)
Dqy = c− dx2 − y
Dqz = r(S(x + x0)− z)
Dq ϕ = −kx

(8)

Let y − ax3 + bx2 − z + mxtanh(ϕ) = 0, c − dx2 − y = 0, r(S(x + x0) − z) = 0,
−kx = 0, it is known that, when k 6= 0, if and only if Sx0 = c, the equilibrium point of
System (8) can be obtained as (0, c, c, ϕ0) with ϕ0 being any real number. In this situation,
there are infinitely many equilibrium points for System (8). The stability of the equilibrium
point (0, c, c, ϕ0) is closely dependent on the eigenvalues of

J =


−3ax2 + 2bx + mtanh(ϕ) 1 −1 mx sec h2(ϕ)

−2dx −1 0 0
rS 0 −r 0
−k 0 0 0


Which is the corresponding Jacobian matrix of System (8). While the eigenvalues are closely
related to the value of ϕ0, therefore, for this condition, the stability of the equilibrium point
(0, c, c, ϕ0) is very complex and will be discussed in another work.

Obviously, for non-zero values of a, b, c, d, r, S, x0, m, and k, with Sx0 6= c, System (8)
has no equilibrium point. In the following discussion, we choose a = 1.0, b = 3.0,
c = 1.0, d = 5.0, r = 0.006, S = 4.0, x0 = 0.6, m = 0.9, k = 0.1, fractional-order
q changing from 0.6 to 0.378, dynamics of System (8) are calculated via the Bashforth–
Moulton predictor-corrector algorithm and given in Figures 1–4, from which it can be
determined that System (8) appears to have various hidden attractors with different values
of order q. It suggests that System (8) is provided with hidden dynamics of period-doubling
bifurcation leading to chaos with q decreasing from 0.6 to 0.378.
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Figure 1. Hidden period-1 attractor of System (8) when q = 0.6: (a) time evolution of variable x;
(b) phase portrait in 3D space.
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Figure 2. Hidden period-2 attractor of system (8) when q = 0.39: (a) time evolution of variable x;
(b) phase portrait in 3D space.
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Figure 4. Hidden chaotic attractor of System (8) when q = 0.378: (a) time evolution of variable x;
(b) phase portrait in 3D space.

Furthermore, we select a = 1.0, b = 3.0, c = 1.0, d = 5.0, r = 0.006, S = 4.0, x0 = 0.6,
m = 0.2, q = 0.6; with different values of k, dynamics of System (8) are computed for
k = 0.2 and k = 0.1, which are drawn in Figure 5 (hidden periodic-1 attractor) and Figure 6
(hidden multi-periodic attractor), respectively. As shown in Figures 5 and 6, different
hidden attractors can also be induced by the alteration of parameter k.
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x; (b) phase portrait in 3D space.

From Figures 1–6 one conclusion can be drawn that System (8) appears to have
complex hidden dynamics. By choosing suitable system parameters, certain dynamical
phenomenon of neuron System (8) can be achieved.

4. Hybrid Projective Synchronization of Fractional-Order Extended HR Neurons
4.1. Hybrid Projective Synchronization Schemes

In this section, hybrid projective synchronization schemes are mainly investigated via
designing effective controllers. To this end, the master system is taken as

Dqx1 = y1 − ax3
1 + bx2

1 − z1 + mx1tanh(ϕ1)
Dqy1 = c− dx2

1 − y1
Dqz1 = r(S(x1 + 0.6)− z1)
Dq ϕ1 = −kx1

(9)

and the corresponding slave system with controllers is given as
Dqx2 = y2 − ax3

2 + bx2
2 − z2 + mx2tanh(ϕ2) + u1

Dqy2 = c− dx2
2 − y2 + u2

Dqz2 = r(S(x2 + 0.6)− z2) + u3
Dq ϕ2 = −kx2 + u4

(10)

with controllers u1, u2, u3, and u4 to be determined.
By constructing the controllers, hybrid projective synchronizations can be realized and

main results are given as the following theorems.
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Theorem 1. Define the error system between (9) and (10) as
e1 = x2 − α1x1
e2 = y2 − α2y1
e3 = z2 − α3z1
e4 = ϕ2 − α4 ϕ1

(11)

whereαi(i = 1, 2, 3, 4)are positive values, which are called projection factors. If controllers in
response System (10) are chosen as 

u1 = − f1 − k1e1
u2 = − f2 − k2e2
u3 = − f3 − k3e3
u4 = − f4 − k4e4

(12)

where
f1 = α2y1 + bx2

2 − ax3
2 − α3z1 + mx2tanh(ϕ2)

−α1(y1 + bx2
1 − ax3

1 − z1 + mx1tanh(ϕ1))

f2 = c− dx2
2 − α2(c− dx2

1)

f3 = rSα1x1 + 0.6rS− rSα3x1 − 0.6rSα3

f4 = k(α4 − α1)x1

Then, for suitable values of k1, k2, k3, and k4, error System (11) will be stable at zero. Essentially, a
kind of hybrid projective synchronization can be realized.

Proof. Finding the q order derivative of (11) with respect to time t can yield
Dqe1 = e2 − e3 + f1 + u1
Dqe2 = −e2 + f2 + u2
Dqe3 = rSe1 − re3 + f3 + u3
Dqe4 = −ke1 + f4 + u4

(13)

Substituting (12) into (13), we can gain
Dqe1 = e2 − e3 − k1e1
Dqe2 = −e2 − k2e2
Dqe3 = rSe1 − re3 − k3e3
Dqe4 = −ke1 − k4e4

(14)

Therefore, denoting E = (e1, e2, e3, e4)
T , one has

ET DqE = e1(e2 − e3 − k1e1) + e2(−e2 − k2e2) + e3(rSe1 − re3 − k3e3) + e4(−ke1 − k4e4)
= −k1e2

1 + e1e2 + (rS− 1)e1e3 − ke1e4 − (1 + k2)e2
2 − (r + k3)e2

3 − k4e2
4

= −ET PE

where

P =


k1 − 1

2
1−rS

2
k
2

− 1
2 1 + k2 0 0

1−rS
2 0 r + k3 0
k
2 0 0 k4

 (15)

According to Lemma 3, for large enough values of k1, k2, k3, k4, and P is a positive
definite matrix. This means that ET DqE ≤ 0. In light of Lemma 2, error System (11) is
stable at zero, which indicates that the above-mentioned hybrid projective synchronization
of Systems (10) and (9) is achieved with projection factors αi (i = 1, 2, 3, 4). Theorem 1 is
proved. �
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Likewise, the controllers (12) in Theorem 1 can be generalized to more general case
and the corresponding results are depicted as following Theorems 2 and 3. Since the proof
processes of them are similar to Theorem 1, the proof of Theorems 2 and 3 is omitted here
and only the results are given.

Theorem 2. Define the error system between Systems (10) and (9) as
e1 = x2 − α1x1
e2 = y2 − α2y1
e3 = z2 − α3z1
e4 = ϕ2 − α4(x1 + y1 + z1)

(16)

if controllers in response System (10) are chosen as
u1 = − f1 − k1e1
u2 = − f2 − k2e2
u3 = − f3 − k3e3
u4 = − f5 − k4e4

(17)

where

f1 = α2y1 + bx2
2 − ax3

2 − α3z1 + mx2tanh(ϕ2)−α1(y1 + bx2
1 − ax3

1 − z1 + mx1tanh(ϕ1))

f2 = c− dx2
2 − α2(c− dx2

1)

f3 = rSα1x1 + 0.6rS− rSα3x1 − 0.6rSα3

f5 = kα1x1 − α4[−ax3
1 + (b− d)x2

1 + (rS− k)x1−(1 + r)z1 + mx1tanh(ϕ1) + c + 0.6rS]

Then, for appropriate values of k1, k2, k3, k4 error System (16) will stabilize to zero. That is,
another kind of hybrid projective synchronization between the two systems can be achieved.

Theorem 3. Define

(e1, e2, e3, e4)
T = (x2, y2, z2, ϕ2)

T − (Ψ1, Ψ2, Ψ3, Ψ4)
T (18)

where 
Ψ1 = c11x1 + c12y1 + c13z1 + c14 ϕ1
Ψ2 = c21x1 + c22y1 + c23z1 + c24 ϕ1
Ψ3 = c31x1 + c32y1 + c33z1 + c34 ϕ1
Ψ4 = c41x1 + c42y1 + c43z1 + c44 ϕ1

(19)

if controllers in response System (10) are designed as
u1 = −k1e1 + c11Dqx1 + c12Dqy1 + c13Dqz1 + c14Dq ϕ1 − Dqx2
u2 = −k2e2 + c21Dqx1 + c22Dqy1 + c23Dqz1 + c24Dq ϕ1 − Dqy2
u3 = −k3e3 + c31Dqx1 + c32Dqy1 + c33Dqz1 + c34Dq ϕ1 − Dqz2
u4 = −k4e4 + c41Dqx1 + c42Dqy1 + c43Dqz1 + c44Dq ϕ1 − Dq ϕ2

(20)

Then, for proper values of k1, k2, k3, k4, the solution of error System (18) will converge to zero. That
is, a kind of more general hybrid projective synchronization can be obtained between Systems (9) and (10).

4.2. Numerical Simulation Verification

To test the results in the above theorems, numerical simulations are conducted using
the Adams–Bashforth–Moulton predictor–corrector algorithm in the MATLAB program.
In the following simulations, system parameters are chosen as a = 1.0, b = 3.0, c = 1.0,
d = 5.0, r = 0.006, S = 4.0, m = 0.9, k = 0.1. k1 = k2 = k3 = k4 = 0.2, q = 0.378.
Initial values of the master system and slave system are selected as (−2,−3,−6, 2) and
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(1,−2, 1, 0), respectively. The evolution of errors (11) with controllers (12) in Theorem 1 can
be calculated with projection factors α1 = 0.5, α2 = 1.5, α3 = 2, α4 = 5 and are drawn in
Figure 7. As indicated in Figure 7, the error System (11) will be stable at zero over time t.
That is, the hybrid projective synchronization mentioned in Theorem 1 can be achieved.
Figure 8 confirms this result. The curves of error System (16) with controllers (17) are
described in Figure 9 with α1 = 0.5, α2 = 1.5, α3 = 2, α4 = 1, which means that error
System (16) tends to zero as time changes. That is to say, the kind of hybrid projective
synchronization mentioned in Theorem 2 can be realized. Figure 10 tests the result in
Figure 9. For Theorem 3, projection factor matrix C = (cij)(i = 1, 2, 3, 4; j = 1, 2, 3, 4) is
taken as

C =


1 2 3 1
2 1 2 3
2 1 1 1
3 1 1 1

 (21)

Figure 11 depicts the time series of error System (18) with controllers (20) and Figure 12
presents the synchronization status of variables in Theorem 3.
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Figure 10. Synchronization status of variables with projection factors α1 = 0.5, α2 = 1.5, α3 = 2,
α4 = 1 in Theorem 2. (a) Synchronization state between variables x1 and x2 with α1 = 0.5; (b) Syn-
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Axioms 2023, 11, x FOR PEER REVIEW 13 of 16 
 

  

Figure 10. Synchronization status of variables with projection factors 
1

0.5 = ,
2

1.5 = ,
3

2 = ,

4
1 =  in Theorem 2. (a) Synchronization state between variables 

1x  
and 

2x  with 
1

0.5 = ; 

(b) Synchronization state between variables 
1y  

and 
2y  with 

2
1.5 = ; (c) Synchronization 

state between variables 
1z  

and 
2z  with 

3
2 = ; (d) Synchronization state between variables 

1 1 1x y z+ +
 
and 

2  with 
4

1 = . 

 

Figure 11. Evolution curve of error System (18) with projection factor matrix C  for Theorem 3. 

 

Figure 11. Evolution curve of error System (18) with projection factor matrix C for Theorem 3.

Axioms 2023, 11, x FOR PEER REVIEW 13 of 16 
 

  

Figure 10. Synchronization status of variables with projection factors 
1

0.5 = ,
2

1.5 = ,
3

2 = ,

4
1 =  in Theorem 2. (a) Synchronization state between variables 

1x  
and 

2x  with 
1

0.5 = ; 

(b) Synchronization state between variables 
1y  

and 
2y  with 

2
1.5 = ; (c) Synchronization 

state between variables 
1z  

and 
2z  with 

3
2 = ; (d) Synchronization state between variables 

1 1 1x y z+ +
 

and 
2  with 

4
1 = . 

 

Figure 11. Evolution curve of error System (18) with projection factor matrix C  for Theorem 3. 

 

Figure 12. Synchronization status of variables with projection factor matrix (21) for Theorem 3.
(a) Synchronization state between variables Ψ1 and x2 with projection coefficient (1, 2, 3, 1); (b) Syn-
chronization state between variables Ψ2 and y2 with projection coefficient (2, 1, 2, 3); (c) Synchroniza-
tion state between variables Ψ3 and z2 with projection coefficient (2, 1, 1, 1); (d) Synchronization state
between variables Ψ4 and ϕ2 with projection coefficient (3, 1, 1, 1).
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Figures 7–12 suggest that different kinds of hybrid projective synchronizations can be
realized by designing suitable controllers.

5. Conclusions

In this work, based on the classical Hindmarsh—Rose neuron model with three
variables, considering the variety of external stimulation current induced by noninvasive or
minimally invasive surgery, a fractional-order extended HR neuron model is constructed.
Numerical simulations indicates that the proposed model appears to show firing patterns
similar to HR neurons. This means that the addressed model can be regarded as a kind
of neuron model, namely the fractional-order extended HR neuron model. Then, some
dynamical behaviors of the fractional-order extended HR neuron model are investigated
and the main results can be depicted as follows.

(1) The fractional-order extended Hindmarsh–Rose neuron has various hidden attractors
with the change in system parameter or the order of fractional-order neuron models,
such as period-1, period-2, period-4, chaotic, and multi-periodic attractors. Especially,
the dynamics appear to have a phenomenon of period-doubling bifurcation leading
to chaos with the decrease in order q. Compared with the traditional self-excited
attractor, research into hidden attractors of neuron systems is of great significance for
understanding the complexity of dynamical behavior of neuron systems and revealing
the mechanisms of neurological disorder.

(2) Three kinds of hybrid projective synchronization schemes are given by designing suit-
able controllers. In addition, the efficiency and feasibleness of the proposed schemes
are verified via theoretical analysis and numerical simulation. According to the re-
sults, the addressed synchronization method is suitable for both simple projection
factors and more complex projection factors. Compared with many kinds of chaos
synchronization, projective synchronization is one of the most noticeable types of
synchronization. This is because different state variables of projective synchronization
synchronize to a scaling factor. This scaling feature can be used to extend binary
numbers to m-decimal numbers for faster transmission in secure communications.
Hybrid projective synchronization in our work can further improve the security of
secure communications because of the adjustability of scaling factors and synchro-
nization variables.

(3) By utilizing a proper hybrid projective synchronization scheme and designing a
projection factor, system variables can synchronize various variables or a combination
of several different variables. That is to say, the dynamics of fractional-order extended
Hindmarsh–Rose neurons can be controlled to the given status effectively. This result
has potential applications in terms of the functional integration of neurons and is
helpful for exploring the integration mechanism of neurons. For example, different
properties of objects can be unified and presented as a whole after being processed in
specific visual areas of the brain. This means that various neurons’ function can be
integrated by realizing the hybrid projective synchronization.

After decades of development, neuroscience is moving toward applications and has
been used in various fields. Neural computing science will promote the development of
related disciplines, especially in the emerging high-tech field, such as nanotechnology,
bioinformatics, life sciences, information encryption. Meanwhile, the development of
neuroscience is helpful for the diagnosis and treatment of neurological disorders.

As we all know, the nervous system consists of a large number and diversity of
neurons with different biological functions. However, most neuron models consider only a
single biological function and the external stimulus is often taken as a simple equivalent
current. In the actual nervous system, many neurons may have various functions and are
also stimulated by a variety of stimulus. Stimuli of light, sound, or mechanical stress can
be considered when designing intelligent neuron sensors and processors, which gives new
insights and guidance for exploring neurodynamics.
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