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Abstract: The papers using fuzzy logic have generated continuous improvements for applications,
and an example of this is the use of generalized type 2 fuzzy systems in real-world problems. The
key idea of this paper is to present a generalized type 2 fuzzy system for augmenting differential
evolution with dynamic parameter variation in order to enhance its performance and convergence. A
generalized type 2 Sugeno controller was implemented with the aim of enhancing the trajectory of a
robot, and an analysis of the execution time and the errors obtained by ITAE, IAE, ITSE, ISEV, RMSE,
and MSE is presented. In addition, a comparison with different levels of disturbance applied to the
controller was performed with the goal of demonstrating the efficiency of a type 2 fuzzy system.
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1. Introduction

In our day-to-day life, we are faced with situations where we have to make decisions
under uncertainty. Fuzzy logic offers a reasoning method that resembles human reasoning
that can help manage these situations. This approach is similar to how humans perform
decision-making and some current relevant related works are mentioned as follows.

In the energy sector, fuzzy logic plays a vital role in predicting and controlling the
performance delivered by energy conversion systems [1]. To increase the packet arrival rate
and reduce the end-to-end delay, an intelligent multi-attribute routing scheme is proposed
by employing fuzzy logic and design a technique of order preference by similarity to ideal
solutions (TOPSIS) algorithm [2]. Another article presents a comprehensive review of
almost all existing applications of fuzzy logic in the drying technology to solve problems
of nonlinear modeling, simulation, pattern recognition, clustering, classification, control,
and optimization [3]. A book considered for this paper reviewed the basic concepts of
type 2 fuzzy systems and then described the proposed definitions for interval type 3 fuzzy
sets and relations, as well as inference in interval type 3 systems [4]. Another important
book that was taken into account presented the recent developments in fuzzy logic, neural
networks, and optimization algorithms, as well as their hybrid combinations for solving
complex problems [5].

Fuzzy theory and fuzzy systems have made significant progress in many applications
since their inception. Fuzzy logic is becoming an extremely suitable and satisfactory tool
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for the development of real-time applicable expert systems in the medical science; see, for
example, a paper presenting the diversity of works on fuzzy logic to identify the risk of
various diseases and also revealing a model for the direct service of patients from old age
homes to intensive care units (ICU) through ambulance services [6]. A fuzzy logic-based
optimal network system for the delivery of medical goods via drones and land transport in
remote areas is presented in [7]. There are several hybrid algorithms, such as neuro-fuzzy
systems, or adaptive genetic algorithms with fuzzy logic models that have been previously
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deployed for developing a clinical decision support system for oncological, psychiatric,
and cardiac-based diseases. This work highlights the potential of fuzzy logic systems and
their hybrid intelligent models to develop support systems for various types of cancer,
including their limitations and future prospects [8]. The combination of the hydraulic
hybrid vehicle (HHV) architecture with optimum fuzzy logic control can result in reducing
the level of emissions, as presented in [9]. Finally, we can mention the use of fuzzy logic in
the problems of test control of a bypass turbojet engine gas generator [10].

In the field of engineering, numerous industrial applications of fuzzy logic have
achieved good results. Control is a very common concept and is widely used by many
people in everyday life. The term is usually used to refer to the interaction between man
and the environment, more specifically to man—-machine interaction. The fuzzy logic
augmentation of control systems gives rise to what we call fuzzy controllers. Within control
systems, there are two large areas, modeling or identification and control itself or direct
control, and some works of interest (related to the work presented in this paper) cover the
interval type 2 fuzzy model subject to nonperiodic denial of service (DoS) attacks [11], a
fuzzy logic control strategy for a four-wheel independent-drive electric vehicle [12], a type 1
and type 2 fuzzy-based harmony search applied to a two-tank level control and a DC motor
angular position control [13]; a classical PID controller and a fuzzy PID were developed
for a photovoltaic system in [14]; a solution to the control problem for a class of multiple-
input-multiple-output (MIMO) underactuated systems subject to plant uncertainties and
actuator dead zones was presented in [15].

The goal of making a system follow desired reference signals is one of the fundamental
problems in the control area. Therefore, it is a subject that has been studied by many
researchers and to resolve which different methods have been designed.

In the last decade, there has been sustained growth in the field of metaheuristics for search
and optimization. Such methods, due to their capability of finding very-close-to-optimal
solutions within a reasonable period, have started to be used to solve different engineering
problems; an example of these methods is the differential evolution (DE) algorithm.

For this work, general type 2 fuzzy systems were used, which are an alternative to
traditional (type 1) fuzzy systems where type 2 can really handle uncertainty. There are
currently numerous works that use general type 2 fuzzy systems in different areas, and we
mention some of the works that are considered novel and important for our work.

General type 2 fuzzy logic systems (GT2 FLSs) provide a more flexible way of over-
coming an uncertain lack of uniformity in different applications. Centroid-type reduction
is one of the major components of GT2 FLSs, and it is currently one of the key factors
restricting the GT2 FLS efficiency for real-time solutions [16]. A study on weight-based
discrete noniterative algorithms for computing the centroids of general type 2 fuzzy sets is
presented in [17]. The design of discrete noniterative algorithms for the center-of-sets-type
reduction of general type 2 fuzzy logic systems can be found in [18]. A unified general type
2 fuzzy PID (UGT2-FPID) controller using the upper and lower bounds of one x-plane is
proposed in [19]. The UGT2-FPID controller contains another two adjustment parameters,
and the analytical structure of a UGT2-FPID controller is obtained by adapting an input
combination method [19]. The application of general type 2 fuzzy systems in the dynamic
adjustment of the parameters of a recent nature-based metaheuristic that follows the rules
of feeding strategies of predators and prey in ecosystems is found in [20]. A medical
diagnosis application using type 2 fuzzy logic and the Ant Lion Optimizer to classify blood
pressure levels is shown in [21]. One of the most studied application areas of intelligent
systems is the classification area, and this is because classification covers a wide range
of real-world problems. Some examples are fault diagnosis, image segmentation, and
medical diagnosis, among others. In most cases, the intelligent systems designed for the
solution of this kind of problems are based on supervised learning, which is based on
learning how to classify with previous datasets for finding relations between the inputs
and outputs [22] and improving the differential evolution algorithm with the utilization of
shadowed and general type 2 fuzzy systems to dynamically adapt one of the parameters of
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the evolutionary method [23]. As a difference from previous works, the contribution of this
paper is the use of general type 2 fuzzy systems for parameter adaptation in differential
evolution and its application to design a Sugeno controller.

This work comprises the following sections: In Section 2, the general type 2 fuzzy
systems theory is reviewed. Section 3 summarizes the differential evolution terminology.
Section 4 describes a parametric general type 2 fuzzy model. Section 5 comprises the
experimentation, and in Section 6, the conclusions are outlined.

2. General Type 2 Fuzzy Sets

A general type 2 fuzzy system (GT2FS) allows uncertainty to be modeled more effi-
ciently [24]. Equation (1) postulates a generalized (or general) type 2 fuzzy set:

A= {(x,u), pi(x,u)|Ve € X, Vy€ € [0,1]} 1)

where X is the universe for the primary variable of A, x. The 3D membership function is
usually denoted by y ;7 (x,u), where x € Xandu € U C [0,1]and 0 < pz(x,u) < 1is
continuous, and it can be expressed as Equation (2):

A= {/xex /ue[o,l] ‘ug(x,u)/(X,u)} @

where f f denotes the union over all admissible x and u. For discrete universes of discourse,
A can be denoted by Equation (3):

Av = {ZxGXZuG[Oll] ,lig(x,u)/(x,u)} (3)

In Equations (1)-(3), u is called the secondary variable, and has the domain U = [0, 1],
where x € X. When p 3(x,u) for Vy € X and V,, € U, then A is called an interval type 2
fuzzy set (IT2 FS).

At each point of x, e.g., x = «/, the 2D plane whose axes are u and y g(x, u) is called a
vertical slice of i ;(x, u). A secondary membership function is a vertical slice of p 7 (x, u) by
Equation (4):

pale =) = () = [ S/ @

where J, is the subset of U that is the support of y ;(x") and is called the primary mem-
bership of A. The amplitude of the secondary membership function fy(u) is called the
secondary grade or the secondary set.

The two-dimensional support of y (x, u) is called the footprint of uncertainty (FOU)

of A by Equation (5):
FOU(A) = {(x,u) € X x [0,1] |pz(x,u) >0} (5)

FOU(A) can also be expressed as the union of all primary memberships expressed in
Equation (6): N
FOU(A) = UxGX];[ (6)
An -plane for the GT2FS A denoted by A, represented by Equation (7) is the union of
all primary membership functions of A whose secondary grades are greater than or equal
to a (0 < o« < 1). For performing the inference in the GT2FS, the «-planes representation
was used.

A= (), uzlomw) zaleexn Vuevy SO} = [ [ (Colfiln) 2} @)
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The union of all a-planes is presented in Equation (8), where Rj is one horizontal
slice at level «: B
Ax = Uxeo )Ry, 8

The structure of rules in a GT2FS is represented for a type 2 fuzzy system with p inputs
x1 € Xq,...,xp € Xp and one output y € Y, multiple input, single output, if we assume
there are M rules and the kth rule in the GT2FS, as described in Equation (9):

RF:IF xyis Ff and ...x, is Fy, THEN y is G* ©)

The centroid defuzzification process in a GT2FS is expressed in Equation (10), the
centroid of the GT2FS A can be obtained by taking the union of the centroids of all the
x-planes of ﬁ, and then the Karnik-Mendel algorithm can be used for computing the
centroid of each -plane, where [ox, o, | is the domain of the centroid:

Ye(x) = Centroid (A (=) = [ LN xipta(xi)

= /|0, &, | (10)
U1 €%Jxy -/MNGEX]XN Z{il ,uA(xi> [ . y]

The general type 2 fuzzy inference is approximated using «-planes; for each a-plane,
a centroid-type reducer is applied with Equation (10); after that, the results of the a-planes
are integrated by Equations (11) and (12). Finally, the defuzzifier output is obtained by
using the average of ' and y" as presented in Equation (13):

Zil\il o yl'(x/)

N AN ! ]

9;(x') TN o (11)
Zilil °<;xi y]’-(x’)

) (x)=—"— T~ 12

Y; (x ) Zf\il ; (12)
ALl AT (!

W )+ i)
9i(') = 51— (13)

3. DE Algorithm

This DE [25] is a direct stochastic parallel-search metaheuristic technique of opti-
mization based on the populations of numerical vectors. Among the most outstanding
advantages of this algorithm are simplicity, efficiency, local search property, and speed. The
process undertaken by DE to solve an optimization problem is characterized by iterations
on a population of vectors to evolve possible solutions based on a fitness function [26-32].

The process of an evolutionary algorithm is made up of the following components:
(1) presentation of solutions to the problem; an evaluation function to obtain the fitness or
survivability of individuals; (3) initialization of the initial population; (4) selection processes;
(5) variation and replacement operators.

The mathematical structure of the DE algorithm is represented by the Equations below.

3.1. Population Structure (NP)

DE’s most versatile implementation maintains a pair of vector populations, both of
which contain Np D-dimensional vectors of real-valued parameters. The current population,
symbolized by Py, is composed of those vectors x; , that have already been found to be
acceptable either as initial points or by comparison with other vectors:

Pyg = (xi,g), i=012...,Np—1, ¢=0,1,2,..., Qmax, (14)

Yig = (¥jig), j=012,...,D~1 (15)

Indices start with 0 to simplify working with arrays and modular arithmetics. The
index, g=0,1, ..., gmax, indicates the generation to which the vector belongs. In addition,
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each vector is assigned a population index i, which runs from 0 to N, _1. Parameters within
vectors are indexed with j, which runs from 0 to D — 1. Once initialized, DE mutates
randomly chosen vectors to produce an intermediary population P, ; of Np mutant vectors

U,"gt
Pog=(vig),i=0,1,2,..., Np—1, g=0,1,2,..., max, (16)

Vig = (U]‘,j,g)/ j:O,l,Z,... ,D—1 (17)

Each vector in the current population is recombined with a mutant vector to produce
a trial population Pu of Np, mutant vector u; ¢:

Pug = (tig), i=0,1,2,.., Np—1, §=0,1,2,..., Sumax, (18)

uig = (ujiq), 1=0,1,2,... ,D—1 (19)

where:

Px = current population;

i = index population;

Zmax = maximum number of iterations;

j = parameters within the vector.

During recombination, trial vectors overwrite the mutant population, so a single array
can hold both populations.

3.2. Initialization

Before the population can be initialized, both upper and lower bounds for each
parameter must be specified. These 2D values can be collected into two D-dimensional
injtialization vectors b, and by, for which subscripts | and (; indicate the lower and upper
bounds, respectively. Once initialization bounds have been specified, a random number
generator assigns each parameter of every vector a value from within the prescribed range.
For example, the initial value (g = 0) of the " parameter of the i vector is

Xji0 = rand]-(O, 1)‘ (b]',u — b]',L) + b',L (20)

The random number generator rand;(0,1) returns a uniformly distributed random
number from within the range (0,1), i.e., 0 < rand;(0,1) < 1. The subscript j indicates that
a new random value is generated for each parameter. Even if a variable is discrete or
integral, it should be initialized with a real value since DE internally treats all variables as
floating-point values regardless of their type.

3.3. Mutation (F)

In particular, the differential mutation uses a random sample equation to combine
three different vectors chosen randomly and, in this way, create a mutant vector:

Vig = Xrog + F- (%6 — Xrp¢) (21)

The scale factor F € (0,1) is a positive real number that controls the rate at which the
population evolves.

3.4. Crossover (CR)

To complement the differential mutation search strategy, DE also uses uniform crossover.
Sometimes this is known as discrete recombination. In particular, DE crosses each vector
with a mutant vector as indicated by the following expression:

. Juiig{vjig if (rand;(0,1) < Cror j = jrana)
Ujg = Ujig (22)
Xiig otherwise
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3.5. Selection

If the test vector u; ¢ has a value for the objective function equal to or less than its
target vector x;, then it replaces the target vector in the next generation; otherwise, the
target retains its place in the population for at least another generation:

Xig+1 = {uig if fuig) < f(Xig) Xiq otherwise (23)

The process of mutation, recombination and selection are repeated until the optimum
is found, or a pre-specified terminating criterion is satisfied.

The process of mutation, recombination, and selection is repeated until the optimum
is found or termination of the pre-criteria specified is satisfied. DE is a simple but powerful
search engine that simulates natural evolution combined with a mechanism to generate
multiple search directions based on the distribution of solutions in the current population.
Each vector i in the population at generation G x; ¢ called at this moment of reproduction
as the target vector will be able to generate one offspring called trial vector (u;). This trial
vector is generated as follows: First of all, a search direction is defined by calculating the
difference between a pair of vectors rg and r; called “differential vectors”, both chosen at
random from the population. This difference vector is also scaled by using a user defined
parameter F > 0. This scaled difference vector is then added to a third vector r; called the
base vector. As a result, a new vector is obtained, known as the mutation vector. After that,
this mutation vector is recombined with the target vector (also called the parent vector)
by using discrete recombination (usually binomial crossover) controlled by a crossover
parameter 0 < CR < 1 whose value determines how similar the trial vector will be with
respect to the target vector.

Algorithm 1 illustrates the pseudocode of the original DE algorithm.

Algorithm 1. DE algorithm.

Generate the initial population of individuals
Do
For each individual j in the population
Choose three numbers x1,x, and x3 thatis, 1 < xg, x1, xp < N withxg # x; #xp #j
Generate a random integer i,,,,; € (1, N)
For each parameter i
Calculate generation and diversity using Equations (4) and (5)
Use a fuzzy system to calculate the new Mutation and Crossover parameters

Vig = Xn,g +F (¥ri,g = Xrpg)

b {Uj,i,g if (mndj(O,l) <Crorj= jmnd)
ig = Ujig
x]’,i,g otherwise
End For
Replace x;,; o with the child u; ¢ if u; ¢ is better
End For
Until the termination condition is achieved

4. Parametric Generalized Type 2 Fuzzy Model

Differential evolution has been used in different studies. For example, previous
studies were carried out, where the differential evolution algorithm was combined with
type 1 fuzzy logic, interval type 2 fuzzy logic, and generalized type 2 fuzzy logic, using
benchmark functions and control problems. This has been performed in different ways for
the differential evolution algorithm, where the mutation (F) and crossover (CR) parameters
are made dynamic in a single fuzzy system, and in other works, they were implemented
separately [33-36]. Based on these works, we can find that the F parameter is the one with
more impact on the performance of DE.
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The F parameter is fixed across generations in the traditional DE algorithm; therefore,
the main contribution of this article is to use the theory of a generalized type 2 fuzzy
inference system to dynamically adapt this parameter as generations progress. The pro-
posed method is called a generalized type 2 system in a differential evolution algorithm
(GT2FDE) in order to control its exploitation phase. Then, the GT2FDE algorithm is utilized
to enhance the performance of a Sugeno generalized type 2 controller. Figure 1 represents
the diagram of the proposal.

The fuzzy system is constructed with one antecedent, which is the percentage of
generations, which is calculated with Equation (24), and one consequent, which is the F
parameter value calculated with Equation (25):

Current generation
Maximum number of generations

Yila #i (Fi)
Yilnf
where mutation is F; rr is the number of rules of the fuzzy system corresponding to F; Fy; is
the consequent result for rule i corresponding to F; uf is the membership function of rule i

corresponding to F.

Algorithm 2 illustrates the pseudocode of the proposed GT2FDE algorithm.

The differential evolution algorithm (DE) is based on the maximum number of genera-
tions searches for a desirable solution in most of the search process so that the algorithm can
maintain infeasible solutions and thus avoid getting stuck in some feasible local optima.

Equation (26) shows the parametrization of a primary triangular generalized type 2
membership function with a Gaussian secondary membership function (trigausstype2); the
a1, b1, and c¢; parameters are for the upper MFs, and a5, by, and c; are for the lower MFs:

Generations =

(24)

F= (25)

u(x, u) = trigausstype2(x, u, [ay, by, c1, a2, b2, ¢2,p])

u(x,u) = exp [—% (”p")z] , where

Oy
p1(x) = max (min(lj‘l*_‘;ll, Ccll:bxl),o) and
pa(x) = max(min( £=2, 255 ,0)
max(p(x), pa(x)) Vx & (b1,02)
) = 1 Vx e (b1,h2) 26)

H(x) = min(py (x), p2(x))
px = max (min(é:“ﬂi, f;:gi),O),

where a, = 432 b, = bl;bz, o = 932

6 =H(x) — p(x)
_ 1+p
oy = mé

where p is fraction of uncertainty of the support secondary MF and ¢ is the support of the
triangular or trapezoidal MFs.

The parameterization of the generalized type 2 membership functions (GT2MFs)
utilized in the method is illustrated in Table 1.

Table 1 summarizes the equations for building the GT2MFs of the antecedents and
consequents of the type 2 system.

The GT2FDE system is comprised of an antecedent that represents the generations
and a consequent that represents the F parameter, where both have the linguistic values of
low, medium, and high.
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The GT2FS responsible for adjusting the F parameter in the DE algorithm is a Mamdani
model with the following listed fuzzy rules:
R1: If generation is low, then F is high;
R2: If generation is medium, then F is medium;
R3: If generation is high, then F is low.

Ll L] O L] . O L] L] A L] L] A L] L] L] L] .
I'g Medium High 2 _ ,
o =, Low Medium High
5 &
. 5 Eus 0
bt (=]
| 1o TAYA
7 )
. | Start | - 3 T ] I
| I Generations F
LA N N N N N N N N N NN NN N N N ¥ XX N X N J LR X N N X N N X N N X N K N N N N N X N X N ¥ J
. = N z P .
. Yo :1-. ']
| % ‘. :
§o. S (o} I
. [ Differential | ' g, i L o
. (= 0 0 50
| Evolution I “1 - LE g ’E i
B 4 = N Z P
Algorithms | . z 11 i
N H N A
— . — . — 0.6
g | of [~]|
® 02 T
. é"'m . s0 .
i WE i

Figure 1. Diagram of the general proposal with general type 2 fuzzy systems for controlling a mobile
robot and a performance comparison with interval type 2 and type 1 fuzzy systems.

Algorithm 2. GT2FDE algorithm.

Generate the initial population of individuals
Do
For each individual j in the population
Choose three numbers x1, x, and x3 thatis, 1 < xg, x1, xp < N withxg # x; #xp #
Generate a random integer i,,,,4 € (1, N)
For each parameter i
Calculate generation using Equations (24)
Use a fuzzy system to calculate the new Mutation parameter using Equations (25)
Vig = ¥ro,g + F-(¥rg — %Xrq)

iiol i < =7
Ujo = uj,i,g{v]’l’g if (rand] (0'1) <Crorj ]mnd)

Xjig otherwise
End For
Replace x;; o with the child u; ¢ if u; ¢ is better
End For

Until the termination condition is achieved
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Table 1. GT2MFs for the antecedent and consequent variables.
Linguistic Variable Equation
— ; +0.5807 0.4193—
pa(x) = max (mm ( 00806+ 0.5807/ 0.4193+0.0§06)' 0) and

- i x10.4141 0.5859—x
po(x) = max (mm ( 0.0859+0.4141/ 0.5859—0.0859 ) ’ 0)

7(x) = {max(p1(x), ua(x)) vV x ¢ (—0.0868,0.0859) 1V x € (—0.0868,0.0859)
p(x) = min(py(x), p2(x))

Low px = max (min(lfx__’il"(, chx__lji) ,0), where
4. — —05807-04141 ; _ —0.0806-0.0859 . _ 04193+05859
x = 2 s Jx = 7 s Ox = 2
6 =p(x) = p(x)
— 1+
oy = zﬁ‘s +¢,
where p = 0.5
(x) = max (min 5200833 09167—x Y o) and
m 04167+0.0833/ 0.9167—04167 )
; —0.0833 1.083—
pa(x) = max (ml”(0.5]§3370.08331 1.0834.5%33)/0)
7i(x) = {max(py(x), pa(x)) V x ¢ (0.4167,0.5833) 1V x € (0.4167,0.5833)
p(x) = min(py(x), pa(x))
Medium px = max(min (=%, S5 ,0), where
4. — —0.0833+0.0833, ; _ 0.4167+05833 . _ 09167+1.083
x = 2 7 Ux = 2 s Cx = 2
6 =p(x) — p(x)
— 1t
oy = 2\/55 +¢
where p = 0.5
(x) = i x=042  142-x \ o) ind
Ha(X) = max{ min\ 595042+ 7422-0922 ) -V ) A
; —05886 _ _1588—
p2(x) = max (’”m (1.388—0.5886/ 1.588—1.388)/0)
Uu(x) = ymax(pur(x), uz(x X 922,1. x € (0.922,1.
1 pp(x), pa(x)) V x ¢ (0.922,1.088) 1V x € (0.922,1.088
H(x) = min(py(x), p2(x))
ngh X—0y Cx—X

px = max (mm (brux e=x ), 0), where
_ 0422405886 ; _ 0.92241.088 . ~_ 142241588
- rYx — 2 s Lx — 2
6 =p(x) —pu(x)

Lip
2\/55+s,

where p = 0.5

Ay

oy =

Figure 2 shows the surface of the GT2FS.

0.8
0.6 -
o3
0.4 -
0.2 4
0 0.5 1
Generation

Figure 2. Surface of the GT2FS.
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5. General Type 2 Fuzzy Controller

Recently, one of the most used control cases to test the efficiency of some method
has been that of trajectory-following of a mobile robot [37]. The mathematical model
of this robot can be found in [38,39]. In this article, the implementation of a general
type 2 controller was utilized to test the efficiency of the GT2FDE method, with the aim
of validating its performance. Figure 3 represents a graphical illustration of the mobile
robot model.

Yol

A J

X Xb

Figure 3. Illustration of the mobile robot model.
The operation of the robot model is determined by Equations (27) and (28):
M(q)0+C(gq,9)v+ Do = t+P(t) 27)

where

q= (xy, G)T is the vector of the configuration coordinates;

v = (v,)" is the vector of velocities;

T = (T9,72) is the vector of the torques applied to the wheels of the robot where 7; and
T, denote the torques of the right wheel and the left wheel, respectively;

P € R2?isthe uniformly bounded disturbance vector;

M(q) € R**2is the positive-definite inertia matrix;

C(q,9)9 is the vector of centripetal and Coriolis forces;

D € R*>*?is a diagonal positive-definite damping matrix.

The kinematic system is determined by Equation (28):

cosf 0
j= {sme o] m (28)
0 1

where (x,y) is the position in the X — Y (world) reference frame, 6 is the angle between the
heading direction and the x-axis, and v and w are the linear and angular velocities, respectively.
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Equation (29) shows the parametrization of a trapezoidal primary generalized type 2
MF with a Gaussian secondary MF (trapagausstype2): the aq, by, c1, and dq parameters are
for the upper MFs, and a3, by, ¢, and d; are for the lower MFs:

u(x, u) = trapagausstype2(x, u, (a1, by, c1,d1,a2,ba, c2, dz, &, p])

() —exp{ 3(2) ]

where
H1(x) = max (min(lj‘_f;l 1, ;f:;) ,0>
Ha(x) = max(min(lj‘2 2,1, 522 sz) ,0)
max(p1(x), p2(x)) ¥V x & (bl,c2)
)= 1 Vx e (b1,c2)

7 (29)
p(x) = min(a, min(p(x), p2(x)))

px = max( m(x—_‘zl,l,ﬁ) ,0),

where Ay = a1+u b b1+h2 Cl-é-Czl dx _ #
& =p(x) - ﬂ( )
oy = ;—\735"‘8

where p is the fraction of uncertainty of the support secondary membership function.

The general type 2 fuzzy controller (GT2FC) for this problem is a Sugeno system, and
it is made up of two antecedents, the linear error (LE) which is observed in Figure 4 and
the angular error (WE) which is observed in Figure 5, where the linguistic variables of the
antecedents are granulated into negative, zero, and positive linguistic values (N, Z, P). The
consequents of this controller consist of constant values, which are identified as torque 1
(T1), which is observed in Figure 6, and torque 2 (T2), which is observed in Figure 7.

The parameters for the GT2MF construction of antecedents are presented in Table 2.
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Figure 4. Antecedent of the GT2FC.
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Table 2. GT2MF antecedent parameters.

LE
GT2MF g b1 a dq ap b, c dy o o]
N —50 —50 —15 -5 —50 —50 -5 3 0.7 1
Z —10 -2 6 - -8 3 8 - - 2
P 0 5 50 50 5 10 50 50 0.7 1
WE
GT2MF a; b1 a dq ap b, c dy « P
N —50 —50 —15 -5 —50 —50 -5 3 0.7 1
Z —10 -2 6 - -8 3 8 - - 2
P 0 5 50 50 5 10 50 50 0.7 1

In the consequents, the values of the variables are constant: —50, 0, and 50 for N, Z,
and P, with the fuzzy rules presented as follows:

R1: If the LE is N and WE is N, then T1 is —50 and T2 is —50.
R2: If the LE is N and WE is Z, then T1 is —50 and T2 is 0.
R3: If the LE is N and WE is P, then T1 is —50 and T2 is 50.
R4: If the LE is Z and WE is N, then T1 is 0 and T2 is —50.
R5: If the LE is Z and WE is Z, then T1 is 0 and T2 is 0.

R6: If the LE is Z and WE is P, then T1 is 0 and T2 is 50.

R7: If the LE is P and WE is N, then T1 is 50 and T2 is —50.
R8: If the LE is P and WE is Z, then T1 is 50 and T2 is 0.

R9: If the LE is P and WE is P, then T1 is 50 and T2 is 50.

The plant model of the mobile robot used for the experimentation is shown in Figure 8.
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Figure 8. GT2FC of the mobile robot.

The GT2FDE method was used to test the efficiency of the general type 2 fuzzy controller.
The configuration of the GT2FDE algorithm parameters used in the experimentation are as
follows: CR parameter at 0.5, population of 45, number of simulations is 30, 100 generations.

To test the performance index of the GT2FC controller, simulations were performed
without disturbances and with disturbances in the controller. The following Table 3 indi-
cates the types of disturbances and the configurations of the used parameters.
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Table 3. Types of disturbances applied to the controller.

Configuration of the

Disturbance Number Type of Disturbance
Parameters
1 Uniform random number 0.05
2 Band-limited white 0.1
3 Pulse-generated 1,1,5,and 0

The performance index used for the simulations are those presented in the following
Equations (30)—(35):

ITAE = 3 t(x(t) — £(1)) (30)
t=1
N
HSE:Z}«ﬂQ—xmf) (31)
t=1
N
IAE =Y |x(t) — £(t)] (32)
t=1
N 2
ISE=) [(x(t) — 2(t))"| (33)
t=1
1 Y )
RMSE = erxm—xg (34)
t=1
_1y \2
MSE = — ) (Y; = Y;) (35)

i=1
Table 4 summarizes the simulations without applying disturbance to the GT2FC, LE
and WE DE both use a fixed value of F of 0.5 and a GT2FC.

Table 4. Performance index results without disturbance.

Performance LE WE LE WE
Index DE DE GT2FC GT2FC
ITAE 1.53 x 102 1.79 x 10! 2.16 x 10° 1.50 x 102
ITSE 3.55 x 101 5.15 x 10701 7.61 x 10701 3.51 x 10!
IAE 6.49 x 100 1.77 x 10° 1.84 x 109 6.34 x 100

ISE 2.32 x 100 1.38 x 10° 1.24 x 109 2.13 x 109
RMSE 2.98 x 100 2.98 x 100 2.82 x 100 2.82 x 109
MSE 8.90 x 100 8.88 x 100 7.94 x 100 7.96 x 10702
Execution time 12,227.514 s 12,592.143 s

Figures 9-12, the pink color indicates the desired reference signal and the blue color
represents the obtained signal.

Figure 9 represents the trajectories of the LE and the WE, without considering distur-
bances in the controller, of the best result obtained in the experiment, where it can be seen
that the trajectories for the LE and the WE are very close to the desired trajectories.

Table 5 shows the simulation results with different disturbances affecting the controller
as well as the different errors that were calculated in the experimentation.

Figure 10 shows the best result of the trajectories obtained for the LE and the WE when
using disturbance 1; for the LE, it was observed that the trajectory had a small separation
from the desired line, while the WE was closer to the desired line.

In the case of disturbance 2, the best trajectories obtained for the LE and the WE are
presented in Figure 11, in which we can note that this type of disturbance generates a
variation between the desired line and the one obtained for both trajectories.
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Finally, the trajectories of the LE and the WE for disturbance 3 are represented in
Figure 12. In this case, it was observed that they had a small variation with respect to the
desired line.

Regarding the results presented in Tables 3 and 4, the different errors show that
it is possible to obtain stability in the LE and WE trajectories for the different types of
disturbances applied to the controller. It is also observed that the different metrics used
showed stability in terms of their values, which is corroborated by Figures 10-12.

LE RMSE = 2.82 x10°
5 - |
g 0 e B = e —— et
3 |
_5 | | | |
0 5 10 15 20 25 30 35 40 45 50
Time (seconds)
WE RMSE = 2.82 x10°

5 |

Reference
(=1}

| | |
20 25 30 35 40 45 50
Time (seconds)

I
wn
=
w
—
o
—
w

Figure 9. Representation of the best result representing the LE and the WE.

LE RMSE = 2.98 x10°
5 [
8
=
E 0 —_— —_—— —_— —_—
h | |
0 5 10 15 20 25 30 35 40 45 50
Time (seconds)
WE RMSE = 298 x10°

Reference
=)

5 \ |
0 5 10 15 20 25 30 35 40 45 50

Time (seconds)

Figure 10. Representation of the best result representing the LE and the WE.
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Table 5. Simulations obtained applying one, two, and three disturbances, respectively.

1 2 3
Performance LE WE LE WE LE WE
Index GT2FC GT2FC GT2FC GT2FC GT2FC GT2FC
ITAE 1.79 x 10! 1.53 x 102 7.01 x 102 6.55 x 102 4.24 x 10! 1.60 x 102
ITSE 515x 107! 3.55 x 102 6.31 x 102 2.93 x 101 3.15 x 10° 3.83 x 101
IAE 1.77 x 100 6.49 x 100 2.88 x 10! 1.17 x 10° 2.68 x 100 6.78 x 100
ISE 1.38 x 10° 2.32 x 109 2.67 x 101 1.70 x 10~ 1.47 x 100 2.42 x 10°
RMSE 2.98 x 109 2.98 x 109 3.44 x 100 440 x 1079 2.94 x 100 2.94 % 100
MSE 8.88 x 100 8.90 x 100 1.18 x 10! 6.70 x 10791 8.65 x 10° 8.65 x 10°
Execution time 23,134.33 s 36,826.203 s 7067.877 s

6. Conclusions

The present work shows generalized type 2 fuzzy logic being utilized to dynamically
modify the F parameter in differential evolution. In the same way, a robot controller was
implemented with a generalized type 2 fuzzy system. In fact, we can highlight this as the
main contribution of this article since there is no similar work in the literature regarding
the differential evolution algorithm.

Regarding the results presented in Tables 4 and 5, the different errors show that it
is possible to obtain stability in the LE and WE trajectories in the different disturbances
applied to the controller. The analysis for the metrics is explained below. In the case of the
ITAE metric, it can be observed that the damping of the controller for the different applied
disturbances is in the same order. ITSE has the characteristic that when faced with a unit
step type input, the response has a large initial error given that it has a small weight, and it
can be observed that the results obtained vary with respect to the LE and the WE, where it
is observed that the LE has lower values in disturbances 1 and 2. The IAE performance
index is not easy to evaluate; however, it is observed in the results they were of the same
order, and we could consider them as good. ISE is one of the most important metrics to
evaluate a controller. In this case, our results show that for the three disturbances as well as
the controller without a disturbance, we had a good performance because it is possible to
minimize this performance index. Regarding the RMSE and MSE, all the obtained results
were of the same order and indicated that the difference between the desired and obtained
lines was minimal, as shown in Figures 10-12, where it can be seen that the trajectories for
the LE and the WE were very close.

In the future, we plan to consider other kinds of applications [40] and extend the
presented approach to type 3 fuzzy logic as has been outlined in [41-44].
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